Performance Enhancement of LDPC Codes Based on Protograph Construction in 5G-NR Standard

Main Article Content

Aymen M. Al-Kadhimi
https://orcid.org/0000-0002-2988-0027
Ammar E. Abdulkareem
https://orcid.org/0000-0001-7536-2856
Charalampos C. Tsimenidis

Abstract

To meet the high throughput demands, the 3rd Generation Partnership Project has specified the low-density parity check (LDPC) codes in the fifth generation-new radio 5G-NR standard with rate and length compatibility and scalability. This paper presents an extensive performance evaluation and enhancement of LPDC using the protograph-based construction defined in the 5G-NR standard. Firstly, the protograph-LDPC with layered offset min-sum (OMS) decoding, polar with successive cancellation list (SCL), and block turbo code are implemented and compared. Puncturing and shortening are applied to maintain block length at 1024 and code rate at 1/2 for all codes for comparison fairness. The results showed that P-LDPC outperforms its counterparts in terms of bit/ frame error rate (BER/ FER) behavior for given signal-to-noise ratios. Then, different P-LDPC settings were realized to study the effects of base graph selection (Graph1 or Graph2), code rate change (1/3 - 2/3), and block lengths increase (260 – 4160 bits). The simulation outcomes proved that BER performed better for lower coding rates or higher block lengths. Furthermore, P-LDPC behavior was examined over a Rayleigh flat-fading channel to achieve a 12.5 dB coding gain at 0.001 BER compared with uncoded transmission.

Metrics

Metrics Loading ...

Article Details

Section
Articles

Plaudit

References

Costello DJ, Forney GD. Channel Coding: The Road to Channel Capacity. Proceedings of the IEEE 2007; 95 (6): 1150-77. DOI: https://doi.org/10.1109/JPROC.2007.895188

Shannon CE. A Mathematical Theory of Communication. The Bell System Technical Journal 1948; 27 (3): 379-423. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Hamming RW. Error Detecting and Error Correcting Codes. The Bell System Technical Journal 1950; 29 (2): 147-60. DOI: https://doi.org/10.1002/j.1538-7305.1950.tb00463.x

Gallager RG. Low-Density Parity Check Codes. Cambridge: Massachusttes; 1963. DOI: https://doi.org/10.7551/mitpress/4347.001.0001

Berrou C, Glavieux A, Thitimajshima P. Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-codes.1. ICC'93-IEEE International Conference on Communications 1993 May 23-26; Geneva, Switzerland. IEEE: p. 1064-1070.

Arikan E. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. IEEE Transactions on Information Theory 2009; 55 (7): 3051-3073. DOI: https://doi.org/10.1109/TIT.2009.2021379

Richardson T, Urbanke R. Multi-Edge Type LDPC Codes. Workshop honoring Prof. Bob McEliece on his 60th birthday 2002 May 24; California, USA. California Institute of Technology: p. 24-25.

Thorpe J. Low-Density Parity-Check (LDPC) Codes Constructed from Protographs. IPN Progress Report; 2003; 42 (154): pp. 42-154.

Divsalar D, Jones C, Dolinar S, Thorpe J. Protograph Based LDPC Codes with Minimum Distance Linearly Growing with Block Size. Global Telecommunications Conference GLOBECOM 2005 Nov 28-Dec 2; St. Louis, MO, USA. IEEE: p. 1152-1156. DOI: https://doi.org/10.1109/GLOCOM.2005.1577834

Divsalar D, Dolinar S, Jones CR, Andrews K. Capacity-approaching Protograph Codes. IEEE Journal on Selected Areas in Communications 2009; 27 (6): 876-888. DOI: https://doi.org/10.1109/JSAC.2009.090806

Abu-Surra S, Divsalar D, Ryan WE. On The Existence of Typical Minimum Distance for Protograph-Based LDPC Codes. Information Theory and Applications Workshop (ITA) 2010 Jan 31(5); La Jolla, CA, USA. IEEE: p. 1-7. DOI: https://doi.org/10.1109/ITA.2010.5454136

Abu-Surra S, Divsalar D, Ryan WE. Enumerators for Protograph-based Ensembles of LDPC and Generalized LDPC Codes. IEEE Transactions on Information Theory 2011; 57 (2): 858-886. DOI: https://doi.org/10.1109/TIT.2010.2094819

Access, E. U. T. R. (2010). Multiplexing and channel coding,” 3rd Generation Partnership Project (3GPP). TS, 36, v10.

MacKay DJ, Neal RM. Good Codes Based on Very Sparse Matrices. IMA International Conference on Cryptography and Coding 1995 Dec; Berlin, Heidelberg. Springer: p. 100-111. DOI: https://doi.org/10.1007/3-540-60693-9_13

Richardson TJ, Urbanke RL. The Capacity of Low-Density Parity-Check Codes under Message-Passing Decoding. IEEE Transactions on information theory 2001; 47 (2): 599-618. DOI: https://doi.org/10.1109/18.910577

Fang Y, Bi G, Guan YL, Lau FC. A Survey on Protograph LDPC Codes and their Applications. IEEE Communications Surveys & Tutorials 2015; 17 (4): 1989-2016. DOI: https://doi.org/10.1109/COMST.2015.2436705

Yang Z, Fang Y, Zhang G, Lau FC, Mumtaz S, Da Costa DB. Analysis and Optimization of Tail-Biting Spatially Coupled Protograph LDPC Codes for BICM-ID Systems. IEEE Transactions on Vehicular Technology. 2019; 69 (1): 390-404. DOI: https://doi.org/10.1109/TVT.2019.2949600

Fang Y, Chen P, Cai G, Lau FC, Liew SC, Han G. Outage-limit-Approaching Channel Coding for Future Wireless Communications: Root-Protograph Low-density Parity-Check Codes. IEEE Vehicular Technology Magazine. 2019; 14 (2): 85-93. DOI: https://doi.org/10.1109/MVT.2019.2903343

Fang Y, Liew SC, Wang T. Design of Distributed Protograph LDPC Codes for Multi-relay Coded-cooperative Networks. IEEE Transactions on Wireless Communications. 2017; 16 (11): 7235-51. DOI: https://doi.org/10.1109/TWC.2017.2743699

Zhang PW, Lau FC, Sham CW. Protograph-based LDPC Hadamard Codes. IEEE Transactions on Communications 2021; 69 (8): 4998-5013. DOI: https://doi.org/10.1109/TCOMM.2021.3077939

Liveris AD, Xiong Z, Georghiades CN. Compression of Binary Sources with Side Information at the Decoder Using LDPC Codes. IEEE Communications Letters 2002; 6 (10): 440-442. DOI: https://doi.org/10.1109/LCOMM.2002.804244

Ye F, Dupraz E, Mheich Z, Amis K. Optimized Rate-Adaptive Protograph-Based LDPC Codes for Source Coding with Side Information. IEEE Transactions on Communications 2019; 67 (6): 3879-89.

Luby M. LT Codes. 43rd Annual IEEE Symposium on Foundations of Computer Science 2002 Nov 19; Vancouver, BC, Canada. IEEE Computer Society: p. 271-280.

Wu J, Yuen C, Wang M, Chen J, Chen CW. TCP-oriented Raptor Coding for High-Frame-Rate Video Transmission over Wireless Networks. IEEE Journal on Selected Areas in Communications 2016; 34 (8): 2231-46. DOI: https://doi.org/10.1109/JSAC.2016.2577178

Wu J, Cheng B, Wang M. Improving Multipath Video Transmission with Raptor Codes in Heterogeneous Wireless Networks. IEEE Transactions on Multimedia 2017; 20 (2): 457-472. DOI: https://doi.org/10.1109/TMM.2017.2741425

Fresia M, Vandendorpe L, Poor HV. Distributed Source Coding Using Raptor Codes for Hidden Markov Sources. IEEE Transactions on Signal Processing 2009; 57 (7): 2868-2875. DOI: https://doi.org/10.1109/TSP.2009.2018603

Hanzo L. Near-Capacity H. 264 Multimedia Communications Using Iterative Joint Source-Channel Decoding. IEEE Communications Surveys & Tutorials 2011; 14 (2): 538-564. DOI: https://doi.org/10.1109/SURV.2011.032211.00118

Bi C, Liang J. Joint Source-Channel Coding of Jpeg 2000 Image Transmission over Two-Way Multi-Relay Networks. IEEE Transactions on Image Processing 2017; 26 (7): 3594-3608. DOI: https://doi.org/10.1109/TIP.2017.2700765

Van Nguyen T, Nosratinia A. Rate-Compatible Short-Length Protograph LDPC Codes. IEEE Communications Letters 2013; 17 (5): 948-951. DOI: https://doi.org/10.1109/LCOMM.2013.031313.122046

Dupraz E, Savin V, Kieffer M. Density Evolution for the Design of Non-Binary Low Density Parity Check Codes for Slepian-Wolf Coding. IEEE Transactions on Communications 2014; 63 (1): 25-36. DOI: https://doi.org/10.1109/TCOMM.2014.2382126

Han G, Guan YL, Huang X. Check Node Reliability-Based Scheduling for BP Decoding of Non-Binary LDPC Codes. IEEE Transactions On Communications 2013; 61 (3): 877-885. DOI: https://doi.org/10.1109/TCOMM.2013.011613.120249

Dolecek L, Divsalar D, Sun Y, Amiri B. Non-Binary Protograph-Based LDPC Codes: Enumerators, Analysis, and Designs. IEEE Transactions On Information Theory 2014; 60 (7): 3913-3941. DOI: https://doi.org/10.1109/TIT.2014.2316215

Mitchell DG, Pusane AE, Costello DJ. Minimum Distance and Trapping Set Analysis of Protograph-Based LDPC Convolutional Codes. IEEE transactions on information theory 2012; 59 (1): 254-281. DOI: https://doi.org/10.1109/TIT.2012.2211995

Wei L, Costello DJ, Fuja TE. Coded Cooperation Using Rate-Compatible Spatially-coupled Codes. IEEE International Symposium on Information Theory 2013 Jul 7-12; Istanbul, Turkey. IEEE: p. 1869-1873.

Karimi M, Banihashemi AH. On the Girth of Quasi-Cyclic Protograph LDPC Codes. IEEE Transactions On Information Theory 2013; 59 (7): 4542-4552. DOI: https://doi.org/10.1109/TIT.2013.2251395

Hu XY, Eleftheriou E, Arnold DM. Regular and Irregular Progressive Edge-Growth Tanner Graphs. IEEE Transactions On Information Theory 2005; 51 (1): 386-398. DOI: https://doi.org/10.1109/TIT.2004.839541

Healy CT, de Lamare RC. Design of LDPC Codes Based on Multipath EMD Strategies for Progressive Edge Growth. IEEE Transactions on Communications 2016; 64 (8): 3208-3219. DOI: https://doi.org/10.1109/TCOMM.2016.2579641

Ye F, Dupraz E, Mheich Z, Amis K. Optimized Rate-Adaptive Protograph-Based LDPC Codes for Source Coding with Side Information. IEEE Transactions on Communications 2019; 67 (6): 3879-3889. DOI: https://doi.org/10.1109/TCOMM.2019.2903498

Fossorier MP, Mihaljevic M, Imai H. Reduced Complexity Iterative Decoding of Low-Density Parity Check Codes Based on Belief Propagation. IEEE Transactions on Communications 1999; 47 (5): 673-680. DOI: https://doi.org/10.1109/26.768759

Chen J, Fossorier MP. Near Optimum Universal Belief Propagation-Based Decoding of Low-Density Parity Check Codes. IEEE Transactions on Communications 2002; 50 (3): 406-414. DOI: https://doi.org/10.1109/26.990903

Zhou Z, Peng K, Krylov A, Rashich A, Tkachenko D, Li F, Zhang C, Song J. Enhanced Adaptive Normalized Min-Sum Algorithm for Layered Scheduling of 5G-NR LDPC Codes. International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) 2020 Oct 27-29; Paris, France. IEEE: p. 1-5. DOI: https://doi.org/10.1109/BMSB49480.2020.9379739

Pyndiah RM. Near-Optimum Decoding of Product Codes: Block Turbo Codes. IEEE Transactions on Communications 1998; 46 (8): 1003–1010. DOI: https://doi.org/10.1109/26.705396

Tal I, Vardy A. List Decoding of Polar Codes. IEEE Transactions on Information Theory 2015; 61 (5): 2213-2226. DOI: https://doi.org/10.1109/TIT.2015.2410251

Niu K, Chen K. CRC-Aided Decoding of Polar Codes. IEEE Communications Letters 2012; 16 (10): 1668-1671. DOI: https://doi.org/10.1109/LCOMM.2012.090312.121501

Shahab MM, Hardan SM, Hammoodi AS. A New Transmission and Reception Algorithms for Improving the Performance of SISO/MIMO- OFDM Wireless Communication System. Tikrit Journal of Engineering Sciences 2021; 28 (3): 146–158. DOI: https://doi.org/10.25130/tjes.28.3.11

Kuti AY, Abdelkareem AE. Evaluation of Low-Density Parity-Check Code with 16-QAM OFDM in a Time-Varying Channel. International Conference on Communication, Networks and Satellite (COMNETSAT) 2021 July 17-18; Purwokerto, Indonesia. IEEE: p. 128-134. DOI: https://doi.org/10.1109/COMNETSAT53002.2021.9530811

Abdelkareem AE, Sharif BS, Tsimenidis CC. Adaptive Time Varying Doppler Shift Compensation Algorithm for OFDM-Based Underwater Acoustic Communication Systems. Ad Hoc Networks 2016; 45: 104-119. DOI: https://doi.org/10.1016/j.adhoc.2015.05.011

Similar Articles

You may also start an advanced similarity search for this article.