Optimum Design of RC Beams Strengthened with Externally Bonded FRP Using Pattern Search

Main Article Content

Noor Mohammed Sheet
https://orcid.org/0000-0002-8337-3317
Baraa J. M. AL-Eliwi
https://orcid.org/0000-0001-5685-9306
Rabi M. Najem
https://orcid.org/0009-0004-7733-9974

Abstract

This paper discusses the efficiency of using the Pattern Search (PS) tool to optimize the design of RC beams strengthened with externally bonded (EB) fiber-reinforced polymer (FRP) materials. The study considers shear strengthening (three-sided or two-sided configurations), flexure strengthening, and coupled shear-flexure strengthening. The design process involved an objective function that represents the cost function of the optimum solution and design variables that define the optimum dimensions of the beam and FRP material, such as beam width, effective beam depth, FRP strip thickness, FRP strips spacing, and FRP strip width, according to the design constraints of the ACI 440-2R-17 code. To achieve the goal of this paper, different examples were conducted under shear, flexure, and coupled shear-flexure strengthening. In each case, the PS technique resulted in more compact designs with a faster convergence rate, reducing costs compared to the original dimensions of the design variables. In this context, an extensive parametric study was conducted to determine the ability to redesign the FRP material dimensions compared to previously published data. The results showed that the pattern search technique could save costs in designing RC beams strengthened with externally bonded FRP under similar loading conditions.


 

Metrics

Metrics Loading ...

Article Details

Section
Articles
Author Biographies

Noor Mohammed Sheet, Department of Civil Engineering, College of Engineering, University of Mosul, Mosul, Iraq.

 

 

 

 

Baraa J. M. AL-Eliwi, Department of Civil Engineering, College of Engineering, University of Mosul, Mosul, Iraq.

 

 

 

Rabi M. Najem, Department of Civil Engineering, College of Engineering, University of Mosul, Mosul, Iraq.

 

 

 

 

Plaudit

References

Godat A, Chaallal O. Strut-and-Tie Method for Externally Bonded FRP Shear-Strengthened Large-Scale RC Beams. Composite Structures 2013; 99:327-338. DOI: https://doi.org/10.1016/j.compstruct.2012.11.034

Al-Zaid RZ, Al-Negheimish AI, Al-Saawani MA, El-Sayed AK. Analytical Study on RC Beams Strengthened for Flexure with Externally Bonded FRP Reinforcement. Composites Part B: Engineering 2012; 43(2):129-141. DOI: https://doi.org/10.1016/j.compositesb.2011.11.015

Abdulrahman MB, Salih SA, Abduljabbar RJ. The Assessment of Using CFRP to Enhance the Behavior of High Strength Reinforced Concrete Corbels. Tikrit Journal of Engineering Sciences 2021; 28(1):71-83. DOI: https://doi.org/10.25130/tjes.28.1.08

Bedewi A, Yahia YI, Abdulla AI. Structural Behavior of Hollow Beam Reinforced with Different Types of GFRP Stirrups. Tikrit Journal of Engineering Sciences 2023; 30(1):72-83. DOI: https://doi.org/10.25130/tjes.30.1.7

Sheet NM, AL-Eliwi BJ, Najem RM, Hasan WM. The Optimum Design of RC Beams Strengthened with FRP Materials: A Review. AL-Rafidain Engineering Journal 2023;28(2): 18-32. DOI: https://doi.org/10.33899/rengj.2023.139008.1244

Kar S, Pandit AR, Biswal K. Prediction of FRP Shear Contribution for Wrapped Shear Deficient RC Beams Using Adaptive Neuro-Fuzzy Inference System (ANFIS). Structures 2020; 23:702-717. DOI: https://doi.org/10.1016/j.istruc.2019.10.022

AlAli SS, Abdulrahman MB, Tayeh BA. Response of Reinforced Concrete Tapered Beams Strengthened Using NSM-CFRP Laminates. Tikrit Journal of Engineering Sciences 2022; 29(1):99-110. DOI: https://doi.org/10.25130/tjes.29.1.08

Salih YA, Al-Salman HA, Jomaa’h MM, Abdulla AI. Flexural Behavior of Reinforced Concrete Voided Slabs Strengthened with Different Types of FRP: State-of-the-Art Review. Tikrit Journal of Engineering Sciences 2023; 30(3):124-139. DOI: https://doi.org/10.25130/tjes.30.3.13

Amran YM, Alyousef R, Rashid RS, Alabduljabbar H, Hung C-C. Properties and Applications of FRP in Strengthening RC Structures: A Review. Structures 2018. pp. 208-238. DOI: https://doi.org/10.1016/j.istruc.2018.09.008

Naser M, Hawileh R, Abdalla J. Fiber-Reinforced Polymer Composites in Strengthening Reinforced Concrete Structures: A Critical Review. Engineering Structures 2019; 198: 109542, (1-90). DOI: https://doi.org/10.1016/j.engstruct.2019.109542

Tais A, Abdulrahman M. Improving the Torsional Strength of Reinforced Concrete Hollow Beams Strengthened with Externally Bonded Reinforcement CFRP Stripe Subjected to Monotonic and Repeated Loads. Information Sciences Letters 2023; 12(1):427-441. DOI: https://doi.org/10.18576/isl/120136

Dong J, Wang Q, Guan Z. Structural Behaviour of RC Beams with External Flexural and Flexural–Shear Strengthening by FRP Sheets. Composites Part B: Engineering 2013; 44(1):604-612. DOI: https://doi.org/10.1016/j.compositesb.2012.02.018

Al-Amery R, Al-Mahaidi R. Coupled Flexural–Shear Retrofitting of RC Beams Using CFRP Straps. Composite Structures 2006; 75(1-4):457-464. DOI: https://doi.org/10.1016/j.compstruct.2006.04.037

Kotynia R, Oller E, Marí A, Kaszubska M. Efficiency of Shear Strengthening of RC Beams with Externally Bonded FRP Materials–State-of-the-Art in the Experimental Tests. Composite Structures 2021; 267:113891, (1-83). DOI: https://doi.org/10.1016/j.compstruct.2021.113891

Rafi MM, Nadjai A, Ali F, Talamona D. Aspects of Behaviour of CFRP Reinforced Concrete Beams in Bending. Construction and Building Materials 2008; 22(3):277-285. DOI: https://doi.org/10.1016/j.conbuildmat.2006.08.014

Zhang Z, Hsu CTT. Shear Strengthening of Reinforced Concrete Beams Using Carbon-Fiber-Reinforced Polymer Laminates. Journal of Composites for Construction 2005; 9(2):158-169. DOI: https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(158)

Baghi H, Menkulasi F. Alternative Approaches to Predict Shear Strength of Slender RC Beams Strengthened with Externally Bonded Fiber-Reinforced Polymer Laminates. Journal of Composites for Construction 2020; 24(2):04020002. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0001003

Attari N, Amziane S, Chemrouk M. Flexural Strengthening of Concrete Beams Using CFRP, GFRP and Hybrid FRP Sheets. Construction and Building Materials 2012; 37:746-757. DOI: https://doi.org/10.1016/j.conbuildmat.2012.07.052

Aprile A, Benedetti A. Coupled flexural-shear design of R/C beams strengthened with FRP. Composites Part B: Engineering 2004; 35(1):1-25. DOI: https://doi.org/10.1016/j.compositesb.2003.09.001

Perera R, Varona FB. Flexural and Shear Design of FRP Plated RC Structures Using a Genetic Algorithm. Journal of Structural Engineering 2009; 135(11):1418-1429. DOI: https://doi.org/10.1061/(ASCE)0733-9445(2009)135:11(1418)

Dias SJ, Silva J, Barros JA. Flexural and Shear Strengthening of Reinforced Concrete Beams with a Hybrid CFRP Solution. Composite Structures 2021; 256:113004. DOI: https://doi.org/10.1016/j.compstruct.2020.113004

Costa IG, Barros JA. Flexural and Shear Strengthening of RC Beams with Composite Materials–The Influence of Cutting Steel Stirrups to Install CFRP Strips. Cement and Concrete Composites 2010; 32(7):544-553. DOI: https://doi.org/10.1016/j.cemconcomp.2010.03.003

ACI-440.2R-17. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. (ACI 440.2 R-17); 2017.

Mofidi A, Chaallal O. Shear Strengthening of RC Beams with EB FRP: Influencing Factors and Conceptual Debonding Model. Journal of Composites for Construction 2011; 15(1):62-74. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000153

Shahriari S, Naderpour H. Reliability Assessment of Shear-Deficient Reinforced Concrete Beams Externally Bonded by FRP Sheets Having Different Configurations. Structures 2020; 25: 730-742. DOI: https://doi.org/10.1016/j.istruc.2020.03.048

Awad ZK, Aravinthan T, Zhuge Y. Cost Optimum Design of Structural Fibre Composite Sandwich Panel for Flooring Applications. Advances in FRP Composites in Civil Engineering: Proceedings of the 5th International Conference on FRP Composites in Civil Engineering (CICE 2010), Sep 27–29, 2010, Beijing, China: Springer 2011. pp. 478-481. DOI: https://doi.org/10.1007/978-3-642-17487-2_103

Nehdi M, Nikopour H. Genetic Algorithm Model for Shear Capacity of RC Beams Reinforced with Externally Bonded FRP. Materials and Structures 2011; 44:1249-1258. DOI: https://doi.org/10.1617/s11527-010-9697-2

Rahman MM, Jumaat MZ, Hosen MA. Genetic Algorithm for Material Cost Minimization of External Strengthening System with Fiber Reinforced Polymer. Advanced Materials Research 2012; 468:1817-1822. DOI: https://doi.org/10.4028/www.scientific.net/AMR.468-471.1817

Al-Sumait J, Al-Othman A, Sykulski J. Application of Pattern Search Method to Power System Valve-Point Economic Load Dispatch. International Journal of Electrical Power & Energy Systems 2007; 29(10):720-730. DOI: https://doi.org/10.1016/j.ijepes.2007.06.016

Biondi T, et al. Multi-Objective Evolutionary Algorithms and Pattern Search Methods for Circuit Design Problems. Journal of Universal Computer Science 2006; 12(4):432-449.

Morris A. Numerical Methods for Unconstrained Optimization. International Journal for Numerical Methods in Engineering 1973; 6(4):608-609. DOI: https://doi.org/10.1002/nme.1620060423

Madić M, Radovanović M. Optimization of Machining Processes Using Pattern Search Algorithm. International Journal of Industrial Engineering Computations 2014; 5(2): 223-234. DOI: https://doi.org/10.5267/j.ijiec.2014.1.002

The MathWork M. Global Optimization Toolbox. The MathWorks, Inc.; 2010.

Sharma V, Jain VK, Kumar A. An Introduction to Optimization Techniques: CRC Press; 2021. DOI: https://doi.org/10.1201/9781003045762

ACI-318-19. Building Code Requirements for Structural Concrete ACI 318-19 and Commentary 318R–19; 2019.

Perera R, Tarazona D, Ruiz A, Martín A. Application of Artificial Intelligence Techniques to Predict the Performance of RC Beams Shear Strengthened with NSM FRP Rods. Formulation of Design Equations. Composites Part B: Engineering 2014; 66:162-173. DOI: https://doi.org/10.1016/j.compositesb.2014.05.001

Singh SB. Analysis and Design of FRP Reinforced Concrete Structures. New York: McGraw Hill Professional; 2015.

Al-Mahaidi R, Kalfat R. Rehabilitation of Concrete Structures with Fiber-Reinforced Polymer. Oxford, UK: Butterworth-Heinemann; 2018.

Rasheed HA. Strengthening Design of Reinforced Concrete with FRP. Folrida, USA: CRC Press; 2014. DOI: https://doi.org/10.1201/b17968

Abdel Hafez AM. Shear Behavior of RC Beams Strengthened Externally with Bonded CFRP–U Strips. Journal of Engineering Sciences 2007; 35(2):361-379. DOI: https://doi.org/10.21608/jesaun.2007.111536

Belarbi A, Bae S-W, Brancaccio A. Behavior of Full-Scale RC T-Beams Strengthened in Shear with Externally Bonded FRP Sheets. Construction and Building Materials 2012; 32:27-40. DOI: https://doi.org/10.1016/j.conbuildmat.2010.11.102

Alzate A, Diego Ad, Perera R, Cisneros D, Arteaga A. Shear Strengthening of Reinforced Concrete Members with CFRP Sheets. Materiales de Construcción 2013; 63:251-265. DOI: https://doi.org/10.3989/mc.2012.06611

Triantafillou T, Plevris N. Strengthening of RC Beams with Epoxy-Bonded Fibre-Composite Materials. Materials and Structures 1992; 25:201-211. DOI: https://doi.org/10.1007/BF02473064

Altin S, Anil Ö, Kopraman Y, Mertoğlu Ç, Kara ME. Improving Shear Capacity and Ductility of Shear-Deficient RC Beams Using CFRP Strips. Journal of Reinforced Plastics and Composites 2010; 29(19):2975-2991. DOI: https://doi.org/10.1177/0731684410363182

Rahimi H, Hutchinson A. Concrete Beams Strengthened with Externally Bonded FRP Plates. Journal of Composites for Construction 2001; 5(1):44-56. DOI: https://doi.org/10.1061/(ASCE)1090-0268(2001)5:1(44)

Quantrill R, Hollaway L, Thorne A. Predictions of the Maximum plate End Stresses of FRP Strengthened Beams: Part II. Magazine of Concrete Research 1996; 48(177):343-351. DOI: https://doi.org/10.1680/macr.1996.48.177.343

Similar Articles

You may also start an advanced similarity search for this article.