Morphological, Physical, and Thermal Properties of Fly Ash Reinforced Low- and High-Density Polyethylene Composites: A Comprehensive Review

محتوى المقالة الرئيسي

Saif S. Irhayyim
https://orcid.org/0000-0002-9454-9795
Farouk M. Mahdi
Saad R. Ahmed
Sanjeev Khanna

الملخص

Due to their improved physical, rheological, and morphological properties, polyethylene/fly ash composites have been receiving considerable attention in recent years. This review comprehensively examines the properties of low- and high-density polyethylene/fly ash composites. Its structure is expounded in terms of how the polymer matrix interacts with FA particles. The review evaluates physical properties, including density, water absorption, and thermal stability, and examines the changes in these properties caused by FA reinforcement. The rheological properties of the produced composites, such as viscosity and elasticity, have also been reviewed to show how FA particles modify the processability and melt flow behavior of polyethylene matrices. This work also includes an in-depth examination of various techniques used in creating these composites, with an emphasis on the importance of selecting appropriate processing parameters to achieve optimal results. It also covers some important factors that may affect the performance of composites, including particle size, loading amount, and surface modification of FA particles. This review outlines the challenges and, hence, future research topics related to these issues. In this regard, it highlights the need for thorough research to optimize processing parameters, interface modification techniques, and advanced characterization methods. Generally, this review serves as a resourceful platform for researchers and engineers focused on enhancing the properties of advanced polymeric composites, targeting a broad spectrum of applications.

المقاييس

يتم تحميل المقاييس...

تفاصيل المقالة

القسم
Review Article

##plugins.generic.plaudit.displayName##

المراجع

Singh S, Ghorai MK, Kar KK. Fly Ash-Reinforced Polyethylene Composites. In: Handbook of Fly Ash. Elsevier; 2022:227-241.

Hamada ML, Alwan GS, Annaz AA, Irhayyim SS, Hammood HS. Experimental Investigation of Mechanical and Tribological Characteristics of Al 2024 Matrix Composite Reinforced by Yttrium Oxide Particles. Korean Journal of Materials Research 2021; 31(6):339-344.

Krauklis AE, Karl CW, Gagani AI, Jørgensen JK. Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. Journal of Composites Science 2021; 5(1):28.

Mahdi AD, Irhayyim SS, Abduljabbar SF. Mechanical and Wear Behavior of Al7075 - Graphite Self-Lubricating Composite Reinforced by Nano-WO3 Particles. Materials Science Forum 2020; 1002:151-161.

Barbero EJ. Introduction to Composite Materials Design. 3rd ed. 2017.

Zaichenko N, Nefedov V. Composite Material Based on the Polyethylene Terephthalate Polymer and Modified Fly Ash Filler. MATEC Web of Conferences 2018; 245:03007.

Irhayyim SS, Hammood HS, Abdulhadi HA. Effect of Nano-TiO2 Particles on Mechanical Performance of Al-CNT Matrix Composite. AIMS Materials Science 2019; 6(6):1124-1137.

Zhang M, Biesold GM, Choi W, Yu J, Deng Y, Silvestre C. Recent Advances in Polymers and Polymer Composites for Food Packaging. Materials Today 2022; 53:134-161.

Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM. Mechanical Performance and Applications of CNTs Reinforced Polymer Composites—A Review. Nanomaterials 2021; 11(9):2186.

Atikler U, Basalp D, Tihminlioğlu F. Mechanical and Morphological Properties of Recycled High-Density Polyethylene, Filled with Calcium Carbonate and Fly Ash. Journal of Applied Polymer Science 2006; 102(5):4460-4467.

Mahesh V, Joladarashi S, Kulkarni SM. A Comprehensive Review on Material Selection for Polymer Matrix Composites Subjected to Impact Load. Defence Technology 2021; 17(1): 257-277.

Chohan JS, Boparai KS, Singh R, Hashmi MSJ. Manufacturing Techniques and Applications of Polymer Matrix Composites: A Brief Review. Advances in Materials and Processing Technology 2022; 8(1):1103-1128.

Bharath Kumar BR, Doddamani M, Zeltmann SE, Gupta N, Ramesh MR, Ramakrishna S. Processing of Cenosphere/HDPE Syntactic Foams Using an Industrial Scale Polymer Injection Molding Machine. Materials and Design 2016; 92:414-423.

Xavier FX. Thermoplastic Polymer Composites: Processing, Properties, Performance, Applications and Recyclability. John Wiley & Sons; 2022.

Chawla KK. Composite Materials: Science and Engineering. 3rd ed. 2012.

Cazan C, Cosnita M, Isac L. The Influence of Temperature on the Performance of Rubber - PET-HDPE Waste -Based Composites with Different Inorganic Fillers. Journal of Cleaner Production 2019; 208:1030-1040.

Chinh NT, Trang NTT, Mai TT, Giang NV, Trung TH, Huynh MD. Thermal Properties, Thermo-Oxidation and UV-Thermo-Humidity Complex Stability of Polyethylene/Modified Fly Ash/Ultraflow Composites. Vietnam Journal of Chemistry 2017; 55(6):709-714.

Ju S, Yoon J, Sung D, Pyo S. Mechanical Properties of Coal Ash Particle-Reinferred Recycled Plastic-Based Composites for Sustainable Railway Sleepers. Polymers 2020; 12(10):2287.

Acharjee SA, Bharali P, Gogoi B, Sorhie V, Walling B, Alemtoshi. PHA-Based Bioplastic: A Potential Alternative to Address Microplastic Pollution. Water, Air, and Soil Pollution 2023; 234(1):21.

Kazemi M, Faisal Kabir SF, Fini EH. State of the Art in Recycling Waste Thermoplastics and Thermosets and Their Applications in Construction. Resources, Conservation and Recycling 2021; 174:105776.

Jagadeesh P, Mavinkere Rangappa S, Siengchin S, Puttegowda M, Thiagamani SMK, Rajeshkumar G. Sustainable Recycling Technologies for Thermoplastic Polymers and Their Composites: A Review of the State of the Art. Polymer Composites 2022; 43(9):5831-5866.

Oladimeji Azeez T. Thermoplastic Recycling: Properties, Modifications, and Applications. In: Thermosoftening Plastics. 2020.

Duta A, Cazan C, Cosnita M. Fly Ash in Optimized Composites Based on Recycled Plastics and Rubber. In: World of Coal Ash (WOCA) Conference. 2011:9-12.

Anandhan S. Recent Trends in Fly Ash Utilization in Polymer Composites. International Journal of Waste Resources 2014; 4(3):145.

Oboh JO, Maliki D, Ajekwene KK, Salako O. Effect of Hybrid Fillers of Bamboo Fiber and Commercial Glass Fiber on High Density Polyethylene Matrix. Journal of Applied Sciences and Environmental Management 2022; 26(5):897-903.

Debnath K, Singh I. Primary and Secondary Manufacturing of Polymer Matrix Composites. 2017.

Durowaye SI, Lawal GI, Sekunowo OI, Okonkwo EG. Synthesis and Characterisation of Hybrid Polyethylene Terephthalate Matrix Composites Reinforced with Entada Mannii Fibre Particles and Almond Shell Particles. Journal of King Saud University - Engineering Sciences 2019; 31(4):322-327.

Satapathy S, Kothapalli RVS. Influence of Fly Ash Cenospheres on Performance of Coir Fiber-Reinforced Recycled High-Density Polyethylene Biocomposites. Journal of Applied Polymer Science 2015; 132(28):42222.

Satapathy S, Nag A, Nando GB. Thermoplastic Elastomers from Waste Polyethylene and Reclaim Rubber Blends and Their Composites with Fly Ash. Process Safety and Environmental Protection 2010; 88(2):131-141.

Cosnita M, Balas M, Cazan C. The Influence of Fly Ash on the Mechanical Properties of Water Immersed All Waste Composites. Polymers 2022; 14(10):1957.

Mohd Nasir NH, Usman F, Saggaf A, Saloma. Development of Composite Material from Recycled Polyethylene Terephthalate and Fly Ash: Four Decades Progress Review. Current Research in Green and Sustainable Chemistry 2022; 5:100280.

Mohd Nasir NH, Usman F, Woen EL, Ansari MNM, Supian ABM. Microstructural and Thermal Behaviour of Composite Material from Recycled Polyethylene Terephthalate and Fly Ash. Recycling 2023; 8(1):11.

Mallick PK. Processing of Polymer Matrix Composites. 2017.

Akay M. An Introduction to Polymer Matrix Composites. Irlandia: Ventus Publishing APs; 2015.

Chinh NT, Mai TT, Trang NTT, Giang NV, Trung TH, Huong NTT. Tensile, Electrical Properties and Morphology of Polyethylene/Modified Fly Ash Composites Using Ultraflow. Vietnam Journal of Chemistry 2016; 54(6):776-780.

Sheykh MJ, Tarmian A, Doosthoseini K, Abdulkhani A. Wear Resistance and Friction Coefficient of Nano-SiO2 and Ash-Filled HDPE/Lignocellulosic Fiber Composites. Polymer Bulletin 2017; 74(11):4537-4547.

Rotliwala YC, Parikh PA. Thermal Co-processing of High Density Polyethylene with Coal, Fly Ashes, and Biomass: Characterization of Liquid Products. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2012; 34(11): 1055-1066.

Satapathy S, Nando GB, Nag A, Raju KVSN. HDPE-Fly Ash/Nano Fly Ash Composites. Journal of Applied Polymer Science 2013; 130(6):3998-4007.

Porcino DD, Mauriello F, Bonaccorsi L, Tomasello G, Paone E, Malara A. Recovery of Biomass Fly Ash and HDPE in Innovative Synthetic Lightweight Aggregates for Sustainable Geotechnical Applications. Sustainability 2020; 12(16):6552.

Baglari S, Kole M, Dey TK. Effective Thermal Conductivity and Coefficient of Linear Thermal Expansion of High-Density Polyethylene — Fly Ash Composites. Indian Journal of Physics 2011; 85(4):559-573.

Satapathy S, Kothapalli RVS. Mechanical, Dynamic Mechanical and Thermal Properties of Banana Fiber/Recycled High Density Polyethylene Biocomposites Filled with Flyash Cenospheres. Journal of Polymers and the Environment 2018; 26(1):200-213.

Verma P, Kumar A, Chauhan SS, Verma M, Malik RS, Choudhary V. Industrially Viable Technique for the Preparation of HDPE/Fly Ash Composites at High Loading: Thermal, Mechanical, and Rheological Interpretations. Journal of Applied Polymer Science 2018; 135(11):45995.

Sear A. Properties and Use of Coal Fly Ash: A Valuable Industrial By-Product. 2001.

Salah N, Alfawzan AM, Saeed A, Alshahrie A, Allafi W. Effective Reinforcements for Thermoplastics Based on Carbon Nanotubes of Oil Fly Ash. Scientific Reports 2019; 9(1):20288.

Kaleni A, Magagula SI, Motloung MT, Mochane MJ, Mokhena TC. Preparation and Characterization of Coal Fly Ash Reinforced Polymer Composites: An Overview. Express Polymer Letters 2022; 16(7):693-726.

Yao J, Li W, Xia F, Zheng Y, Fang C, Shen D. Heavy Metals and PCDD/Fs in Solid Waste Incinerator Fly Ash in Zhejiang Province, China: Chemical and Bio-Analytical Characterization. Environmental Monitoring and Assessment 2012; 184(6):3711-3720.

Wang X, Fu C, Feng Z, Huo H, Yin X, Gao G. Flyash/Polymer Composite Electrolyte with Internal Binding Interaction Enables Highly-Stable Extrinsic-Interfaces of All-Solid-State Lithium Batteries. Chemical Engineering Journal 2022; 428:131041.

Khan MJ, Al-Juhani AA, Shawabkeh R, Ul-Hamid A, Hussein IA. Chemical Modification of Waste Oil Fly Ash for Improved Mechanical and Thermal Properties of Low Density Polyethylene Composites. Journal of Polymer Research 2011; 18(6):2275-2284.

Senapati AK, Bhatta A, Mohanty S, Mishra PC, Routra BC. An Extensive Literature Review on the Usage of Fly Ash as a Reinforcing Agent for Different Matrices. International Journal of Innovative Science and Modern Engineering 2014; 3(1):1-5.

Tambrallimath V, Keshavamurthy R, Davim P, Pradeep Kumar GS, Pignatta G, Badari A. Synthesis and Characterization of Flyash Reinforced Polymer Composites Developed by Fused Filament Fabrication. Journal of Materials Research and Technology 2022; 21: 2420-2433.

Dadkar N, Tomar BS, Satapathy BK. Evaluation of Flyash-Filled and Aramid Fibre Reinforced Hybrid Polymer Matrix Composites (PMC) for Friction Braking Applications. Materials and Design 2009; 30(10): 4369-4375.

Kasar AK, Gupta N, Rohatgi PK, Menezes PL. A Brief Review of Fly Ash as Reinforcement for Composites with Improved Mechanical and Tribological Properties. JOM 2020; 72(6):2340-2351.

Tang Z, Deng N. Effect of Salt Solution on the Mechanical Behaviours of Geopolymer Concrete under Dry-Wet Cycles. Advances in Materials Science and Engineering 2022; 2022:1-9.

Deepthi MV, Sharma M, Sailaja RRN, Anantha P, Sampathkumaran P, Seetharamu S. Mechanical and Thermal Characteristics of High Density Polyethylene–Fly Ash Cenospheres Composites. Materials and Design 2010; 31(4):2051-2060.

Chand N, Sharma P, Fahim M. Abrasive Wear Behavior of LDPE Filled with Silane Treated Flyash Cenospheres. Composite Interfaces 2011; 18(7):575-586.

Chand N, Sharma P, Fahim M. Correlation of Mechanical and Tribological Properties of Organosilane Modified Cenosphere Filled High Density Polyethylene. Materials Science and Engineering: A 2010; 527(21-22):5873-5878.

Minchenkov K, Vedernikov A, Safonov A, Akhatov I. Thermoplastic Pultrusion: A Review. Polymers 2021; 13(2):180.

Esfandiari P, Silva JF, Novo PJ, Nunes JP, Marques AT. Production and Processing of Pre-Impregnated Thermoplastic Tapes by Pultrusion and Compression Moulding. Journal of Composite Materials 2022; 56(11):1731-1746.

Kar KK. Composite Materials. Springer Berlin Heidelberg: Berlin, Heidelberg; 2017.

Alshammari BA, Alsuhybani MS, Almushaikeh AM, Alotaibi BM, Alenad AM, Alqahtani NB. Comprehensive Review of the Properties and Modifications of Carbon Fiber-Reinforced Thermoplastic Composites. Polymers 2021; 13(15):2474.

Ahmad I, Mahanwar PA. Mechanical Properties of Fly Ash Filled High Density Polyethylene. Journal of Minerals and Materials Characterization and Engineering 2010; 9(3):183-188.

Satapathy S, Nag A, Nando GB. Effect of Electron Beam Irradiation on the Mechanical, Thermal, and Dynamic Mechanical Properties of Flyash and Nanostructured Fly Ash Waste Polyethylene Hybrid Composites. Polymer Composites 2012; 33(1):109-119.

Satapathy S, Bihari Nando G. Mechanical, Dynamic Mechanical, and Thermal Characterization of Fly Ash and Nanostructured Fly Ash-Waste Polyethylene/High-Density Polyethylene Blend Composites. Polymer Composites 2016; 37(11):3256-3268.

Divya VC, Khan MA, Rao BN, Sailaja RRN, Vynatheya S, Seetharamu S. Fire Retardancy Characteristics and Mechanical Properties of High-Density Polyethylene/Ultrafine Fly Ash/MWCNT Nanocomposites. Polymer-Plastics Technology and Engineering 2017; 56(7):762-776.

Kabir II, Sorrell CC, Mada MR, Cholake ST, Bandyopadhyay S. General Model for Comparative Tensile Mechanical Properties of Composites Fabricated from Fly Ash and Virgin/Recycled High-Density Polyethylene. Polymer Engineering and Science 2016; 56(10):1096-1108.

Satapathy S. Development of Value-Added Composites from Recycled High-Density Polyethylene, Jute Fiber and Flyash Cenospheres: Mechanical, Dynamic Mechanical and Thermal Properties. International Journal of Plastics Technology 2018; 22(2):386-405.

Patil B, Bharath Kumar BR, Doddamani M. Compressive Behavior of Fly Ash Based 3D Printed Syntactic Foam Composite. Materials Letters 2019; 254:246-249.

Alghamdi MN. Effect of Filler Particle Size on the Recyclability of Fly Ash Filled HDPE Composites. Polymers 2021; 13(16):2836.

Wu A, Jia L, Yu W, Zhu F, Liu F, Wang Y. Preparation and Finite Element Analysis of Fly Ash/HDPE Composites for Large Diameter Bellows. Polymers 2021; 13(23):4204.

Alghamdi MN. Performance for Fly Ash Reinforced HDPE Composites over the Ageing of Material Components. Polymers 2022; 14(14):2913.

Omair N, Intan Syaqirah MZ. Mechanical Properties of Recycled High-Density Polyethylene, Rice Husk Ash, and Fly Ash Composite Mixture. Journal of Innovation and Technology 2022; 2022(22):1-8.

Khan MJ, Al-Juhani AA, Ul-Hamid A, Shawabkeh R, Hussein IA. Effect of Chemical Modification of Oil Fly Ash and Compatibilization on the Rheological and Morphological Properties of Low-Density Polyethylene Composites. Journal of Applied Polymer Science 2011; 122(4):2486-2496.

Adeosun SO, Usman MA, Akpan EI, Dibie WI. Characterization of LDPE Reinforced with Calcium Carbonate—Fly Ash Hybrid Filler. Journal of Minerals and Materials Characterization and Engineering 2014; 2(4):334-345.

Porabka A, Jurkowski K, Laska J. Fly Ash Used as a Reinforcing and Flame-Retardant Filler in Low-Density Polyethylene. Polimery 2015; 60(4):251-257.

Dhawan R, Bisht BMS, Kumar R, Kumari S, Dhawan SK. Recycling of Plastic Waste into Tiles with Reduced Flammability and Improved Tensile Strength. Process Safety and Environmental Protection 2019; 124:299-307.

Sim J, Kang Y, Kim BJ, Park YH, Lee YC. Preparation of Fly Ash/Epoxy Composites and Its Effects on Mechanical Properties. Polymers 2020; 12(1):79.

Chen P, Wang Y, Li J, Chu W. Synergetic Effect of Fly Ash Cenospheres and Multi-Walled Carbon Nanotubes on Mechanical and Tribological Properties of Epoxy Resin Coatings. Journal of Applied Polymer Science 2021; 138(32):50789.

Jinnai H, Spontak RJ. Transmission Electron Microtomography in Polymer Research. Polymer 2009; 50(5):1067-1087.

Kumar CSSR. Transmission Electron Microscopy Characterization of Nanomaterials. Springer Berlin Heidelberg: Berlin, Heidelberg; 2014.

Dasari A, Yu Z-Z, Mai Y-W. Polymer Nanocomposites. Springer London: London; 2016.

Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y. Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications. Progress in Polymer Science 2016; 59:41-85.

Agari Y, Uno T. Estimation on Thermal Conductivities of Filled Polymers. Journal of Applied Polymer Science 1986; 32(7):5705-5712.

Huang R, Xu X, Lee S, Zhang Y, Kim B-J, Wu Q. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance. Materials 2013; 6(9): 4122-4138.

Elfaleh I, Abbassi F, Habibi M, Ahmad F, Guedri M, Nasri M. A Comprehensive Review of Natural Fibers and Their Composites: An Eco-Friendly Alternative to Conventional Materials. Results in Engineering 2023; 19:101271.

Yu S, Lee J, Kim J, Chang H, Kang C, Sim J. Analysis of Mechanical Properties and Structural Analysis According to the Multi-Layered Structure of Polyethylene-Based Self-Reinforced Composites. Polymers 2023; 15(20):4055.

Mishra P. Mechanical Behavior of Bagasse Fiber Reinforced Epoxy Composites at Liquid Nitrogen Temperature. Journal of Solid Waste Technology and Management 2014; 40(3):197-202.

Mazur K, Jakubowska P, Romańska P, Kuciel S. Green High Density Polyethylene (HDPE) Reinforced with Basalt Fiber and Agricultural Fillers for Technical Applications. Composites Part B: Engineering 2020; 202:108399.

Ahmad S, Dawood O, Lashin MMA, Khattak SU, Javed MF, Aslam F. Effect of Coconut Fiber on Low-Density Polyethylene Plastic-Sand Paver Blocks. Ain Shams Engineering Journal 2023; 14(8):101982.

Bazgir H, Sepahi A, Hosseini S, Afzali K, Houshmandmoayed S, Nikzinat E. Clarifying Effect of Multimodal Polymerization on Thermal, Rheological, and Mechanical Properties of HDPE Pipe Resin. Journal of Polymer Research 2023; 30(2):58.

Zeraatpishe M, Hassanajili S. Investigation of Physical and Rheological Properties of LDPE/HDPE/Thermoplastic Starch Biodegradable Blend Films. Polymer Engineering and Science 2023; 63(9):3116-3134.

Gong Y, Wang S-H, Zhang Z-Y, Yang X-L, Yang Z-G, Yang H-G. Degradation of Sunlight Exposure on the High-Density Polyethylene (HDPE) Pipes for Transportation of Natural Gases. Polymer Degradation and Stability 2021; 194:109752.

Pattanaik A, Mukharjee M, Mishra SC. Effect of Environmental Aging Conditions on the Properties of Fly Ash Filled Epoxy Composites. Advanced Composite Materials 2020; 29(1):1-30.

Starkova O, Gagani AI, Karl CW, Rocha IBCM, Burlakovs J, Krauklis AE. Modelling of Environmental Ageing of Polymers and Polymer Composites—Durability Prediction Methods. Polymers 2022; 14(5):907.

Rocha JS, Escócio VA, Visconte LL, Pacheco ÉB. Thermal and Flammability Properties of Polyethylene Composites with Fibers to Replace Natural Wood. Journal of Reinforced Plastics and Composites 2021; 40(19-20):726-740.

Zhang J, Koubaa A, Xing D, Wang H, Wang F, Wang X-M, Wang Q. Flammability, Thermal Stability, and Mechanical Properties of Wood Flour/Polycarbonate/Polyethylene Bio-Based Composites. Industrial Crops and Products 2021; 169:113638.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.

الأعمال الأكثر قراءة لنفس المؤلف/المؤلفين