Optimal Design of Round Bottomed Triangle Channels
Main Article Content
Abstract
In optimal design concept, the geometric dimensions of a channel cross-section are determined in a manner to minimize the total construction costs. The Direct search optimization method by using MATALAB is used to solve the resulting channel optimization models for a specified flow rate, roughness coefficient and longitudinal slope. The developed optimization models are applied to design the round bottomed triangle channel and trapezoidal channels to convey a given design flow considering various design scenarios However, it also can be extended to other shapes of channels. This method optimizes the total construction cost by minimizing the cross-sectional area and wetted perimeter per unit length of the channel. In the present study, it is shown that for all values of side slope, the total construction cost in the round bottomed triangle cross-section are less than those of trapezoidal cross-section for the same values of discharge. This indicates that less excavation and a lining are involved and therefore implies that the round bottomed triangle cross-section is more economical than trapezoidal cross-section.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
Plaudit
References
Chow, V.T.”Open Channel Hydraulics” McGraw-Hill, NewYork, 19-22, (1959).
Loganathan, G.V. “Optimal Esign of Parabolic Canals” .J.Irrig.Drain.Eng. , 117(5), 716-735, (1991). DOI: https://doi.org/10.1061/(ASCE)0733-9437(1991)117:5(716)
Monadjemi, P. “General Formulation of Best Hydraulic Channel Section.” J.Irrig. Drain.Eng., 120(1), 27-35, (1994). DOI: https://doi.org/10.1061/(ASCE)0733-9437(1994)120:1(27)
Froehlich, D.C. “Width and Depth-Constrained Best Trapezoidal Section.”J.Irrig.Drain.Eng., 120(4), 828-835, (1994). DOI: https://doi.org/10.1061/(ASCE)0733-9437(1994)120:4(828)
Das, A. “Optimal Channel Cross Section with Composite Roughness.” J.Irrig. Drain.Eng., 126(1), 68-62, (2000). DOI: https://doi.org/10.1061/(ASCE)0733-9437(2000)126:1(68)
Babaeyan-Koopaei, K., Valentine,E.M., and Wailes,D.C. “Optimal Design of Parabolic-Bottomed Triangle Canals.” J.Irrig. Drain.Eng., 126(6), 408-411, (2000). DOI: https://doi.org/10.1061/(ASCE)0733-9437(2000)126:6(408)
Jain, A., Bhattacharjya, R.K. and Srinivasulu, S. “Optimal Design of Composite Channels Using Genetic Algorithm.”J.Irrig.Drain.Eng., 130(4), 286-295, (2004). DOI: https://doi.org/10.1061/(ASCE)0733-9437(2004)130:4(286)
Bhattacharjya, R.K. “Optimal Design of Open Channel Section in Incorporating Critical flow Condition.”J.Irrig.Drain.Eng., 132(5), 513-518, (2006). DOI: https://doi.org/10.1061/(ASCE)0733-9437(2006)132:5(513)
Bhattacharjya, R.K., and Satish, M.G “Optimal Design of Stable Trapezoidal Channel Section Using Hybrid Optimization Techniques”. J.Irrig Drain.Eng.,133(4),323-329, (2007). DOI: https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(323)
Das, A. “Optimal Design of Channel Having Horizontal Bottom and Parabolic Sides” J.Irrig. Drain. Eng., 133(2), 192-197, (2007). DOI: https://doi.org/10.1061/(ASCE)0733-9437(2007)133:2(192)
Bhattacharjya, R.K., and Satish, M.G. “Flooding Probability-Based Optimal Design of Trapezoidal Open Channel Using Freeboard as a Design Variable”.J.Irrig.Drain.Eng., 134(3), 405-408, (2008). DOI: https://doi.org/10.1061/(ASCE)0733-9437(2008)134:3(405)
Das, A. “Chance Constraint Optimal Design of Trapezoidal Channels”. J.Water Resour. Plan. Manag. 134(3), 310-312, (2008). DOI: https://doi.org/10.1061/(ASCE)0733-9496(2008)134:3(310)
Hussein, A.S.A. “Simplified Design of Hydraulically Efficient Power-law Channels with Freeboard” J.Irrig. Drain.Eng., 134(3), 380-386, (2008). DOI: https://doi.org/10.1061/(ASCE)0733-9437(2008)134:3(380)
WWW. Math works. Com “Genetic Algorithm and Direct Search Toolbox 2” Copyright 2004-2007.