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1. INTRODUCTION

The mechanical behavior of structural elements
within reinforced concrete (RC) structures
determines the safety, functional operation,
and stability of beams. The standard practice
for designing RC beams includes using
longitudinal and transverse reinforcement to
withstand flexural and shear forces in most
practical applications. Real-world construction
of beams often occurs without web (transverse)
reinforcement due to design limitations or cost
constraints and architectural requirements. A
design choice that omits web reinforcement
makes structures more susceptible to brittle
shear failure, as this mode of failure produces
minimal deformation and no warning signs.
The structural engineering community
continues to focus on accurate shear strength
predictions for beams because this topic
remains essential. The shear behavior of RC
beams consists of multiple interacting
mechanisms, including diagonal tension
cracking, aggregate interlock, dowel action of
longitudinal reinforcement, and arching action.
The absence of web reinforcement makes
concrete, along with longitudinal bars, more
crucial to the structure's behavior. The beam
strength depends heavily on beam width (bw)
and effective depth (d), along with compressive
strength of concrete (fc), reinforcement ratio
(p), and shear span-to-depth ratio (a/d). Shear
capacity predictions for such conditions prove
more complex than flexural strength
predictions because of the interacting nonlinear
mechanisms and coupled effects at play.
Current building code shear design provisions,
including ACI 318-25 [1], Eurocode 2 [2], and
CSA A23.3 [3], employ empirical or semi-
empirical mathematical approaches. The
application of these equations remains
straightforward, yet their effectiveness declines
when used beyond their calibrated range,

particularly for beams that lack web
reinforcement. The result of this approach leads
to either extremely conservative design choices
or dangerous structural evaluations when
working with advanced or unconventional
applications. The combination of extensive
experimental data with modern statistical
learning tools provides a promising solution to
traditional code-based predictions. Machine
learning and regression-based models identify
intricate patterns along with nonlinear
connections in experimental data, which
standard analytical methods struggle to detect.
Multi-scale regression models, which span
linear regression (LR) to nonlinear regression
(NLR) and classification models, including
multi-logistic  regression (MLR), enable
accurate and generalizable predictions for RC
beams. These models provide a flexible
framework for considering material properties
in conjunction with geometric parameters and
loading conditions, leading to more precise
predictions of structural behavior. Despite the
growth in the use of such models for predicting
compressive or flexural strength, limited
attention has been given to modeling the shear
capacity of beams without web reinforcement
using this systematic, comparative modeling
approach. Previous works have focused on
specific types of concrete, e.g., ultra-high-
performance fiber-reinforced concrete,
specialized reinforcement schemes, or machine
learning black-box models with limited
interpretability. Still, there is a need for clear,
statistically sound, and interpretable models
that can provide both accurate numerical
predictions and practical decision-making
support for engineers. The present study aims
to employ statistical multi-scale regression
models to predict the shear capacity of RC
beams without web reinforcement. By
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leveraging a comprehensive dataset collected
from previously published experimental
studies, the proposed models incorporate key
influencing parameters, such as beam
dimensions, concrete compressive strength,
reinforcement ratio, and shear span-to-depth
ratio. The performance of the multi-scale
models is evaluated using standard statistical
metrics and compared against traditional
design code predictions to highlight their
advantages in terms of accuracy and
generalizability. This research aimed to
contribute to the development of robust
predictive tools that can assist engineers in
designing safer and more economical RC
structures, while also paving the way for the
integration of data-driven intelligence into
structural engineering practice. The motivation
behind this research stems from the code-based
equations' lack of consistency and accuracy
when applied to beams without stirrups, as well
as the fact that experimental testing is
expensive, time-consuming, and not always
feasible during design or assessment. In
addition, statistical regression techniques
provide a transparent, flexible, and efficient
alternative for developing predictive equations.
Also, model comparisons are rarely made
within a single study, leaving a gap in
identifying the most suitable modeling strategy
for this type of structural problem. Shear
capacity prediction in reinforced concrete (RC)
beams without web reinforcement has been a
significant focus because shear failure in these
structures occurs suddenly and in a brittle
manner. The current design codes fail to
accurately represent the intricate relationships
between variables that control shear behavior
in beams without transverse reinforcement.
The Modified Compression Field Theory
(MCFT) and its simplified version (SMCFT)
represent advanced analytical approaches for
studying the behavior of concrete and steel
under combined stress conditions (Vecchio &
Collins [4], Bentz et al. [5]). The models provide
strong theoretical foundations but require
iterative computational methods and specific
assumptions to function, which may not hold
universally across all beam geometries or
loading scenarios. To overcome the
shortcomings of both code-based models and
analytical models, data-driven methods with
artificial intelligence (AI) and machine learning
(ML) models have been proposed by
researchers. Artificial neural networks (ANNs),
support vector machines (SVMs), gene
expression programming (GEP), and decision
trees have demonstrated significant capabilities
for modeling nonlinear input relationships
(Mansour et al. [6]; Khademi et al. [7]; Chou et
al. [8]). While such models frequently achieve
higher predictive accuracy compared to
traditional approaches, they are typically

trained for a single scale of data representation.
They may fail to provide interpretations that are
useful in engineering applications. Meanwhile,
hierarchical regression models are particularly
effective when data are correlated, or clustered,
such as road beams within bridge frames or
samples across testing laboratories. They can
handle both fixed (e.g., material properties) and
random (e.g., construction variation) effects,
leading to a more detailed view of the behaviors
of structures (Raudenbush [9]; Motlagh and
Naghizadehrokni [10]). Applications range
from extrapolating compressive strength across
different projects to calculating load-bearing
capacity with site-specific modifiers. Their
approach involves the use of artificial neural
networks, random forest regression, and
polynomial regression methods to enhance
prediction accuracy, particularly in the context
of hierarchical and multi-resolution regression
models in HSSP. Multi-scale regression
methodologies, leveraging wavelet transforms
or decomposition frameworks, allow local and
global structural behaviors to be addressed at
the same time, thereby enhancing the
understanding of stress distribution, crack
initiation and detection, and damage
propagation (Hou et al. [11]; Arbaoui et al. [12]).
Recent research has shifted towards hybrid
approaches that interfuse hierarchy and multi-
resolution models, typically via a Bayesian
treatment. These models combine data at the
spatial or functional level and can measure
uncertainty in performance predictions, which
is of great importance for structural health
monitoring or fragility assessment. Bayesian
hierarchical regression, including Gaussian
process-based methods, is gaining traction for
integrating data from various sources, e.g.,
simulations, sensors, and inspections, while
capturing probabilistic variation in material
and structural behavior. One such study is by
Huang et al. [13], who proposed a Bayesian
system identification method based on
hierarchical sparse Bayesian learning and
Gibbs sampling for structural damage
assessment. Their methodology effectively
detects, locates, and quantifies structural
damage wusing incomplete modal data,
addressing  challenges associated  with
uncertainty and sparse measurements.
Nevertheless, a shortage of research remains
focused specifically on statistical multi-scale
regression models for RC beams without
stirrups. Most existing studies either overlook
scale interactions or fail to quantify uncertainty
in input data. Moreover, comparative analyses
between such models and established design
codes are often lacking. This paper addresses
this gap by developing and evaluating three
structured models, Linear Regression (LR),
Nonlinear Regression (NLR), and Multi-
Logistic Regression (MLR), to predict the Shear
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capacity (Vc) of RC beams without web
reinforcement. Unlike prior machine learning
approaches that prioritize accuracy at the
expense of interpretability, the present study
focuses on multi-scale regression models that
are both accurate and transparent, offering
clear insights into the structural behavior of RC
beams without stirrups. In addition, prior
studies often relied on a single modeling
technique or limited datasets, whereas this
work leverages a verified and curated database
of 398 experimental tests, covering a broad
range of geometrical configurations, material
strengths, and loading conditions. Therefore,
the proposed models are not only reliable but
also highly applicable to a wide range of
practical scenarios.

2.METHODOLOGY

The present study adopts a multi-model
statistical approach to predict the Shear
capacity (Vc) of reinforced concrete (RC) beams
without web reinforcement. The methodology
consists of five main stages: (i) acquisition and
preparation of the experimental dataset, (ii)
selection of input variables, (iii) statistical
analysis, (iv) development of prediction models
using regression techniques, and (v) evaluation
of model performance using standardized
metrics.

2.1.Experimental Dataset

The core of this research is built upon a
comprehensive  and  curated  database
comprising 398 experimentally tested RC beam
specimens without web reinforcement. The
dataset, compiled and refined by Dr. Robert J.
Frosch and colleagues, aggregates test results
from over 30 independent published studies.
The database includes a wide range of beam
sizes, concrete strengths, reinforcement
configurations, and loading types. Each record
contains geometric parameters, material
properties, and measured shear capacity
values. Table 1 (Appendix A) presents a
summary of the data collected from the
mentioned experimental tests.

To maintain consistency and avoid scale effects,
all measurements were converted into metric
units where necessary. The final dataset
included the following parameters:

e Beam width (bw, mm)

Effective depth (d, mm)

Shear span (a, mm)

Shear span-to-depth ratio (a/d)
Longitudinal reinforcement ratio (p)
Concrete compressive strength (fc, MPa)
Measured shear capacity (Ve, MPa)
2.2.Data Cleaning and Normalization
Missing, duplicated, or outlier records were
carefully inspected and addressed. Only
complete records with verified test procedures
were retained. No data augmentation or
synthetic records were introduced.

Additionally, the values of variables were
normalized using z-score scaling to aid in
training and prevent bias in the regression
processes.
2.3.Variable Selection
The selection of input variables was based on
both structural engineering principles and
statistical relevance. Six variables were chosen
to represent key geometric and material
properties influencing the shear capacity of RC
beams without web reinforcement as follows:

e Beam width (bw): Influences cross-sectional
area and shear path.

e Effective depth (d): Affects lever arm and
internal force distribution.

e Shear span (a): Impacts the magnitude of
shear forces.

e Shear span-to-depth ratio (a/d): Relates to
failure mode transition and cracking pattern.

e Longitudinal reinforcement ratio (p):
Determines flexural capacity and anchorage
effects.

e Concrete compressive strength (f'¢): Directly
correlates with the intrinsic shear resistance
of concrete.

These variables were consistently used in all
developed models, enabling a comprehensive
and interpretable approach to modeling shear
behavior. This selection also supports
comparison with existing code-based and
empirical formulations.

2.4.Model Formulations

Three statistical models were developed:

1- Full Linear Regression (LR-F): Assumes a
direct linear relationship between all input
variables and Vc to get the most accurate
equation.

2- Simplified Linear Regression (LR-S):
Assumes a direct linear relationship
between some of the input variables and
Ve to get a simple code-style equation with
acceptable accuracy.

3- Stepwise Multivariate Regression (SMR):
Statistically optimal regression model by
iteratively adding and/or removing
predictor variables based on their
significance and contribution to the
model's performance.

2.5.Tools and Implementation

All models were developed using the Python

programming language along with packages

such as ‘“pandas’, ‘scikit-learn®, and

‘matplotlib®, for data handling, regression

modeling, and visualization. Additionally, SPSS

software was used to calculate the residuals.

The model evaluation included both numerical

and graphical outputs to assess performance.

2.6.Rationale for Model Selection

Statistical regression models were considered,

as opposed to machine learning models such as

neural networks or support vector machines,
due to the interest in transparency,
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interpretability, and engineering applicability.
In previous works, advanced material
informatics methods have demonstrated high
prediction accuracy; however, they act as a
black box model, where it is not transparent in
extracting physically meaningful insights or
usable equations for design.

3.STATISTICAL EVALUATION

This section presents the descriptive and
inferential statistical analysis conducted on the
experimental dataset to evaluate the
relationships between shear capacity (Vc) and
the selected geometric parameters: beam width
(bw) and effective depth (d). Understanding the
statistical behavior of the dataset is essential for

model development, validation, and
generalization.

3.1.Descriptive Statistics

Table 1 summarizes the statistical distribution
of the primary variables under investigation.
These include mean, standard deviation,
minimum and maximum values, as well as
skewness and kurtosis, which provide insights
into the symmetry and peakedness of the data
distributions. The beam dimensions and shear
capacity values span wide ranges, confirming
the representativeness of the dataset. High
positive skewness and kurtosis in Vc suggest a
concentration of lower-strength beams and the
presence of a few outliers with very high shear

capacity.

Table 1 Summary of the Statistical Distribution of the Primary Variables.

Variable bw d a/d dia fy As Rho fc Vu
(mm) (mm) (m/m) (mm) (MPa) (mm?) (%) (MPa) (kN)
Min 76 110 2.41 6.35 276 103 0.14 12 14
Max 1000 2000 8.03 38 1779 7390 6.64 105 402
Mean 212 341 3.59 18.35 463 1357 2.27 40 91
Std Dev 149 243 0.92 7.23 185 1128 1.17 22 69
Skewness 4 3 1.65 0.26 5 2.43 0.68 1.20 2.05
Kurtosis 16 12 3.62 -0.87 30 7.34 0.61 0.23 4.68
3.2.Visual Analysis frequency are the ones most commonly used in

Histogram plots of all variables show non-
normal distributions, especially for Vu, d, b,
and f'c, which is heavily right-skewed, as shown
in Fig. 1. However, the intervals with the highest
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3.3.Correlation Analysis

To validate the selection of the utilized variables
by measuring the nature and strength between
each of the variables and the recorded shear
capacity, Pearson correlation coefficients (r)
were calculated as follows:

o SE&-Di-Y)
\/Z(xi -2y —y)?

r = Pearson correlation coefficient

xi = values of the x-variable in a sample

x = mean of the values of the x-variable

yi = values of the y-variable in a sample

¥ = mean of the values of the y-variable

The results of the correlation test are as follows:

e Vuvs.d: r = 0.69 (moderate
direct correlation)

e Vuvs. bw: r = 0.73 (strong direct
correlation)

e Vuvs.a/d: r = -0.1 (weak
indirect correlation)

e Vuvs. Aa: r = 0.85 (strong direct
correlation)

e Vuvs.p: r = -0.18 (weak

indirect correlation)
e Vuuvs.fec: r = 0.2 (weak direct
correlation)

0.73

0.20

bw d a/d fic

Asl

The correlation matrix in Fig. 2 revealed
meaningful  relationships  between the
independent variables and the dependent
variable, Ve (shear capacity). A strong positive
correlation was observed between Vu and both
the beam width (bw) and the area of
longitudinal reinforcement (Asl), indicating
that increases in these parameters are strongly
associated with higher shear capacity.
Similarly, depth (d) exhibited moderate to
strong positive correlations with Vu, suggesting
its essential roles in influencing beam strength.
On the other hand, the shear span-to-depth
ratio (a/d) and the longitudinal reinforcement
ratio (p) showed a notable negative correlation
with Vu, aligning with structural mechanics
principles, where an increased shear span
reduces shear resistance. Variables, such as
steel yield strength (fsy), demonstrated
relatively weak correlations with Vu, implying
limited linear influence in this dataset.
Additionally, no excessively high correlations
were found among the independent variables
themselves, further supported by the low VIF
values obtained in the multicollinearity analysis
(Table 2), indicating that the model structure is
statistically sound, and the predictors are not
redundant.

1.0

0.04

rholw fsy vu

Fig. 2 Correlation Matrix of Structural Parameters Affecting Shear Capacity (Vu).
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These correlations affirm the suitability of both
parameters for use in regression modeling.
Scatter plots of Vu versus bw, d, Ag, and fc
display upward trends Fig. 3 with a strong

regression line for each of the effective depth,
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area, supporting the hypothesized positive
relationships. The nonlinear nature of these
trends further justifies the use of polynomial
regression in addition to linear models.
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Fig. 3 Scatter Plots and Correlation of Vu Versus (a) Effective Beam Depth, (b) Beam Width, (c)
Concrete Compressive Strength, and (d) Steel Reinforcement Area.

3.4.Multicollinearity Check

To ensure the independent variables are not
highly collinear, the Variance Inflation Factor
(VIF) was computed. Most of the VIF values are
well below 5, as shown in Table 3, indicating no
significant multicollinearity, which validates
the joint inclusion of these variables in the
regression models. A VIF below 5 indicates low
multicollinearity, where the variable is not
strongly correlated with other predictors in the
model. Additionally, it provides a reliable

estimate, with regression coefficients that are
likely stable and interpretable. Finally, a VIF
below 5 refers to a good model structure, with
no need to remove or combine variables due to
correlation issues. In conclusion to all the above
variable examinations, the statistical evaluation
confirms that all selected parameters are
relevant, significant, and independently
contribute to predicting the shear capacity. The
patterns in the data also support the modeling
choices made in the next phase of the research.

Table 2 Variance Inflation Factor (VIF) of the Primary Variables.

Variable VIF

bw 1.919932
d 2.657233
a/d 1.093044
fc 1.161081

Aq 3.225968
p 2.543997
fy 1.271095
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4.MODELING
This section presents the formulation,
development, and implementation of the seven
proposed models used to predict the shear
capacity (Ve) of reinforced concrete beams
without web reinforcement. Each model
employs different assumptions and levels of
complexity, allowing for a comparative
evaluation of their predictive capabilities.
4.1.Linear Regression Model (LR)
The linear regression model assumes a direct
linear relationship between shear capacity (Vc)
and the input variables, beam width (bw) and
effective depth (d). The general form of the
model is given by:
Ve=po+pB1-bw+p2-d+ B3-(a/d)+ B4-d+ B5-fc'+
B6.Asl+ B7-p +pB8-fy
To develop the best-fit model for predicting the
shear capacity (Vc ) of reinforced concrete
beams, a multiple linear regression analysis
was employed using all available independent
variables in the dataset. This statistical method
models the relationship between one
dependent variable (Vc¢) and several
independent predictors, including beam width
(bw), effective depth (d), shear span-to-depth

400

Reg. line 7,
350 45 deg. line— — — -

© 9
300 :
250
+20% Error

200

150 ¥ =0.9522x%

R2=0.9733
100

The predicted shear capacity (kN)

-20% Error
50

0 50 100 150 200 250 300 350 400
The actual shear capacity (kKN)

(a)

ratio (a/d), bar diameter (¢), concrete
compressive  strength (fc), longitudinal
reinforcement area (As), reinforcement ratio
(p), and steel yield strength (fy). The regression
was performed using the ordinary least squares
(OLS) approach, which estimates the
coefficients by minimizing the sum of squared
differences between observed and predicted Ve
values. The analysis was performed using the
scikit-learn library in Python, which provided a
robust and efficient implementation of linear
regression, allowing for automatic handling of
the input features, rapid model fitting, and
straightforward extraction of performance
metrics, such as the coefficient of
determination (R2). The resulting model,
shown below, demonstrated a high level of
accuracy, with an R2 value of 0.97733, indicating
that 97.3% of the variability in shear capacity
was explained by the selected input parameters.
V¢=-10.603+0.198-bw+0.085:d-9.448:(a/d)
+0.119:$+0.481-f'c+0.027-As1+0.444-p+0.009

fy

As shown in Fig. 4 (a), the majority of the data
fall within a +20% error, and the entire dataset
is centered around the 45-degree line.
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Fig. 4 Comparison between Measured and Predicted Shear Capacity of RC Beam without Web
Reinforcement Using Linear Regression Model (LR). (a) Full Model and (b) Simplified Model.

On the other side, the scikit-learn library in
Python proposed a simplified version of the
model where it uses both the beam’s width and
effective depth to predict the shear capacity in
the following form:-

Ve = o + B1-bw + B2-d
The simplified linear model is simple to
interpret and implement. It is best suited for
initial assessments and cases where the
relationship between inputs and outputs is
approximately linear. Although the resulting
model, Ve = -4.312 + 0.052-bw + 0.08-d,
produced an acceptable R2 of 0.8943, all of the
predicted capacities were significantly lower
than the actual ones, placing all the data below
the 45-degree equitizing line, as shown in Fig. 4
(b), resulting in unsafe predictions.

4.2.Stepwise Multivariate Regression
(SMR) Using SPSS

Stepwise multivariate regression is a variable
selection technique designed to build a
statistically optimal regression model by
iteratively adding and/or removing predictor
variables based on their significance and
contribution to the model's performance.
Unlike the traditional full regression model,
which includes all available predictors
regardless of their statistical relevance,
stepwise regression refines the model by
eliminating redundancy and retaining only
variables that meaningfully improve prediction
accuracy. This approach balances model
complexity and explanatory power, often
yielding a more parsimonious model that
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avoids overfitting. Compared to forward
selection, which starts with no variables and
adds the most significant ones step-by-step,
and backward elimination, which begins with
all variables and sequentially removes the least
significant, stepwise regression combines both
strategies, allowing for both inclusion and
exclusion at each step. This dynamic process
makes it particularly effective in identifying the

Table 3 The Entered/Removed Variables for the

most robust subset of predictors, especially
when multicollinearity or overlapping effects
exist among variables, as observed in the initial
full model for predicting ultimate shear
strength (Vu) prediction. SPSS software was
used to conduct the analysis. It suggests trying
the five variables in Table 3 below with their
stepwise criteria.

Stepwise Multivariate Regression (SMR)

Model Variables Entered Variables Removed

Method

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-
of-F-to-remove >= .100).

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-
of-F-to-remove >= .100).

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-
of-F-to-remove >= .100).

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-
of-F-to-remove >= .100).

1 Aq
2 b
3 d

4 fc
5 a/d

Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-
of-F-to-remove >= .100).

The standard form of the prediction equation is

a
Vc=A+B.AS,+C.bw+D.d+E.f’c+F.E

and the values of each of the coefficients A, B,
C, D, E, and F are listed below in Table 4 based
on each one of the five proposed models, as
follows:

1- V,.=25.073+0.049 Ay

2- V,=-3.352+0.037 Ay + 0.206b,,

3- V.=-15.78+0.027 Ay + 0.196b,, +
0.083d

4- V.= -39.827 +0.02544 + 0.203b,, +
0.093d + 0.544f..

5- V.=-4.877+0.027 Ay + 0.201b,, +
0.086d + 0.485f. — 9. 1163

Table 4 Equation’s Coefficients of the Equations Based on the Stepwise Multivariate Regression

(SMR).

Model Unstandardized Coefficients Standardized Coefficients t St
B Std. Error Beta 2
(Constant) 25.073 3.398 7.379 .000
Aq .049 .002 .823 26.608 .000
(Constant) -3.352 2.841 -1.180 .239
2 Agl .037 .001 .618 25.338 .000
bw .206 .011 .453 18.557 .000
(Constant) -15.780 2.476 -6.372 .000
Ag .027 .001 445 18.838 .000
3 bw .196 .009 431 21.797 .000
d .083 .006 .300 13.413 .000
(Constant) -39.827 3.055 -13.038 .000
Ag .025 .001 411 20.038 .000
4 bw .203 .008 447 26.186 .000
d .093 .005 .333 17.133 .000
f'e .544 .050 .169 10.969 .000
(Constant) -4.877 5.232 -.932 .352
Aq .027 .001 .446 23.039 .000
bw .201 .007 442 28.186 .000
5 d .086 .005 .309 17.075 .000
fe .485 .046 .151 10.511 .000
a/d -0.116 1.152 -.114 -7.915 .000

In addition, the quality of each model during
the stepwise multivariate regression process is
shown in Table 5 based on R2, and the standard
error of estimate, which indicates
approximately how much error is made when

the predicted value for shear capacity (on the
least-squares line) instead of the actual value of
shear capacity. The ANOVA test results for each
model are also listed.
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Table 5 The Quality of the Five Proposed Stepwise Multivariate Regression (SMR) Models.

Model r R Square Adjusted R Square Std. Error of the Estimate
1 .8232 .677 .676 41.17757

2 .917b .840 .839 29.00182

3 -947¢ -896 .895 23.43970

4 .961d .923 .923 20.13535

5 .967¢ -936 -935 18.50451

a. Predictors: (Constant), A« (Indicating that 67.7% of the variability in shear capacity was explained by the selected input

parameters)

b. Predictors: (Constant), A«, bw (If bw is added, it will improve to 84%)

c. Predictors: (Constant), Ag, bw, d (If d is added, it will improve to 89.6%)

d. Predictors: (Constant), Ag, bw, d , f1ic (If fc is added, it will improve to 92.3%)

e. Predictors: (Constant), A, bw, d |, fic , a/d (If a/d is added, it will improve to 93.6%)

ANOVA
Model Sum of Squares df Mean Square F Sig.
1 Regression 1200457.901 1 1200457.901 707.987 .000
Residual 573110.272 338 1695.593
Total 1773568.174 339
2 Regression 1490115.645 2 745057.822 885.808 .000
Residual 283452.529 337 841.105
Total 1773568.174 339
3 Regression 1588963.149 3 529654.383 964.025 .000
Residual 184605.024 336 549.420
Total 1773568.174 339
4 Regression 1637748.346 4 409437.087 1009.878 .000
Residual 135819.827 335 405.432
Total 1773568.174 339
5 Regression 1659200.978 5 331840.196 969.112 .000
Residual 114367.195 334 342.417
Total 1773568.174 339

The above results were obtained when SPSS
automatically adds or removes predictors based
on their statistical contribution to explaining
the dependent variable. For example, Model 1
included: As with B = 0.049, Beta = 0.823, and
p < .001, indicating a powerful positive
relationship with Ve. The rationale behind
selecting As first is that it is the most significant
predictor. Model 2 included: As and bw with Ag:
Beta = 0.618 and bw: Beta = 0.453, p < .001,
which indicates that both variables have strong,
independent contributions to explaining Vc.
Model 3 added the effective depth d with Beta =
0.300, p < .001. Ag and bw retain their
significance, although As’s Beta drops to 0.445.
Model 4 added the compressive strength fc
with Beta = -0.169, p < .001, which indicated a
negative association with Vc; however, all
variables in the model remained significant.
Finally, Model 5 added an a/d ratio with Beta =
-0.114, p < .001, which introduces a slight
negative contribution. As aresult, Asiand bw are
the strongest predictors, with d and fc also
contributing significantly, and a/d has a weaker
but significant negative effect. On the other
hand, the excluded variables are p, fy, and ¢ due
to their insufficient additional explanatory
power. The model was built step-by-step and
was improved at each stage by adding variables
that significantly enhanced prediction,

incorporating both positive and negative
relationships. It is worth noting that
multicollinearity was not present, as all
tolerance values were above 0.6.
4.3.Training and Validation

All models were trained using 80% of the
dataset and validated on the remaining 20%.
Hyperparameters were selected based on cross-
validation. For SMR, accuracy metrics were
used in place of R2 and RMSE. The training was
performed using the ‘scikit-learn® library,
which provides robust implementations of all
four models and ensures reproducibility.
4.4.Visualization of Fits

Regression lines and decision boundaries were
plotted for each model to visually assess the fit
quality. The resulting model, shown below,
demonstrated a high level of accuracy, with an
R2 value ranging from 0.901 for Model 1 to
0.9734 for Model 5, indicating that 97.3% of the
variability in shear capacity was explained by
the selected input parameters.

As shown in Fig. 5 (e), the majority of the data
fall within a +20% error, and the entire dataset
is centered around the 45-degree line.

This section sets the foundation for evaluating
how these models perform in practice, which is
addressed in the following two sections.
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Fig. 5 Comparison between Measured and Predicted Shear Capacity of RC Beam Without Web
Reinforcement Using Stepwise Multivariate Regression (SMR) (a) Model 1, (b) Model 2, (c) Model

3, (d) Model

5.ASSESSMENT CRITERIA FOR
MODELS

To objectively evaluate the performance of the
four predictive models—Linear Regression
(LR) and the Stepwise Multivariate Regression
(SMR)—a set of widely recognized statistical
metrics was employed. These metrics allow for

4, and (e) Model 5.

a fair comparison in terms of accuracy,
generalization capability, and classification
effectiveness.

5.1.Coefficient of Determination (R2)
The R2 score measures the proportion of the
variance in the dependent variable (Vc) that is
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predictable from the independent variables. It
is defined as:
SSTES

Ss tot
where SS:es is the residual sum of squares, and

SStot is the total sum of squares.
An R2 value closer to 1 indicates a model that
explains most of the variability in the data. It

applies to both the LR and SMR models.

The calculated Coefficient of Determination for
each model is shown in Fig. 6. The measured
values that both the full linear model and the
Fifth-Stepwise Multivariate Regression model
perform better than the other proposed models.
1
0.98
0.96

0.94
0.92

0.9
0.88
0.86
0.84

LR-S LR-Full SMRI SMR2 SMR3 SMR4 SMRS

Fig. 6 Comparison between the calculated
coefficient of determination (R2) of each
model.

5.2.Root Mean Squared Error (RMSE)
This metric aggregates the magnitudes of
prediction errors into a single measure of
predictive accuracy (the square root of the
mean of squared differences between predicted
and actual Vc). A lower RMSE indicates that
predictions are, on average, closer to the actual
values, where zero would mean a perfect fit, and
a smaller RMSE is better. RMSE quantifies the
average magnitude of prediction error in units
of the dependent variable (MPa). It is computed
as:

R*>=1-

RMSE - Z?’:l(Ypred_}’true)z
N

This metric provides insight into the absolute
error and is particularly useful when comparing
models on datasets with different scales or
distributions. Lower RMSE indicates better
model performance. Figure 7 compares the
measured Root Mean Squared Error for each
model, which shows the same previous trend,
with both the full linear model and the Fifth-
Stepwise Multivariate Regression model being

the best among the other proposed models.
80
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o
2 0omo

LR-S LR-Full SMRI SMR2 SMR3 SMR4 SMRS

Fig. 7 Comparison between the calculated
Root Mean Squared Error (RMSE) of each
model.

5.3.Mean Absolute Error (MAE)

The MAE is the average of the absolute
differences between predicted and actual Vc
values. It provides an easy-to-interpret
measure of the typical prediction error in the
same units as Vc. A lower MAE means fewer
minor errors on average. Although not used as
the primary metric in this study, it supports
RMSE by providing an error value that is not
influenced by outliers. Figure 8 compares the
measured Mean Absolute Error for each model,
which shows the same previous trend, with
both the full linear model and the Fifth-
Stepwise Multivariate Regression model being

the best among the other proposed models.
60

LR-S LR-Full SMR1 SMR2 SMR3 SMR4 SMRS

Fig. 8 Comparison between the Calculated

Mean Absolute Error (MAE) of Each Model.
5.4.Classification Accuracy
The definition of an “accurate” prediction falls
within +10% of the actual Vc value. This
accuracy is calculated as the percentage of
predictions within 10% of the actual Ve. In
other words, it reflects how often the model’s
prediction deviates from the actual value by no
more than 10% (a higher percentage indicates
more predictions meeting this tight tolerance).
Accuracy is a simple and interpretable metric,
but can be supplemented by confusion matrices
and precision-recall scores in more detailed
studies. Figure 9 compares the measured Mean
Absolute Error for each model, which shows a
slightly different trend, with the SMR4 model
achieving the best accuracy among the other

proposed models.
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Fig. 9 Comparison between the Calculated
Accuracy (+10%) of Each Model.

5.6.Residual Analysis

Graphical residual plots were generated to
visualize the distribution and spread of
prediction errors. Residuals close to zero and
randomly scattered indicate a well-fitted
model, which in this case was the SMR5 model.
Patterns or curvature in the residuals may
suggest model misspecification or nonlinearity.

=
.
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5.7.Summary of Metrics

Each model was evaluated on the test set using
the metrics described above. These metrics
serve as the basis for a comparative analysis
that helps identify the most suitable model for
predicting shear capacity under various
scenarios. Using the above metrics, the
performance for each model was computed.
The LR-S model performed worst by a large
margin — it has the highest error (RMSE = 75.3)
and an extremely low accuracy (only ~1% of its
predictions within 10% of the actual Vu),
indicating that the LR’s predictions deviate
significantly from the actual values. LR-Full,
SMR4, and SMR5 were the top performers.
They achieved much lower errors (RMSE
around 17-19) and the highest accuracy (~42%
of predictions within 10% of the actual). In
particular, LR-Long and SMR5 had the lowest
RMSE values (~18 and ~17.8, respectively),
while LR-Long slightly outperformed the others
in accuracy (=42.9% within 10%). Overall, these
models’ predictions are considerably closer to
the actual Vu values compared to the rest. The
SMR series models show a clear improvement
trend from SMR1 to SMRj5. Early models
(SMR1-SMR3) have moderate errors (RMSE
~22-34) and relatively low accuracy (23—32%);
however, the later models, i.e., SMR4 and
SMR5, achieve much better accuracy (~42%)
and lower errors. This result suggests that the
higher-index SMR models provide more
accurate Vc predictions (SMR5 being the best in
terms of lowest RMSE). It is noteworthy that
LR-Full performs almost as well as the best
SMR models, indicating that this longer-form
regression captures the trend in Vc more
effectively than the simplified LR-S. All other
models (SMR1-SMR3) fall in between these
extremes, with improved performance as the
model complexity increases. Overall, LR-Full,
SMR4, and SMR5 stand out for their higher
accuracy and lower error, making them the

most reliable for predicting Vu in this dataset,
whereas the simplified LR-S model
considerably underestimates Vc (resulting in
significant errors and poor accuracy). The
choice of model thus significantly impacted the
prediction quality, with the more refined
models (especially SMR5)

7.CONCLUSIONS

This study proposed and evaluated seven data-
driven models, utilizing both Linear Regression
(LR) and the Stepwise Multivariate Regression
(SMR), to predict the shear capacity (Vc) of
reinforced concrete beams without web
reinforcement. Using a curated database of 398
experimentally tested specimens, the study
demonstrated the potential of multi-scale
statistical modeling for structural assessment
and design applications. The models developed
in this research can serve as powerful tools for
structural engineers, code developers, and
researchers. The main conclusions of the study
are as follows:

1- Each of the longitudinal reinforcement
area, beam width (bw) and effective depth
(d), was shown to have a significant
influence on shear capacity, with effective
depth  exhibiting  the  strongest
correlations of 0.85, 0.73, and 0.69,
respectively.

2- The full linear model, LR-Full, achieved
strong predictive capability (R2 =
0.9733), suitable for reliable estimations
of conservative assessments.

3- The SMR models showed promising
improvement from SMR1 to SMR5, with
RMSE decreasing from 34.5 MPa to 17.8
MPa and residuals becoming increasingly
centered around zero. This result proves
the effectiveness of stepwise refinement
in capturing complex structural behavior
and reducing prediction error beyond
what linear models could achieve.
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4- The simplified LR model severely
underperformed, with very high RMSE
and nearly zero accuracy. Even the
improved LR-full model could not
outperform the top SMR models in all
metrics. However, it came close in
accuracy, indicating that stepwise feature
engineering and model refinement
capture structural behavior more
effectively than general linear models.

5- The SMR5 model can be embedded in
structural design software for precise
shear capacity estimation. The LR-Full
model remains relevant for preliminary
design and educational purposes due to
its simplicity and ease of use.

7.1.Recommendations for Future Work
Despite their excellent predictive image, the
model is developed based on an experimental

design with certain specific settings, and not for
all RC beams. They are conditioned on the test
inputs, and overextending their use beyond the
region of validity may result in unsafe
decisions. Future studies may consider the
following:

Appendix A: Table (1) Experimental Dataset Structure
The dataset used in this study comprises 398 experimentally tested reinforced concrete beams without
web reinforcement. Each entry in the dataset includes the following parameters:

- Beam width (bw) [mm)]

- Effective depth (h) [mm)]

- Shear span (a) [mm]

- Shear span-to-depth ratio (a/d)

- Longitudinal reinforcement ratio (p)

- Concrete compressive strength (fc) [MPa]
- Measured shear capacity (Vc) [MPa]

1- Extending the models to include

material properties, load types, and
environmental effects.

2- Comparing statistical models with

machine learning techniques, such as
decision trees, random forests, and
neural networks.

3- Creating software plugins or mobile

apps based on these models for
industry-wide adoption.

4- Validating model predictions using

full-scale structural tests or field data.

The dataset was verified, cleaned, and normalized before analysis.

Authors bw | d | a/d (03 | fc | Aa | p | fy Ve
Adebar, Collins (1996) 360 278 2.88 19.0 49.9 1570 1.57 536 128
Adebar, Collins (1996) 360 278 2.88 19.0 49.9 1570 1.57 536 119
Adebar, Collins (1996) 290 278 2.88 19.0 46.8 1570 1.95 536 108
Adebar, Collins (1996) 290 278 2.88 19.0 43.9 1570 1.95 536 81
Adebar, Collins (1996) 290 178 4.49 19.0 48.9 1570 3.04 536 75
Adebar, Collins (1996) 290 278 2.88 19.0 56.0 800 0.99 536 90
Ahmad, Kahloo (1986) 127 203 4.00 12.7 59.3 1013 3.93 414 58
Ahmad, Kahloo (1986) 127 203 3.00 12.7 59.3 1013 3.93 414 69
Ahmad, Kahloo (1986) 127 203 2.70 12.7 59.3 1013 3.93 414 69
Ahmad, Kahloo (1986) 127 208 3.00 12.7 59.3 467 1.77 414 49
Ahmad, Kahloo (1986) 127 202 4.00 12.7 65.3 1289 5.03 414 51
Ahmad, Kahloo (1986) 127 202 3.00 12.7 65.3 1289 5.03 414 69
Ahmad, Kahloo (1986) 127 202 2.70 12.7 65.3 1289 5.03 414 100
Ahmad, Kahloo (1986) 127 208 4.00 12.7 65.3 594 2.25 414 44
Ahmad, Kahloo (1986) 127 208 3.00 12.7 65.3 594 2.25 414 47
Ahmad, Kahloo (1986) 127 208 2.70 12.7 65.3 594 2.25 414 8o
Ahmad, Kahloo (1986) 127 184 4.00 12.7 62.7 1552 6.64 414 54
Ahmad, Kahloo (1986) 127 184 3.00 12.7 62.7 1552 6.64 414 76
Ahmad, Kahloo (1986) 127 184 2.70 12.7 62.7 1552 6.64 414 69
Ahmad, Kahloo (1986) 127 207 4.00 12.7 62.7 855 3.26 414 45
Ahmad, Kahloo (1986) 127 207 3.00 12.7 62.7 855 3.26 414 44
Ahmad, Kahloo (1986) 127 207 2.70 12.7 62.7 855 3.26 414 45
Al-Alusi (1957) 76 127 4.50 6.4 24.2 253 2.62 366 14
Al-Alusi (1957) 76 127 4.00 6.4 27.2 253 2.62 366 15
Al-Alusi (1957) 76 127 3.40 6.4 27.2 253 2.62 366 17
Al-Alusi (1957) 76 127 4.50 6.4 25.6 253 2.62 366 14
Angelakos, Bentz, Collins () 300 925 2.92 10.0 20.0 2800 1.01 550 179
Angelakos, Bentz, Collins () 300 925 2.92 10.0 30.4 2800 1.01 550 185
Angelakos, Bentz, Collins () 300 925 2.92 10.0 36.1 2800 1.01 550 180
Angelakos, Bentz, Collins () 300 925 2.92 10.0 61.8 2800 1.01 550 185
Angelakos, Bentz, Collins () 300 925 2.92 10.0 76.0 2800 1.01 550 172
Angelakos, Bentz, Collins () 300 895 3.02 10.0 30.4 5600 2.09 550 257
Angelakos, Bentz, Collins () 300 925 2.92 10.0 30.4 1400 0.50 550 165
Aster; Koch (1974) 1000 250 3.68 | 30.0 256 1600 0.64 554 216
Aster; Koch (1974) 1000 250 3.68 | 30.0 26.0 2280  0.91 535 221
Aster; Koch (1974) 1000 500 5.50 30.0 290.5 3140 0.63 536 281
Aster; Koch (1974) 1000 500 5.50 30.0 18.9 3140 0.63 536 254
Aster; Koch (1974) 1000 500 5.50 30.0 19.0 3140 0.63 536 255
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Authors be [a [ama |o e a0 o [y |ve
Aster; Koch (1974) 1000 500 3.65 30.0 23.3 2280 046 535 261
Aster; Koch (1974) 1000 500 3.65 30.0 26.0 3260 0.65 535 324
Aster; Koch (1974) 1000 750 3.67 30.0 28.8 3140 0.42 536 392
Aster; Koch (1974) 1000 750 3.67 30.0 27.3 3140 0.42 536 349
Bhal (1968) 240 300 3.00 30.0 22.0 904 1.26 434 70
Bhal (1968) 240 600 3.00 30.0 28.1 1808 1.26 434 117
Bhal (1968) 240 900 3.00 30.0 26.1 2712 1.26 434 162
Bhal (1968) 240 600 3.00 30.0 25.3 904 0.63 434 104
Bhal (1968) 240 600 3.00 30.0 23.5 904 0.63 430 112
Bhal (1968) 240 900 3.00 30.0 25.9 1356 0.63 434 135
Bhal (1968) 240 900 3.00 30.0 26.3 1356 0.63 430 123
Bresler, Scordelis (1963) 310 461 3.80 19.1 21.4 2579 1.81 555 167
Bresler, Scordelis (1963) 305 466 4.74 19.1 22.5 3224 2.27 555 178
Bresler, Scordelis (1963) 307 462 6.77 19.1 35.7 3868 2.73 552 189
Cederwall K., Hedman O., Losberg A. (1974) | 135 234 3.42 27.8 339 1.07 818 41
Chana (1981) 203 356 3.00 20.0 37.0 1257 1.74 478 96
Chana (1981) 203 356 3.00 10.0 31.2 1257 1.74 478 87
Chana (1981) 203 356 3.00 20.0 33.9 1257 1.74 478 99
Collins, Kuchma (1999) 300 925 2.92 10.0 34.2 2800 1.01 550 225
Collins, Kuchma (1999) 300 925 2.92 10.0 93.1 2800 1.01 550 193
Collins, Kuchma (1999) 300 925 2.92 10.0 37.1 2800 1.01 550 204
Collins, Kuchma (1999) 300 925 2.92 10.0 37.1 2800 1.01 483 223
Collins, Kuchma (1999) 300 925 2.92 10.0 34.2 2800 1.01 550 249
Collins, Kuchma (1999) 300 925 2.92 10.0 37.1 2800 1.01 483 235
Diaz de Cossio, Siess (1960) 152 254 3.00 25.4 20.9 380 0.98 469 42
Diaz de Cossio, Siess (1960) 152 254 4.00 25.4 18.5 380 0.98 452 34
Diaz de Cossio, Siess (1960) 152 254 3.00 25.4 25.4 1289 3.33 314 59
Diaz de Cossio, Siess (1960) 152 254 4.00 25.4 21.0 1289 3.33 393 47
Diaz de Cossio, Siess (1960) 152 254 5.00 25.4 26.1 1289 3.33 364 55
Elzanaty, Nilson, Slate (1986) 178 270 4.00 12.7 62.2 570 1.19 434 57
Elzanaty, Nilson, Slate (1986) 178 268 4.00 12.7 62.2 1164 2.44 434 66
Elzanaty, Nilson, Slate (1986) 178 267 4.00 12.7 62.2 1520 3.21 434 75
Elzanaty, Nilson, Slate (1986) 178 268 4.00 12.7 75.3 776 1.63 434 62
Elzanaty, Nilson, Slate (1986) 178 268 4.00 12.7 75.3 1164 2.44 434 66
Elzanaty, Nilson, Slate (1986) 178 268 6.00 12.7 60.3 1164 2.44 434 60
Elzanaty, Nilson, Slate (1986) 178 270 4.00 12.7 19.7 570 1.19 434 44
Elzanaty, Nilson, Slate (1986) 178 268 4.00 12.7 19.7 1164 2.44 434 53
Elzanaty, Nilson, Slate (1986) 178 273 4.00 12.7 38.0 451 0.93 434 45
Elzanaty, Nilson, Slate (1986) 178 270 4.00 12.7 38.0 570 1.19 434 48
Elzanaty, Nilson, Slate (1986) 178 268 4.00 12.7 38.0 1164 2.44 434 63
Feldman, Siess (1955) 152 252 3.02 25.4 34.9 1290 3.35 283 80
Feldman, Siess (1955) 152 252 4.02 25.4 26.6 1290 3.35 310 53
Feldman, Siess (1955) 152 252 5.03 25.4 24.5 1290 3.35 303 51
Feldman, Siess (1955) 152 252 6.04 | 25.4 26.5 1290 3.35 331 51
Ferguson P.M. (1956) 101 189 3.23 6.4 27.8 396 2.08 310 22
Ferguson, Thompson (1953) 102 210 3.39 6.4 28.2 1013 4.76 276 29
Ferguson, Thompson (1953) 102 210 3.39 6.4 25.9 1013 4.76 276 27
Ferguson, Thompson (1953) 102 210 3.39 6.4 33.3 1013 4.76 276 34
Ferguson, Thompson (1953) 102 210 3.39 6.4 33.2 1013 4.76 276 32
Ferguson, Thompson (1953) 102 210 3.39 6.4 43.1 1013 4.76 276 34
Ferguson, Thompson (1953) 102 210 3.39 6.4 36.8 1013 4.76 276 36
Ferguson, Thompson (1953) 178 210 3.39 6.4 29.7 1013 2,72 276 49
Ferguson, Thompson (1953) 178 210 3.39 6.4 28.1 1013 2,72 276 52
Ferguson, Thompson (1953) 108 178 4.00 15.9 19.7 570 2.97 276 24
Ferguson, Thompson (1953) 108 178 4.00 15.9 19.6 570 2.97 276 24
Ferguson, Thompson (1953) 108 178 4.00 15.9 16.6 570 2.97 276 21
Ferguson, Thompson (1953) 102 210 3.39 6.4 33.9 1013 4.76 276 35
Ferguson, Thompson (1953) 102 210 3.39 6.4 31.8 1013 4.76 276 32
Ferguson, Thompson (1953) 102 210 3.39 6.4 38.0 1013 4.76 276 39
Ferguson, Thompson (1953) 102 210 3.39 6.4 41.2 1013 4.76 276 44
Ferguson, Thompson (1953) 102 210 3.39 6.4 39.0 1013 4.76 276 38
Ferguson, Thompson (1953) 102 210 3.39 6.4 318 1013 4.76 276 50
Ferguson, Thompson (1953) 102 210 3.39 6.4 318 1013 4.76 276 39
Ferguson, Thompson (1953) 108 159 4.48 15.9 20.6 570 3.33 276 27
Ferguson, Thompson (1953) 108 159 4.48 15.9 21.1 570 3.33 276 27
Grimm (1997) 300 153 3.73 16.0 85.6 616 1.34 660 70
Grimm (1997) 300 152 3.75 16.0 86.6 1010 2.21 517 76
Grimm (1997) 300 146 3.90 16.0 89.0 1850 4.22 487 99
Grimm (1997) 300 348 3.53 16.0 86.7 1960 1.88 469 187
Grimm (1997) 300 348 3.53 16.0 89.0 982 0.94 469 123
Grimm (1997) 300 328 3.75 16.0 89.4 3700 3.76 487 230
Grimm (1997) 300 718 3.66 16.0 89.0 3700 1.72 487 259
Grimm (1997) 300 746 3.53 16.0 89.7 1850 0.83 487 193
Grimm (1997) 300 690 3.81 16.0 89.4 7390 3.57 487 379
Grimm (1997) 300 153 3.73 16.0 105.4 616 1.34 660 74
Grimm (1997) 300 152 3.75 16.0 105.4 1010 2.21 517 90
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Authors bw | d | a/d [0} fc Aq | p | fy Ve
Grimm (1997) 300 146 3.90 16.0 105.4 1850 4.22 487 122
Hallgren (1994) 163 192 3.65 18.0 81.9 678 2.17 630 83
Hallgren (1994) 158 194 3.61 18.0 81.9 678 2,21 630 77
Hallgren (1994) 158 193 3.63 | 18.0 80.4 678 222 630 76
Hallgren (1994) 155 196 3.57 18.0 587 678 2.23 443 70
Hallgren (1994) 156 195 3.59 18.0 65.6 678 2.23 443 74
Hallgren (1994) 157 191 3.66 18.0 42.7 678 2.26 630 59
Hallgren (1994) 155 194 3.61 18.0 42.7 678 2.25 630 63
Hallgren (1994) 155 194 3.61 18.0 80.4 678 2.25 630 69
Hallgren (1994) 156 193 3.63 18.0 58.7 678 2,25 443 71
Hallgren (1994) 156 194 3.61 18.0 57.8 1206 3.98 494 89
Hallgren (1994) 156 195 359 |18.0 57.8 1206  3.96 494 90
Hallgren (1994) 156 195 3.59 18.0 62.4 1206 3.96 494 82
Hallgren (1994) 155 195 359 | 18.0 62.4 1206  3.99 494 79
Hallgren (1994) 156 196 3.57 18.0 55.4 1206 3.94 494 78
Hallgren (1994) 150 196 3.57 18.0 55.4 1206 4.10 494 83
Hallgren (1994) 156 191 3.66 18.0 31.2 678 2,28 651 56
Hallgren (1994) 156 194 3.61 18.0 31.2 678 2.24 651 54
Hallgren (1994) 156 192 3.65 18.0 29.5 678 2.26 651 49
Hallgren (1994) 157 193 3.63 | 18.0 29.5 667 220 651 54
Hallgren (1996) 262 208 2.64 18.0 87.8 402 0.74 632 76
Hallgren (1996) 283 211 2.61 18.0 86.7 628 1.05 604 104
Hallgren (1996) 337 208 2.64 18.0 80.8 402 0.57 630 89
Hamadi (1976) 100 370 3.39 20.0 28.8 629 1.70 400 45
Hamadi (1976) 100 372 3.37 20.0 22.3 402 1.08 460 41
Hamadi (1976) 100 372 5.90 20.0 20.9 402 1.08 800 30
Hanson (1958) 152 267 2.48 24.2 1013 2.49 333 80
Hanson (1958) 152 267 2.48 26.3 1013 2.49 333 58
Hanson (1958) 152 267 2.48 35.2 1013 2.49 333 90
Hanson (1958) 152 267 2.48 55.1 2027 4.99 333 127
Hanson (1958) 152 267 2.48 70.0 2027 4.99 333 165
Hanson (1961) 152 267 4.95 19.9 507 1.25 611 34
Hanson (1961) 152 267 4.95 20.4 507 1.25 611 43
Hanson (1961) 152 267 4.95 28.2 507 1.25 611 40
Hanson (1961) 152 267 4.95 20.3 1029 2.53 637 52
Hanson (1961) 152 267 2.48 28.6 507 1.25 334 46
Islam, Pam, Kwan (1998) 150 203 3.94 10.0 79.1 982 3.22 532 65
Islam, Pam, Kwan (1998) 150 203 2.96 10.0 79.1 982 3.22 532 108
Islam, Pam, Kwan (1998) 150 203 2.96 10.0 79.1 982 3.22 532 97
Islam, Pam, Kwan (1998) 150 203 3.94 10.0 79.1 982 3.22 532 81
Islam, Pam, Kwan (1998) 150 203 3.94 10.0 68.6 982 3.22 532 58
Islam, Pam, Kwan (1998) 150 203 2.96 10.0 68.6 982 3.22 532 117
Islam, Pam, Kwan (1998) 150 203 2.96 10.0 68.6 982 3.22 532 115
Islam, Pam, Kwan (1998) 150 203 3.94 10.0 68.6 982 3.22 532 72
Islam, Pam, Kwan (1998) 150 207 3.86 10.0 48.3 628 2.02 554 46
Islam, Pam, Kwan (1998) 150 207 2.90 10.0 48.3 628 2.02 554 92
Islam, Pam, Kwan (1998) 150 207 2.90 10.0 48.3 628 2.02 554 90
Islam, Pam, Kwan (1998) 150 207 3.86 10.0 48.3 628 2.02 554 52
Islam, Pam, Kwan (1998) 150 205 3.90 10.0 32.7 982 3.19 320 55
Islam, Pam, Kwan (1998) 150 205 2.93 10.0 32.7 982 3.19 320 85
Islam, Pam, Kwan (1998) 150 205 2.93 10.0 32.7 982 3.19 320 81
Islam, Pam, Kwan (1998) 150 207 3.86 10.0 25.3 628 2.02 350 48
Islam, Pam, Kwan (1998) 150 207 2.90 10.0 25.3 628 2.02 350 57
Kani (1967) 154 543  4.00 | 19.1 24.9 2323 277 352 93
Kani (1967) 156 541 8.03 19.1 24.4 2323 2.75 352 79
Kani (1967) 156 541 6.01 19.1 25.1 2323 2.75 352 91
Kani (1967) 153 556 6.84 19.1 24.8 2316 2.72 381 84
Kani (1967) 152 524 3.11 19.1 25.9 2265 2.84 367 108
Kani (1967) 155 544 2.99 19.1 26.0 2245 2.66 373 102
Kani (1967) 611 271 5.02 19.1 25.6 4510 2.73 377 228
Kani (1967) 612 271 4.01 19.1 25.8 4510 2.72 377 206
Kani (1967) 612 270 3.02 19.1 25.8 4510 2.73 377 250
Kani (1967) 152 138 3.93 19.1 23.6 568 2.69 392 29
Kani (1967) 151 133 5.09 19.1 23.5 568 2.82 392 27
Kani (1967) 153 274 5.93 19.1 26.1 1161 2.76 343 51
Kani (1967) 151 271 4.00 19.1 26.1 1161 2.84 342 55
Kani (1967) 153 275 3.94 19.1 24.0 1161 2.76 335 56
Kani (1967) 156 271 3.00 19.1 26.1 1161 2.74 343 65
Kani (1967) 152 276 2.95 19.1 25.9 1129 2.68 366 62
Kani (1967) 153 137 3.46 19.1 25.9 561 2.67 403 28
Kani (1967) 152 138 3.44 19.1 25.9 561 2.66 417 29
Kani (1967) 155 139 2.03 19.1 25.4 568 2.64 392 39
Kani (1967) 154 269 6.06 19.1 26.1 1123 2.70 364 51
Kani (1967) 152 270 7.03 19.1 26.1 1123 2.73 369 46
Kani (1967) 152 141 2.41 19.1 25.9 561 2.61 381 51
Kani (1967) 154 140 2.67 19.1 25.3 568 2.63 392 50
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Kani (1967) 150 552 2.46 19.1 25.6 2329 2.82 374 112
Kani (1967) 153 275 2.47 19.1 24.0 1161 2.75 338 73
Kani (1967) 153 275 2.47 19.1 24.9 1129 2.68 366 76
Kani (1967) 152 272 2.50 19.1 24.9 1129 2.73 366 77
Krefeld, Thurston (1966) 152 314 2.71 28.7 1635 3.42 401 73
Krefeld, Thurston (1966) 152 238 3.58 28.6 1635 4.51 401 64
Krefeld, Thurston (1966) 152 316 2.69 18.3 1289 2.68 478 63
Krefeld, Thurston (1966) 152 316 2.69 18.9 1289 2.68 478 72
Krefeld, Thurston (1966) 152 316 2.69 21.5 1289 2.68 478 73
Krefeld, Thurston (1966) 152 316 2.69 21.0 1289 2.68 478 60
Krefeld, Thurston (1966) 152 240 3.55 21.1 645 1.76 478 42
Krefeld, Thurston (1966) 152 243 3.50 20.9 776 2.10 408 44
Krefeld, Thurston (1966) 152 256 4.52 19.8 776 1.99 386 44
Krefeld, Thurston (1966) 152 256 5.72 19.5 776 1.99 386 36
Krefeld, Thurston (1966) 152 256 3.33 32.8 776 1.99 386 56
Krefeld, Thurston (1966) 152 254 3.35 27.7 1013 2.62 401 58
Krefeld, Thurston (1966) 152 252 3.37 31.2 1289 3.35 378 57
Krefeld, Thurston (1966) 152 250 3.40 32.7 1635 4.28 368 60
Krefeld, Thurston (1966) 152 256 4.52 30.3 776 1.99 386 53
Krefeld, Thurston (1966) 152 254 4.55 29.0 1013 2.62 401 54
Krefeld, Thurston (1966) 152 252 4.58 31.2 1289 3.35 378 54
Krefeld, Thurston (1966) 152 250 4.61 32.4 1635 4.28 368 59
Krefeld, Thurston (1966) 152 254 5.75 36.5 1013 2.62 401 53
Krefeld, Thurston (1966) 152 252 5.78 35.6 1289 3.35 378 57
Krefeld, Thurston (1966) 152 250 5.83 36.5 1635 4.28 368 63
Krefeld, Thurston (1966) 203 483 3.03 15.9 1520 1.55 401 85
Krefeld, Thurston (1966) 152 254 5.75 33.9 1013 2.62 369 49
Krefeld, Thurston (1966) 152 254 5.75 37.1 1013 2.62 368 53
Krefeld, Thurston (1966) 254 456 3.87 36.4 2579 2.23 367 147
Krefeld, Thurston (1966) 254 456 3.87 36.4 2579 2.23 366 134
Krefeld, Thurston (1966) 152 316 2.89 19.1 645 1.34 386 46
Krefeld, Thurston (1966) 152 316 2.89 19.7 645 1.34 386 52
Kulkarni, Shah (1998) 102 152 5.00 9.5 38.5 214 1.38 518 20
Kulkarni, Shah (1998) 102 152 4.00 9.5 39.6 214 1.38 518 23
Kulkarni, Shah (1998) 102 152 3.50 9.5 41.4 214 1.38 518 24
Kiing (1985) 140 200 2.50 30.0 18.8 157 0.56 504 26
Kiing (1985) 140 200 2.50 30.0 17.9 226 0.81 497 30
Kiing (1985) 140 200 2.50 30.0 17.9 308 1.10 492 43
Kiing (1985) 140 200 2.50 30.0 17.9 509 1.82 507 54
Kiing (1985) 140 200 2.50 30.0 19.1 308 1.10 492 40
Lambotte, Taerwe (1990) 200 415 3.01 35.3 804 0.97 545 127
Lambotte, Taerwe (1990) 200 415 3.01 32.3 1206 1.45 545 180
Laupa, Siess (1953) 152 269 4.82 25.4 25.6 852 2.08 284 42
Laupa, Siess (1953) 152 265 4.89 25.4 30.7 1019 2.52 410 53
Laupa, Siess (1953) 152 263 4.92 25.4 20.3 1290 3.21 309 56
Laupa, Siess (1953) 152 262 4.95 25.4 28.4 1639 4.11 315 50
Laupa, Siess (1953) 152 267 4.85 25.4 14.0 774 1.90 328 34
Laupa, Siess (1953) 152 262 4.95 25.4 24.9 1639 4.11 304 50
Leonhardt (1962) 502 148 3.31 30.0 23.6 679 0.91 427 91
Leonhardt (1962) 500 146 3.36 30.0 23.6 1357 1.86 427 106
Leonhardt (1962) 190 270 3.00 30.0 27.4 1062 2.07 465 60
Leonhardt (1962) 190 270 3.00 30.0 27.4 1062 2.07 465 77
Leonhardt (1962) 190 270 4.07 30.0 27.4 1062 2.07 465 61
Leonhardt (1962) 190 270 4.07 30.0 27.4 1062 2.07 465 68
Leonhardt (1962) 190 278 5.00 30.0 28.7 1062 2.01 465 62
Leonhardt (1962) 190 278 5.00 30.0 28.7 1062 2.01 465 68
Leonhardt (1962) 190 278 6.00 30.0 28.8 1062 2.01 465 66
Leonhardt (1962) 190 274 6.00 30.0 28.8 1062 2.04 465 66
Leonhardt (1962) 100 140 3.00 15.0 29.7 226 1.62 427 21
Leonhardt (1962) 100 140 3.00 15.0 29.7 226 1.62 427 23
Leonhardt (1962) 150 210 3.00 15.0 32.1 509 1.62 413 46
Leonhardt (1962) 150 210 3.00 15.0 32.1 509 1.62 413 43
Leonhardt (1962) 150 210 3.00 15.0 32.1 509 1.62 413 43
Leonhardt (1962) 200 280 3.00 15.0 32.8 938 1.68 439 74
Leonhardt (1962) 200 280 3.00 15.0 32.8 938 1.68 439 71
Leonhardt (1962) 200 280 3.00 15.0 32.8 938 1.68 439 71
Leonhardt (1962) 100 150 3.00 30.0 36.4 199 1.33 425 22
Leonhardt (1962) 150 300 3.00 30.0 36.4 603 1.34 425 65
Leonhardt (1962) 200 450 3.00 30.0 36.4 1206 1.34 425 102
Leonhardt (1962) 225 600 3.00 30.0 36.4 1810 1.34 425 152
Leonhardt (1962) 501 142 2.46 30.0 12.0 679 0.95 427 100
Leonhardt (1962) 190 270 2.48 30.0 27.4 1062 2.07 465 82
Leonhardt (1962) 190 270 2.48 30.0 27.4 1062 2.07 465 87
Leonhardt (1962) 190 270 2.78 30.0 19.4 933 1.82 439 58
Leonhardt (1962) 190 270 2.78 30.0 19.4 911 1.78 490 75
Marti; Pralong; Thiirlimann (1977) 400 162 3.95 16.0 28.1 896 1.38 542 97
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Mathey, Watstein (1963) 203 403 3.78 25.4 27.8 2083 2.54 505 88
Mathey, Watstein (1963) 203 403 3.78 25.4 23.9 2083 2.54 505 81
Mathey, Watstein (1963) 203 403 3.78 25.4 22.3 763 0.93 690 63
Mathey, Watstein (1963) 203 403 3.78 25.4 24.3 763 0.93 690 66
Mathey, Watstein (1963) 203 403 3.78 25.4 25.0 383 0.47 696 54
Mathey, Watstein (1963) 203 403 3.78 25.4 24.5 383 0.47 696 50
Mathey, Watstein (1963) 203 403 2.84 25.4 24.8 688 0.84 707 71
Mathey, Watstein (1963) 203 403 2.84 25.4 24.5 688 0.84 707 62
Mathey, Watstein (1963) 203 403 2.84 25.4 29.0 688 0.84 707 75
Moody (1954) 178 262 2.96 25.4 28.8 1007 2.17 310 60
Moody (1954) 178 267 2.90 25.4 20.5 1013 2.14 310 67
Moody (1954) 178 268 2.89 25.4 20.5 1061 2.23 310 76
Moody (1954) 178 270 2.87 25.4 29.9 1140 2.37 310 71
Moody (1954) 178 267 2.90 25.4 20.1 760 1.60 310 56
Moody (1954) 178 268 2.89 25.4 20.5 776 1.63 310 60
Moody (1954) 178 270 2.87 25.4 18.3 768 1.60 310 56
Moody (1954) 178 272 2.85 25.4 15.9 792 1.64 310 56
Moody (1954) 152 268 3.41 25.4 34.9 776 1.90 310 58
Moody (1954) 152 268 3.41 25.4 15.9 776 1.90 310 36
Moody (1954) 152 268 3.41 25.4 24.5 776 1.90 310 52
Moody (1954) 152 268 3.41 25.4 14.6 776 1.90 310 40
Moody (1954) 152 268 3.41 25.4 29.2 776 1.90 310 52
Moody (1954) 152 268 3.41 25.4 15.0 776 1.90 310 34
Moody (1954) 152 268 3.41 25.4 20.4 776 1.90 310 51
Moody (1954) 152 268 3.41 25.4 39.1 776 1.90 310 53
Moody (1954) 152 268 3.41 25.4 22,7 776 1.90 310 49
Moody (1954) 152 268 3.41 25.4 36.2 776 1.90 310 60
Moody (1954) 152 268 3.41 25.4 19.2 776 1.90 310 47
Moody (1954) 152 268 3.41 25.4 21.4 776 1.90 310 43
Moody (1954) 152 268 3.41 25.4 35.5 776 1.90 310 51
Moody (1954) 152 268 3.41 25.4 15.5 776 1.90 310 38
Morrow, Viest (1957) 305 368 4.10 25.4 14.0 2077 1.85 471 100
Morrow, Viest (1957) 305 375 4.03 25.4 23.7 2756 2.41 330 138
Morrow, Viest (1957) 305 368 4.10 25.4 25.9 2077 1.85 441 122
Morrow, Viest (1957) 305 368 4.10 25.4 27.0 1387 1.24 429 109
Morrow, Viest (1957) 308 356 4.25 25.4 379 4149 3.79 439 178
Morrow, Viest (1957) 305 372 4.07 25.4 43.4 2077 1.83 466 137
Morrow, Viest (1957) 305 365 5.11 25.4 15.5 2077 1.87 462 89
Morrow, Viest (1957) 305 368 5.07 25.4 25.9 2756 2.46 436 132
Morrow, Viest (1957) 305 356 5.25 25.4 42.7 4149 3.83 435 178
Morrow, Viest (1957) 305 363 6.11 25.4 25.9 2077 1.88 465 111
Morrow, Viest (1957) 305 368 3.00 25.4 33.0 2077 1.85 378 156
Mphonde, Frantz (1984) 152 298 3.49 20.2 1520 3.34 414 65
Mphonde, Frantz (1984) 152 298 3.49 26.4 1061 2.33 414 67
Mphonde, Frantz (1984) 152 298 3.49 36.7 1520 3.34 414 82
Mphonde, Frantz (1984) 152 298 3.49 40.6 1520 3.34 414 83
Mphonde, Frantz (1984) 152 298 3.49 73.0 1520 3.34 414 90
Mphonde, Frantz (1984) 152 298 3.49 72.7 1520 3.34 414 89
Mphonde, Frantz (1984) 152 298 3.49 79.3 1520 3.34 414 93
Mphonde, Frantz (1984) 152 298 3.49 91.3 1520 3.34 414 100
Mphonde, Frantz (1984) 152 298 3.49 89.5 1520 3.34 414 98
Mphonde, Frantz (1984) 152 298 2.41 20.1 1520 3.34 414 78
Mphonde, Frantz (1984) 152 298 2.41 44.0 1520 3.34 414 118
Mphonde, Frantz (1984) 152 298 2.41 77.2 1520 3.34 414 111
Mphonde, Frantz (1984) 152 298 2.41 81.6 1520 3.34 414 178
Mphonde, Frantz (1984) 152 298 2.41 67.6 1520 3.34 414 206
Podgorniak-Stanik (1998) 300 925 2.88 10.0 89.3 1400 0.50 550 164
Podgorniak-Stanik (1998) 300 925 2.88 10.0 35.2 2100 0.76 550 192
Podgorniak-Stanik (1998) 300 925 2.88 10.0 94.1 2100 0.76 550 193
Podgorniak-Stanik (1998) 300 450 2.92 10.0 35.2 1100 0.81 486 132
Podgorniak-Stanik (1998) 300 450 2.92 10.0 94.1 1100 0.81 486 132
Podgorniak-Stanik (1998) 300 225 2.95 10.0 35.2 600 0.89 437 73
Podgorniak-Stanik (1998) 300 110 2.96 10.0 35.2 300 0.91 458 40
Rajagopalan; Ferguson (1968) 152 265 4.22 13.0 22.5 697 1.73 655 40
Rajagopalan; Ferguson (1968) 154 259 3.93 13.0 34.7 568 1.43 655 36
Rajagopalan; Ferguson (1968) 154 265 3.83 13.0 31.4 400 0.98 655 37
Rajagopalan; Ferguson (1968) 152 267 4.19 13.0 27.5 329 0.81 524 31
Rajagopalan; Ferguson (1968) 152 268 4.17 13.0 31.4 258 0.63 524 28
Rajagopalan; Ferguson (1968) 152 262 4.27 13.0 26.5 211 0.53 1779 34
Rajagopalan; Ferguson (1968) 152 262 4.27 13.0 23.8 211 0.53 1779 24
Rajagopalan; Ferguson (1968) 151 267 4.18 13.0 20.5 141 0.35 1779 27
Rajagopalan; Ferguson (1968) 152 268 4.17 13.0 27.2 103 0.25 1779 30
Rajagopalan; Ferguson (1968) 153 268 4.16 13.0 28.2 103 0.25 1779 25
Reineck; Koch; Schlaich (1978) 500 226 3.50 16.0 24.5 887 0.79 501 102
Reineck; Koch; Schlaich (1978) 500 226 2.50 16.0 24.5 887 0.79 501 118
Reineck; Koch; Schlaich (1978) 500 225 2.50 16.0 23.4 1569 1.39 441 140
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Authors bw | d | a/d [0} fc Aq | p | fy Ve
Remmel (1991) 150 165 4.00 16.0 80.8 462 1.87 523 46
Remmel (1991) 150 165 3.06 16.0 80.8 462 1.87 523 48
Remmel (1991) 150 160 4.00 16.0 80.3 982 4.09 474 58
Remmel (1991) 150 160 3.06 16.0 80.3 982 4.09 474 60
Ruesch, Haugli (1962) 90 111 3.60 30.0 21.9 265 2.65 481 15
Ruesch, Haugli (1962) 120 199 3.60 30.0 21.9 634 2.65 407 30
Ruesch, Haugli (1962) 180 262 3.62 30.0 23.0 1246 2.64 412 55
Scholz (1994) 200 372 3.00 16.0 76.6 603 0.81 500 83
Scholz (1994) 200 362 3.00 16.0 92.0 1407 1.94 500 121
Scholz (1994) 200 362 4.00 16.0 92.0 1407 1.94 500 121
Taylor (1968) 203 370 3.02 9.5 27.4 776 1.03 350 62
Taylor (1968) 203 370 3.02 9.5 31.6 1164 1.55 350 92
Taylor (1968) 203 370 3.02 9.5 27.4 776 1.03 350 76
Taylor (1968) 203 370 3.02 9.5 31.6 1164 1.55 350 101
Taylor (1968) 203 370 3.02 9.5 30.0 776 1.03 350 76
Taylor (1968) 203 370 2.47 9.5 28.4 776 1.03 350 81
Taylor (1968) 203 370 2.47 9.5 28.4 776 1.03 350 81
Taylor (1972) 200 465 3.00 38.0 25.5 1257 1.35 420 104
Taylor (1972) 200 465 3.00 19.0 20.9 1257 1.35 420 87
Taylor (1972) 200 465 3.00 9.0 27.0 1257 1.35 420 85
Taylor (1972) 400 930 3.00 38.0 27.3 5027 1.35 420 358
Taylor (1972) 400 930 3.00 19.0 21.5 5027 1.35 420 328
Thorenfeldt, Drangshold (1990) 150 221 3.00 16.0 51.3 603 1.82 500 58
Thorenfeldt, Drangshold (1990) 150 207 4.00 16.0 51.3 1005 3.24 500 70
Thorenfeldt, Drangshold (1990) 150 207 3.00 16.0 51.3 1005 3.24 500 83
Thorenfeldt, Drangshold (1990) 150 221 3.00 16.0 73.9 603 1.82 500 68
Thorenfeldt, Drangshold (1990) 150 207 4.00 16.0 73.9 1005 3.24 500 78
Thorenfeldt, Drangshold (1990) 150 207 3.00 16.0 73.9 1005 3.24 500 83
Thorenfeldt, Drangshold (1990) 150 207 4.00 16.0 55.1 1005 3.24 500 68
Thorenfeldt, Drangshold (1990) 150 207 3.00 16.0 55.1 1005 3.24 500 83
Thorenfeldt, Drangshold (1990) 150 207 4.00 16.0 82.1 1005 3.24 500 86
Thorenfeldt, Drangshold (1990) 150 207 3.00 16.0 82.1 1005 3.24 500 107
Thorenfeldt, Drangshold (1990) 150 221 3.00 16.0 92.8 603 1.82 500 56
Thorenfeldt, Drangshold (1990) 150 207 4.00 16.0 92.8 1005 3.24 500 77
Thorenfeldt, Drangshold (1990) 150 207 3.00 16.0 92.8 1005 3.24 500 78
Thorenfeldt, Drangshold (1990) 300 442 3.00 16.0 73.9 2413 1.82 500 180
Thorenfeldt, Drangshold (1990) 300 414 3.00 16.0 73.9 4021 3.24 500 281
Walraven (1978) 200 420 3.00 22.9 622 0.74 440 71
Walraven (1978) 200 720 3.00 23.2 1140 0.79 440 101
Xie, Ahmad, Yu (1994) 127 216 3.00 19.1 36.5 568 2.07 421 37
Xie, Ahmad, Yu (1994) 127 216 3.00 19.1 95.9 568 2.07 421 46
Yoon, Cook, Mitchell (1996) 375 655 3.23 20.0 34.2 7000  2.85 400 249
Yoon, Cook, Mitchell (1996) 375 655 3.23 10.0 63.7 7000 2.85 400 296
Yoon, Cook, Mitchell (1996) 375 655 3.23 10.0 82.7 7000 2.85 400 327
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