Employment of Regression-Based Decision Tools to Predict the Shear Capacity of Reinforced Concrete Beams Without Web Reinforcement
Main Article Content
Abstract
Shear failure in the reinforced concrete (RC) beams with no web reinforcement is a structural problem due to its sudden nature and absence of precursors. The purpose of this research is to predict and assess the shear capacity (Vc) of the beams by applying several statistical regression models. Different combinations of a full linear regression model, a simplified linear model, and stepwise multivariate regression (SMR) models were formulated, tested, and compared. For training and validation, a dataset containing 398 RC beams with different geometries, material properties, and loading configurations was obtained. Other key factors included the beam width, effective depth, reinforcement area, concrete compressive strength, and the shear span-to-depth ratio. The model was developed in Python and SPSS, and the outcomes were evaluated based on R², RMSE, MAE, classification accuracy, and residual analysis. The results indicated that the full linear regression model retained the best predictive performance as indicated by an R² score of 0.9733. However, the fifth-order SMR model scored the lowest RMSE of 17.8 MPa. Furthermore, the simplified linear model greatly underestimated the strength and performed poorly in its predictive functionality. The study emphasizes that stepwise regression model building improves the accuracy of the model while maintaining clear practical relevance. This research enables engineers to make decisions based on reliable data.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
Plaudit
References
ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary. American Concrete Institute; 2019.
CEN (European Committee for Standardization). Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings (EN 1992-1-1). 2004.
CSA Group. Design of Concrete Structures (CSA A23.3-19). Canadian Standards Association; 2019.
Vecchio FJ, Collins MP. The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear. ACI Journal 1986; 83(2):219-231.
Bentz EC, Vecchio FJ, Collins MP. Simplified Modified Compression Field Theory for Calculating Shear Strength of Reinforced Concrete Elements. ACI Structural Journal 2006; 103(4):614-624.
Mansour MY, Dicleli M, Lee JY, Zhang J. Predicting the Shear Strength of Reinforced Concrete Beams Using Artificial Neural Networks. Engineering Structures 2004; 26(6):781-799.
Khademi F, Jamal SM, Deshpande N, Londhe S. Predicting Strength of Recycled Aggregate Concrete Using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple Linear Regression. International Journal of Sustainable Built Environment 2016; 5(2):355-369.
Chou JS, Tsai CF, Pham AD, Lu YH. Machine Learning in Concrete Strength Simulations: Multi-Nation Data Analytics. Construction and Building Materials 2014; 73:771-780.
Raudenbush SW. Hierarchical Linear Models: Applications and Data Analysis Methods. Advanced Quantitative Techniques in the Social Sciences Series. Sage Publications; 2002.
Motlagh SAT, Naghizadehrokni M. An Extended Multi-Model Regression Approach for Compressive Strength Prediction and Optimization of a Concrete Mixture. Construction and Building Materials 2022; 327:126828.
Hou Z, Noori M, Amand RS. Wavelet-Based Approach for Structural Damage Detection. Journal of Engineering Mechanics 2000; 126(7): 677-683.
Arbaoui A, Ouahabi A, Jacques S, Hamiane M. Concrete Cracks Detection and Monitoring Using Deep Learning - Based Multiresolution Analysis. Electronics 2021; 10(15):1772.
Huang Y, Beck JL, Li H. Bayesian System Identification Based on Hierarchical Sparse Bayesian Learning and Gibbs Sampling with Application to Structural Damage Assessment. Computer Methods in Applied Mechanics and Engineering 2017; 318:382-411.
ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary. Farmington Hills, MI: American Concrete Institute; 2019.
Adebar P, Collins MP. Shear strength of members without transverse reinforcement. Can J Civ Eng. 1996;23(1):30-41. DOI: https://doi.org/10.1139/l96-004
Ahmad SH, Khaloo AR, Poveda A. Shear capacity of reinforced high-strength concrete beams. ACI J Proc. 1986;83(2):297-305. DOI: https://doi.org/10.14359/10433
Ahmad SH, Xie Y, Yu T. Shear ductility of reinforced lightweight concrete beams of normal strength and high strength concrete. Cem Concr Compos. 1995;17(2):147-59. DOI: https://doi.org/10.1016/0958-9465(94)00029-X
Al-Alusi AF. Diagonal tension strength of reinforced concrete T-beams with varying shear span. J Proc. 1957 May;53(5):1067-77. DOI: https://doi.org/10.14359/11572
Angelakos D, Bentz EC, Collins MP. Effect of concrete strength and minimum stirrups on shear strength of large members. Struct J. 2001;98(3):291-300. DOI: https://doi.org/10.14359/10220
Arbaoui A, Ouahabi A, Jacques S, Hamiane M. Concrete cracks detection and monitoring using deep learning-based multiresolution analysis. Electronics. 2021;10(15):1772. DOI: https://doi.org/10.3390/electronics10151772
Aster H, Koch R. Shear strength of thick reinforced concrete slabs. Beton-u Stahlbetonbau. 1974;69(11).
Bentz EC, Vecchio FJ, Collins MP. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Struct J. 2006;103(4):61. DOI: https://doi.org/10.14359/16438
Bhal NS. On the Influence of Beam Depth on Shear Capacity of Single-Span RC Beams with and without Shear Reinforcement [Doctoral dissertation]. Stuttgart, Germany: Universität Stuttgart; 1968.
Bresler B, Scordelis AC. Shear strength of reinforced concrete beams. J Proc. 1963 Jan;60(1):51-74. DOI: https://doi.org/10.14359/7842
CEN (European Committee for Standardization). Eurocode 2: Design of concrete structures—Part 1-1: General rules and rules for buildings (EN 1992-1-1). Brussels, Belgium: European Committee for Standardization; 2004.
Chou JS, Tsai CF, Pham AD, Lu YH. Machine learning in concrete strength simulations: Multi-nation data analytics. Constr Build Mater. 2014;73:771-80. DOI: https://doi.org/10.1016/j.conbuildmat.2014.09.054
Collins M, Kuchma D. How safe are our large, lightly reinforced concrete beams, slabs, and footings?. Struct J. 1999;96(4):482-90. DOI: https://doi.org/10.14359/684
CSA Group. Design of Concrete Structures (CSA A23.3-19). Mississauga, ON: Canadian Standards Association; 2019.
De Cossio RD, Siess CP. Behavior and strength in shear of beams and frames without web reinforcement. J Proc. 1960 Feb;56(2):695-736. DOI: https://doi.org/10.14359/8118
Elzanaty AH, Nilson AH, Slate FO. Shear capacity of reinforced concrete beams using high-strength concrete. J Proc. 1986 Mar;83(2):290-6. DOI: https://doi.org/10.14359/10432
Feldman A, Siess CP. Effect of moment-shear ratio on diagonal tension cracking and strength in shear of reinforced concrete beams. Civil Engineering Studies SRS-107. Urbana, IL: University of Illinois; 1955.
Ferguson PM, Thompson JN. Diagonal tension in T-beams without stirrups. J Proc. 1953 Mar;49(3):665-75. DOI: https://doi.org/10.14359/11844
Kani GNJ. How safe are our large reinforced concrete beams?. Proc ACI Struct J. 1967;64(3):128-41. DOI: https://doi.org/10.14359/7549
Grimm R. Influence of fracture mechanics parameters on the bending and shear bearing behavior of high-strength concretes [Ph.D. Dissertation]. Berlin, Germany: Construction Engineering of the Technical University of Darmstadt; 1997. (In German).
Hallgren M. Flexural and shear capacity of reinforced high strength concrete beams without stirrups [Doctoral dissertation]. Stockholm, Sweden: KTH Royal Institute of Technology; 1994.
Hallgren M. Punching shear capacity of reinforced high strength concrete slabs [PhD Thesis]. Stockholm, Sweden: KTH Byggvetenskap; 1996.
Hamadi YD. Force transfer across cracks in concrete structures [Doctoral dissertation]. London, UK: University of Central London Westminster; 1976.
Hanson JA. Shear strength of lightweight reinforced concrete beams. J Proc. 1958 Sep;55(9):387-403. DOI: https://doi.org/10.14359/11362
Hanson JW. Tensile strength and diagonal tension resistance of structural lightweight concrete. J Proc. 1961 Jul;58(7):1-40. DOI: https://doi.org/10.14359/7972
Herzog M. Die erforderliche Bügelbewehrung von Stahlbeton‐und Spannbetonbalken. Beton‐und Stahlbetonbau. 1982;77(8):203-9. DOI: https://doi.org/10.1002/best.198200280
Hou Z, Noori M, Amand RS. Wavelet-based approach for structural damage detection. J Eng Mech. 2000;126(7):677-83. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2000)126:7(677)
Huang Y, Beck JL, Li H. Bayesian system identification based on hierarchical sparse Bayesian learning and Gibbs sampling with application to structural damage assessment. Comput Methods Appl Mech Eng. 2017;318:382-411. DOI: https://doi.org/10.1016/j.cma.2017.01.030
Islam MS, Pam HJ, Kwan AKH, Aoyagi. Shear Capacity Of High-Strength Concrete Beams With Their Point Of Inflection Within The Shear Span. Proc Inst Civ Eng-Struct Build. 1998;128(1):91-9. DOI: https://doi.org/10.1680/istbu.1998.30038
Khademi F, Jamal SM, Deshpande N, Londhe S. Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression. Int J Sustain Built Environ. 2016;5(2):355–69. DOI: https://doi.org/10.1016/j.ijsbe.2016.09.003
Koutas LN, Cholostiakow S, Bournas DA, Raoof S, Tetta Z. Optimized hybrid carbon-glass textile-reinforced mortar for flexural and shear strengthening of RC members. J Compos Constr. 2024;28(1):04023068. DOI: https://doi.org/10.1061/JCCOF2.CCENG-4333
Krefeld WJ, Thurston CW. Contribution of Longitudinal Steel to Shear Resistance of Reinforced Concrete Beams. ACI J. 1966 Mar;63(3):325-44. DOI: https://doi.org/10.14359/7626
Kulkarni SM, Shah SP. Response of reinforced concrete beams at high strain rates. Struct J. 1998;95(6):705-15. DOI: https://doi.org/10.14359/584
Kung TM, Li JCM. Recovery of thick shear bands in atactic polystyrene. J Polym Sci A Polym Chem. 1986;24(10):2433-45. DOI: https://doi.org/10.1002/pola.1986.080241006
Lambotte H, Taerwe LR. Deflection and cracking of high-strength concrete beams and slabs. Spec Publ. 1990;121:109-28.
Laupa A, Siess CP, Newmark NM. The shear strength of simple-span reinforced concrete beams without web reinforcement. Civil Engineering Studies SRS-052. Urbana, IL: University of Illinois; 1953.
Leonhardt F, Walther R. Schubversuche an einfeldigen Stahlbetonbalken mit und ohne Schubbewehrung. Deutscher Ausschus für Stahlbeton. 1962;151:83.
Mansour MY, Dicleli M, Lee JY, Zhang JJES. Predicting the shear strength of reinforced concrete beams using artificial neural networks. Eng Struct. 2004;26(6):781-99. DOI: https://doi.org/10.1016/j.engstruct.2004.01.011
Marti P, Pralong J, Thürlimann B. Summary. In: Schubversuche an Stahlbeton-Platten. Institut für Baustatik. Versuchsberichte. Basel, Switzerland: Birkhäuser; 1977. 10.1007/978-3-0348-5739-0_7. DOI: https://doi.org/10.1007/978-3-0348-5739-0
Mathey RG, Watstein D. Shear strength of beams without web reinforcement containing deformed bars of different yield strengths. J Proc. 1963 Feb;60(2):183-208. DOI: https://doi.org/10.14359/7851
Moody KG, Viest IM, Elstner RC, Hognestad E. Shear strength of reinforced concrete beams Part 1-Tests of simple beams. J Proc. 1954 Dec;51(12):317-32. DOI: https://doi.org/10.14359/11680
Morrow J, Viest IM. Shear strength of reinforced concrete frame members without web reinforcement. J Proc. 1957 Mar;53(3):833-69. DOI: https://doi.org/10.14359/11558
Motlagh SAT, Naghizadehrokni M. An extended multi-model regression approach for compressive strength prediction and optimization of a concrete mixture. Constr Build Mater. 2022;327:126828. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126828
Mphonde AG, Frantz GC. Shear tests of high-and low-strength concrete beams without stirrups. J Proc. 1984 Jul;81(4):350-7. DOI: https://doi.org/10.14359/10690
Rajagopalan KS, Ferguson PM. Exploratory shear tests emphasizing percentage of longitudinal steel. J Proc. 1968 Aug;65(8):634-8. DOI: https://doi.org/10.14359/7501
Raudenbush SW. Hierarchical linear models: Applications and data analysis methods. Thousand Oaks, CA: Sage Publications; 2002.
Reineck KH, Koch R, Schlaich J. Shear Tests on Reinforced concrete beams with axial compression for offshore structures. Stuttgart, Germany: Institut für Massivbau, Universität Stuttgart; 1978.
Remmel G. Zum Zugtragverhalten hochfester Betone und seinem Einfluß auf die Querkrafttragfähigkeit von schlanken Bauteilen ohne Schubbewehrung. Darmstadt, Germany: Technische Hochschule Darmstadt; 1991.
Ruesch M, Haugli O, Mayer M. Schubversuche an Stahlbeton-Rechteckbalken mit gleichmäkig verteilter Belastung. Deutcher Ausschuss fur Stahlbeton. Berlin, Germany; 1962. p. [4-30]. (in German).
Scholtz H. Ein Querkrafttragmodell fürBauteile onhe Schubbewehrung im Bruchzustand aus normalfestem und hochfestem Beton. Stuttgart, Germany; 1994. (in German).
Taylor HP. Shear stresses in reinforced concrete beams without shear reinforcement. London, UK: Cement and Concrete Association; 1968.
Taylor HP. Shear strength of large beams. J Struct Div. 1972;98(11):[2473-90]. DOI: https://doi.org/10.1061/JSDEAG.0003376
Thorenfeldt E, Drangsholt G. Shear capacity of reinforced high-strength concrete beams. Spec Publ. 1990;121:129-54.
Vecchio FJ, Collins MP. The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J. 1986;83(2):219–31. DOI: https://doi.org/10.14359/10416
Walraven JC. The influence of depth on the shear strength of lightweight concrete beams without shear reinforcement. Delft, Netherlands: University of Technology, Department of Civil Engineering; 1984.
Yoon YS, Cook WD, Mitchell D. Minimum shear reinforcement in normal, medium, and high-strength concrete beams. Struct J. 1996;93(5):576-84. DOI: https://doi.org/10.14359/9716