توظيف نماذج احصائية ذات مقاييس متعددة لايجاد مقاومة القص للعتبات الخرسانية الخالية من حديد القص العرضي

محتوى المقالة الرئيسي

Saad Mahmood Raoof
Raed Mokhalad Radeef
Anfal Mansur Hameed
Shagea Alqawzai

الملخص

يُعتبر فشل القص في العتبات الخرسانية المسلحة الخالية من حديد تسليح القص العرضي مشكلةً إنشائية خطيرة؛ حيث يحدث بشكل مفاجئ ولا تتوفر له مؤشرات تحذيرية سابقة. ويستعرض هذا البحث مجموعةً من نماذج الانحدار الإحصائية متعددة المقاييس – بدءاً من النماذج الخطية الكاملة والمبسطة وصولاً إلى نماذج الانحدار المتعدد التدريجي (SMR) – بهدف التنبؤ بقوة القص (Vc) في هذه العتبات. طُوّرت النماذج انطلاقاً من قاعدة بيانات تضم 398 عتبة خرسانية مسلحة تباينت في أبعادها وخصائصها المادية وظروف التحميل. وشملت المتغيرات المدخلة عرض العتبة، العمق الفعّال للخرسانة، مساحة التسليح الطولي، مقاومة الخرسانة للضغط، ونسبة الرافعة القصية إلى العمق الفعّال (a/d). بُنيت النماذج باستخدام برمجيات Python وSPSS؛ ثم قُيِّم أداؤها بمعامل التحديد (R²)، وجذر متوسط مربع الخطأ (RMSE)، ومتوسط الخطأ المطلق (MAE)، إضافة إلى دقة التصنيف وتحليل البواقي. أظهرت النتائج أن أعلى دقة تنبؤية تم تحقيقها باستخدام النموذج الخطي الكامل، حيث بلغ معامل التحديد (R²) نحو 0.9733. كذلك سجّل النموذج الخامس ضمن نماذج الانحدار المتعدد التدريجي (SMR) قيمة جذر متوسط مربع الخطأ (RMSE) بنحو 17.8 ميغاباسكال. بالمقابل، بدا أن النموذج الخطي المبسط سجل أدنى أداء تنبؤي، إذ صاحَب استخدامه انخفاضٌ كبيرٌ في قيم قوة القص المتنبأة مقارنةً بالقياسات التجريبية. وتشير نتائج البحث إلى أن تبنّي أسلوب الانحدار المتدرج يسهم في تحسين دقة النماذج مع الحفاظ على وضوح الأهمية التطبيقية للعوامل المعتمدة. كما تمكّن هذه الدراسة المهندسين من اتخاذ قرارات تصميمية مستندة إلى بيانات تجريبية موثوقة.

المقاييس

يتم تحميل المقاييس...

تفاصيل المقالة

القسم
Articles

##plugins.generic.plaudit.displayName##

المراجع

ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary. American Concrete Institute; 2019.

CEN (European Committee for Standardization). Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings (EN 1992-1-1). 2004.

CSA Group. Design of Concrete Structures (CSA A23.3-19). Canadian Standards Association; 2019.

Vecchio FJ, Collins MP. The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Journal 1986; 83(2):219-231.

Bentz EC, Vecchio FJ, Collins MP. Simplified Modified Compression Field Theory for Calculating Shear Strength of Reinforced Concrete Elements. ACI Structural Journal 2006; 103(4):614-624.

Mansour MY, Dicleli M, Lee JY, Zhang J. Predicting the Shear Strength of Reinforced Concrete Beams Using Artificial Neural Networks. Engineering Structures 2004; 26(6):781-799.

Khademi F, Jamal SM, Deshpande N, Londhe S. Predicting Strength of Recycled Aggregate Concrete Using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. International Journal of Sustainable Built Environment 2016; 5(2):355-369.

Chou JS, Tsai CF, Pham AD, Lu YH. Machine Learning in Concrete Strength Simulations: Multi-Nation Data Analytics. Construction and Building Materials 2014; 73:771-780.

Raudenbush SW. Hierarchical Linear Models: Applications and Data Analysis Methods. Advanced Quantitative Techniques in the Social Sciences Series. Sage Publications; 2002.

Motlagh SAT, Naghizadehrokni M. An Extended Multi-Model Regression Approach for Compressive Strength Prediction and Optimization of a Concrete Mixture. Construction and Building Materials 2022; 327:126828.

Hou Z, Noori M, Amand RS. Wavelet-Based Approach for Structural Damage Detection. Journal of Engineering Mechanics 2000; 126(7): 677-683.

Arbaoui A, Ouahabi A, Jacques S, Hamiane M. Concrete Cracks Detection and Monitoring Using Deep Learning - Based Multiresolution Analysis. Electronics 2021; 10(15):1772.

Huang Y, Beck JL, Li H. Bayesian System Identification Based on Hierarchical Sparse Bayesian Learning and Gibbs Sampling with Application to Structural Damage Assessment. Computer Methods in Applied Mechanics and Engineering 2017; 318:382-411.

ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary. Farmington Hills, MI: American Concrete Institute; 2019.

Adebar P, Collins MP. Shear strength of members without transverse reinforcement. Can J Civ Eng. 1996;23(1):30-41. DOI: https://doi.org/10.1139/l96-004

Ahmad SH, Khaloo AR, Poveda A. Shear capacity of reinforced high-strength concrete beams. ACI J Proc. 1986;83(2):297-305. DOI: https://doi.org/10.14359/10433

Ahmad SH, Xie Y, Yu T. Shear ductility of reinforced lightweight concrete beams of normal strength and high strength concrete. Cem Concr Compos. 1995;17(2):147-59. DOI: https://doi.org/10.1016/0958-9465(94)00029-X

Al-Alusi AF. Diagonal tension strength of reinforced concrete T-beams with varying shear span. J Proc. 1957 May;53(5):1067-77. DOI: https://doi.org/10.14359/11572

Angelakos D, Bentz EC, Collins MP. Effect of concrete strength and minimum stirrups on shear strength of large members. Struct J. 2001;98(3):291-300. DOI: https://doi.org/10.14359/10220

Arbaoui A, Ouahabi A, Jacques S, Hamiane M. Concrete cracks detection and monitoring using deep learning-based multiresolution analysis. Electronics. 2021;10(15):1772. DOI: https://doi.org/10.3390/electronics10151772

Aster H, Koch R. Shear strength of thick reinforced concrete slabs. Beton-u Stahlbetonbau. 1974;69(11).

Bentz EC, Vecchio FJ, Collins MP. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Struct J. 2006;103(4):61. DOI: https://doi.org/10.14359/16438

Bhal NS. On the Influence of Beam Depth on Shear Capacity of Single-Span RC Beams with and without Shear Reinforcement [Doctoral dissertation]. Stuttgart, Germany: Universität Stuttgart; 1968.

Bresler B, Scordelis AC. Shear strength of reinforced concrete beams. J Proc. 1963 Jan;60(1):51-74. DOI: https://doi.org/10.14359/7842

CEN (European Committee for Standardization). Eurocode 2: Design of concrete structures—Part 1-1: General rules and rules for buildings (EN 1992-1-1). Brussels, Belgium: European Committee for Standardization; 2004.

Chou JS, Tsai CF, Pham AD, Lu YH. Machine learning in concrete strength simulations: Multi-nation data analytics. Constr Build Mater. 2014;73:771-80. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.054

Collins M, Kuchma D. How safe are our large, lightly reinforced concrete beams, slabs, and footings?. Struct J. 1999;96(4):482-90. DOI: https://doi.org/10.14359/684

CSA Group. Design of Concrete Structures (CSA A23.3-19). Mississauga, ON: Canadian Standards Association; 2019.

De Cossio RD, Siess CP. Behavior and strength in shear of beams and frames without web reinforcement. J Proc. 1960 Feb;56(2):695-736. DOI: https://doi.org/10.14359/8118

Elzanaty AH, Nilson AH, Slate FO. Shear capacity of reinforced concrete beams using high-strength concrete. J Proc. 1986 Mar;83(2):290-6. DOI: https://doi.org/10.14359/10432

Feldman A, Siess CP. Effect of moment-shear ratio on diagonal tension cracking and strength in shear of reinforced concrete beams. Civil Engineering Studies SRS-107. Urbana, IL: University of Illinois; 1955.

Ferguson PM, Thompson JN. Diagonal tension in T-beams without stirrups. J Proc. 1953 Mar;49(3):665-75. DOI: https://doi.org/10.14359/11844

Kani GNJ. How safe are our large reinforced concrete beams?. Proc ACI Struct J. 1967;64(3):128-41. DOI: https://doi.org/10.14359/7549

Grimm R. Influence of fracture mechanics parameters on the bending and shear bearing behavior of high-strength concretes [Ph.D. Dissertation]. Berlin, Germany: Construction Engineering of the Technical University of Darmstadt; 1997. (In German).

Hallgren M. Flexural and shear capacity of reinforced high strength concrete beams without stirrups [Doctoral dissertation]. Stockholm, Sweden: KTH Royal Institute of Technology; 1994.

Hallgren M. Punching shear capacity of reinforced high strength concrete slabs [PhD Thesis]. Stockholm, Sweden: KTH Byggvetenskap; 1996.

Hamadi YD. Force transfer across cracks in concrete structures [Doctoral dissertation]. London, UK: University of Central London Westminster; 1976.

Hanson JA. Shear strength of lightweight reinforced concrete beams. J Proc. 1958 Sep;55(9):387-403. DOI: https://doi.org/10.14359/11362

Hanson JW. Tensile strength and diagonal tension resistance of structural lightweight concrete. J Proc. 1961 Jul;58(7):1-40. DOI: https://doi.org/10.14359/7972

Herzog M. Die erforderliche Bügelbewehrung von Stahlbeton‐und Spannbetonbalken. Beton‐und Stahlbetonbau. 1982;77(8):203-9. DOI: https://doi.org/10.1002/best.198200280

Hou Z, Noori M, Amand RS. Wavelet-based approach for structural damage detection. J Eng Mech. 2000;126(7):677-83. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(677)

Huang Y, Beck JL, Li H. Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment. Comput Methods Appl Mech Eng. 2017;318:382-411. DOI: https://doi.org/10.1016/j.cma.2017.01.030

Islam MS, Pam HJ, Kwan AKH, Aoyagi. Shear Capacity Of High-Strength Concrete Beams With Their Point Of Inflection Within The Shear Span. Proc Inst Civ Eng-Struct Build. 1998;128(1):91-9. DOI: https://doi.org/10.1680/istbu.1998.30038

Khademi F, Jamal SM, Deshpande N, Londhe S. Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression. Int J Sustain Built Environ. 2016;5(2):355–69. DOI: https://doi.org/10.1016/j.ijsbe.2016.09.003

Koutas LN, Cholostiakow S, Bournas DA, Raoof S, Tetta Z. Optimized hybrid carbon-glass textile-reinforced mortar for flexural and shear strengthening of RC members. J Compos Constr. 2024;28(1):04023068. DOI: https://doi.org/10.1061/JCCOF2.CCENG-4333

Krefeld WJ, Thurston CW. Contribution of Longitudinal Steel to Shear Resistance of Reinforced Concrete Beams. ACI J. 1966 Mar;63(3):325-44. DOI: https://doi.org/10.14359/7626

Kulkarni SM, Shah SP. Response of reinforced concrete beams at high strain rates. Struct J. 1998;95(6):705-15. DOI: https://doi.org/10.14359/584

Kung TM, Li JCM. Recovery of thick shear bands in atactic polystyrene. J Polym Sci A Polym Chem. 1986;24(10):2433-45. DOI: https://doi.org/10.1002/pola.1986.080241006

Lambotte H, Taerwe LR. Deflection and cracking of high-strength concrete beams and slabs. Spec Publ. 1990;121:109-28.

Laupa A, Siess CP, Newmark NM. The shear strength of simple-span reinforced concrete beams without web reinforcement. Civil Engineering Studies SRS-052. Urbana, IL: University of Illinois; 1953.

Leonhardt F, Walther R. Schubversuche an einfeldigen Stahlbetonbalken mit und ohne Schubbewehrung. Deutscher Ausschus für Stahlbeton. 1962;151:83.

Mansour MY, Dicleli M, Lee JY, Zhang JJES. Predicting the shear strength of reinforced concrete beams using artificial neural networks. Eng Struct. 2004;26(6):781-99. DOI: https://doi.org/10.1016/j.engstruct.2004.01.011

Marti P, Pralong J, Thürlimann B. Summary. In: Schubversuche an Stahlbeton-Platten. Institut für Baustatik. Versuchsberichte. Basel, Switzerland: Birkhäuser; 1977. 10.1007/978-3-0348-5739-0_7. DOI: https://doi.org/10.1007/978-3-0348-5739-0

Mathey RG, Watstein D. Shear strength of beams without web reinforcement containing deformed bars of different yield strengths. J Proc. 1963 Feb;60(2):183-208. DOI: https://doi.org/10.14359/7851

Moody KG, Viest IM, Elstner RC, Hognestad E. Shear strength of reinforced concrete beams Part 1-Tests of simple beams. J Proc. 1954 Dec;51(12):317-32. DOI: https://doi.org/10.14359/11680

Morrow J, Viest IM. Shear strength of reinforced concrete frame members without web reinforcement. J Proc. 1957 Mar;53(3):833-69. DOI: https://doi.org/10.14359/11558

Motlagh SAT, Naghizadehrokni M. An extended multi-model regression approach for compressive strength prediction and optimization of a concrete mixture. Constr Build Mater. 2022;327:126828. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126828

Mphonde AG, Frantz GC. Shear tests of high-and low-strength concrete beams without stirrups. J Proc. 1984 Jul;81(4):350-7. DOI: https://doi.org/10.14359/10690

Rajagopalan KS, Ferguson PM. Exploratory shear tests emphasizing percentage of longitudinal steel. J Proc. 1968 Aug;65(8):634-8. DOI: https://doi.org/10.14359/7501

Raudenbush SW. Hierarchical linear models: Applications and data analysis methods. Thousand Oaks, CA: Sage Publications; 2002.

Reineck KH, Koch R, Schlaich J. Shear Tests on Reinforced concrete beams with axial compression for offshore structures. Stuttgart, Germany: Institut für Massivbau, Universität Stuttgart; 1978.

Remmel G. Zum Zugtragverhalten hochfester Betone und seinem Einfluß auf die Querkrafttragfähigkeit von schlanken Bauteilen ohne Schubbewehrung. Darmstadt, Germany: Technische Hochschule Darmstadt; 1991.

Ruesch M, Haugli O, Mayer M. Schubversuche an Stahlbeton-Rechteckbalken mit gleichmäkig verteilter Belastung. Deutcher Ausschuss fur Stahlbeton. Berlin, Germany; 1962. p. [4-30]. (in German).

Scholtz H. Ein Querkrafttragmodell fürBauteile onhe Schubbewehrung im Bruchzustand aus normalfestem und hochfestem Beton. Stuttgart, Germany; 1994. (in German).

Taylor HP. Shear stresses in reinforced concrete beams without shear reinforcement. London, UK: Cement and Concrete Association; 1968.

Taylor HP. Shear strength of large beams. J Struct Div. 1972;98(11):[2473-90]. DOI: https://doi.org/10.1061/JSDEAG.0003376

Thorenfeldt E, Drangsholt G. Shear capacity of reinforced high-strength concrete beams. Spec Publ. 1990;121:129-54.

Vecchio FJ, Collins MP. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J. 1986;83(2):219–31. DOI: https://doi.org/10.14359/10416

Walraven JC. The influence of depth on the shear strength of lightweight concrete beams without shear reinforcement. Delft, Netherlands: University of Technology, Department of Civil Engineering; 1984.

Yoon YS, Cook WD, Mitchell D. Minimum shear reinforcement in normal, medium, and high-strength concrete beams. Struct J. 1996;93(5):576-84. DOI: https://doi.org/10.14359/9716

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.