Simulation and Experimental Validation of Stress Analysis for Train Coupler

محتوى المقالة الرئيسي

Makmuri Nuramin
Anwar
Rohadi S. B. Utomo
Djoko W. Karmiadji
Budi Haryanto
Yudi Irawadi
Budi Prasetiyo
https://orcid.org/0009-0006-9750-9541
Akhmad Sarif
Arga A. Nugroho
https://orcid.org/0009-0007-6182-9575
Muchamad Gozali
Indra H. Mulyowardono
Muhammad Awwaluddin
Hedi Purnomo

الملخص

This study investigates the stress distribution in a sand-cast steel train coupler by comparing experimental results with FEM simulation. Strain gauges were attached to the coupler body areas to measure stresses under varying loads ranging from 500 kN to 1900 kN. The results indicated that the experimental and simulation stress values exhibited a linear relationship with increasing load, reaching a maximum of 206 MPa at 1900 kN. This stress value was approximately 30% of the material's yield strength. However, the experimental stress values tended to be slightly higher than the simulated results, with an average difference of less than 10%. This deviation is attributed to casting defects, geometric irregularities, and material-property differences that are difficult to capture in simulations. The specimen's chemical composition aligns with the Association of American Railroads (AAR) M201 Grade E Steel Casting standards, ensuring the material meets industry requirements. The findings suggest that optimizing the post-casting machining process could improve accuracy in future FEM analyses.

المقاييس

يتم تحميل المقاييس...

تفاصيل المقالة

القسم
Articles

##plugins.generic.plaudit.displayName##

المراجع

Karmiadji DW, Haryanto B, Ivano O, Perkasa M, Farid AR. Bogie Frame Structure Evaluation for Light-Rail Transit (LRT) Train: A Static Testing. Automotive Experiences 2021; 4(1): 36–43. DOI: https://doi.org/10.31603/ae.4252

Karmiadji DW, Gozali M, Anwar A, Purnomo H, Setiyo M, Junid R. Evaluation of Operational Loading of the Light-Rail Transit (LRT) in Capital Region, Indonesia. Automotive Experiences 2020; 3(3): 104–114. DOI: https://doi.org/10.31603/ae.v3i3.3882

Karmiadji DW, Haryanto B, Anwar, Prasetyo B, Irawadi Y, Farid AR, et al. Verification of Urban Light Rail Transit (LRT) Bogie Frame Structure Design Lifetime under Variable Fatigue Loads. Mechanical Engineering for Society and Industry 2022; 2(1): 42–53. DOI: https://doi.org/10.31603/mesi.6938

Haryanto B, Nuramin M, Karmiadji DW, Perkasa M, Anwar, Prasetiyo B, et al. Verification of a New Prototype Design of Bogie Monorail Frame with Variation of Static Loading. Mechanical Engineering for Society and Industry 2023; 3(2): 78–85.

Forsberg R, Björnstig U. One Hundred Years of Railway Disasters and Recent Trends. Prehospital and Disaster Medicine 2011; 26(5): 367–373. DOI: https://doi.org/10.1017/S1049023X1100639X

Yu Y, Li J, Xie Z, Gao G, Rauf Sheikhi M, Li J. Ballistic Performance of Aluminum Alloy Plates with Polyurea Coatings for High-Speed Train Structures. Composite Structures 2025; 351: 118553. DOI: https://doi.org/10.1016/j.compstruct.2024.118553

Gao J, Yuan R, Lin J, Lu S, Wang Y. Thermal Response of High-Speed Train Multi-Layer Composite Floor Structure: Experimental and Numerical Analysis. Thermal Science and Engineering Progress 2023; 46: 102167. DOI: https://doi.org/10.1016/j.tsep.2023.102167

Hao Y, Jia L, Zio E, Wang Y, He Z. A Network-Based Approach to Improving Robustness of a High-Speed Train by Structure Adjustment. Reliability Engineering and System Safety 2024; 243: 109857. DOI: https://doi.org/10.1016/j.ress.2023.109857

Li T, Peng Y, Qiao Y, Zhu W, Zhang J, Wang K, et al. Experimental Study on Crashworthiness and Lightweight of Cutting-Type Energy-Absorbing Structure of Magnesium Alloy for Trains. Engineering Structures 2024; 301: 117287. DOI: https://doi.org/10.1016/j.engstruct.2023.117287

Guo F, He J. Optimal Allocation Method of Electric/Air Braking Force of High-Speed Train Considering Axle Load Transfer. High-Speed Railway 2024; 2(2): 77–84. DOI: https://doi.org/10.1016/j.hspr.2024.04.004

Zhang C, Yu Z, Jia L. Train Wheel-Rail Force Collaborative Calibration Based on GNN-LSTM. High-Speed Railway 2024; 2(2): 85–91. DOI: https://doi.org/10.1016/j.hspr.2024.05.002

Li J, Wang L, Wang X, Hu Z, Lan H, Wang Z, et al. Effect of Shot Peening Equivalent Impact Force on Fatigue Crack Growth Behavior and Fatigue Life Prediction of Train Brake Discs. Engineering Failure Analysis 2024; 166: 108914. DOI: https://doi.org/10.1016/j.engfailanal.2024.108914

Yadav OP, Vyas NS. The Influence of AAR Coupler Features on Estimation of In-Train Forces. Railway Engineering Science 2023; 31(3): 233–251. DOI: https://doi.org/10.1007/s40534-022-00297-8

Xu J, Kang J, Mao W. Effect of Double-Layer-Shell Sand Mold on the Residual Stress of Casting and Itself Crack Tendency. Materials Letters 2023; 335: 133752. DOI: https://doi.org/10.1016/j.matlet.2022.133752

Liu B, Kang J, Yang X, Zhang B, Bian Y. Effects of Hollow Sand Mold on the Microstructure and Mechanical Properties of a Low Pressure Aluminum Alloy Casting. Journal of Materials Research and Technology 2024; 28: 4488–4497. DOI: https://doi.org/10.1016/j.jmrt.2023.12.270

Powell JP, Palacín R. Passenger Stability Within Moving Railway Vehicles: Limits on Maximum Longitudinal Acceleration. Urban Rail Transit 2015; 1(2): 95–103. DOI: https://doi.org/10.1007/s40864-015-0012-y

Sharma SK, Chaturvedi S. Jerk Analysis in Rail Vehicle Dynamics. Perspectives in Science 2016; 8: 648–650. DOI: https://doi.org/10.1016/j.pisc.2016.06.047

Vukšić Popović M, Tanasković J, Glišić D, Radović N, Franklin FJ. Experimental and Numerical Research on the Failure of Railway Vehicles Coupling Links. Engineering Failure Analysis 2021; 127: 105497. DOI: https://doi.org/10.1016/j.engfailanal.2021.105497

Chunduru SP, Kim MJ, Mirman C. Failure Analysis of Railroad Couplers of AAR Type E. Engineering Failure Analysis 2011; 18(1): 374–385. DOI: https://doi.org/10.1016/j.engfailanal.2010.09.016

Li HF, Zhao XY, Yang SP, Wei JL, Gu XH, Liu YQ, et al. Fatigue Failure Mechanism of High-Speed Train Bearing Steel after Long-Term Service. Engineering Failure Analysis 2024; 165: 108777. DOI: https://doi.org/10.1016/j.engfailanal.2024.108777

Chen Y, Jing L, Li T, Ling L, Wang K. Numerical Study of Wheel–Rail Adhesion Performance of New-Concept High-Speed Trains with Aerodynamic Wings. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) 2023; 24(8): 673–691. DOI: https://doi.org/10.1631/jzus.A2300025

Thejasree P, Dileep Kumar G, Leela Prasanna Lakshmi S. Modelling and Analysis of Crankshaft for Passenger Car using ANSYS. Materials Today: Proceedings 2017; 4(10): 11292–11299. DOI: https://doi.org/10.1016/j.matpr.2017.09.053

Milovanović V, Zivković M, Disić A, Rakić D, Zivković J. Experimental and Numerical Strength Analysis of Wagon for Transporting Bulk Material. *IMK-14 – Research & Developement in Heavy Machinery* 2014; 20(4): 61–66. DOI: https://doi.org/10.5937/IMK1402061M

Sagita RN, Rochiem R, Wibisono AT. Analisa Pengaruh Lama Waktu Tahan Tempering terhadap Struktur Mikro dan Sifat Mekanik Coupler Baja AAR-M201 Grade E. Jurnal Teknik Its Pomits 2017; 16(1): 35–40. DOI: https://doi.org/10.12962/j23373539.v6i1.21248

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.