Estimating Of Etchant Copper Concentration in The Electrolytic Cell using Artificial Neural Networks
Main Article Content
Abstract
In this paper, Artificial Neural Networks (ANN), which are known for their ability to model nonlinear systems, provide accurate approximations of system behavior and are typically much more computationally efficient than phenomenological models are used to predict the etchant copper concentration in the electrolytic cell in terms of electric potential, operating time, temperature of the electrolytic cell , ratio of surface area of poles per unit volume of solution and the distance between poles. In this paper 350 sets of data are used to trained and test the network.. The best results were achieved using a model based on a feedforword Artificial Neural Network (ANN) with one hidden layer and fifteen neurons in the hidden layer gives a very close prediction of the copper concentration in the electrolytic cell.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
Plaudit
References
Durmus ,H. K., Ozkaya ,E., Meric ,C., Materials and Design, 27 (2006), 156– 159. DOI: https://doi.org/10.1016/j.matdes.2004.09.011
Perzyk , M., Kochanski, A.W., Journal of Materials Processing Tech-nology, 109 (2001), 305–307. DOI: https://doi.org/10.1016/S0924-0136(00)00822-0
Wagner, B. Misra, M. ” Understanding Neural Networks Statistical Tolls ” The American statistician , 50 , 4 , 1996 , 284-293. DOI: https://doi.org/10.1080/00031305.1996.10473554
Ashfaq S., Al – Dahhan M., “Development of an artificial neural network correlation for prediction of overall gas holdup in bubble column reactors, ” Chemical Engineering and Processing , 42, P.599-600, 2003. DOI: https://doi.org/10.1016/S0255-2701(02)00209-X
You , X .Y and Yang , Z . S., ” Estimating the relative tray efficiency of sieve distillation trays by applying artificial neural networks ” Chen. Biochem. Eng. Q., 17 (2), 153-158,2003.
Fontes C. and Guimaraes P. ” Development of an artificial neural network model for predicting oil content in an oil dewaxing” ,2nd Mercosur Congress on Chemical Engineering, 2007.
Salih, M.I.., ” Regeneration of copper etching solution” , M.Sc. , Thesis , University of Tikrit , 2001 .
Hewitson, B.C. and Crane , R.G., “Neural Net : Application in Geography “.Kluwer Academic Publishers, Dordrecht. 1994. DOI: https://doi.org/10.1007/978-94-011-1122-5
Beck, T. R. ” Kinetic and mass transfer processes in electrolysis copper plating “,Application of polarization measurement in the control of metal deposition , USA , 1984 , P. 158 .
Loenheim and Fredrick, ” Electroplating ” , New York ; McGraw Hill , 1973.
Harris, W. T. , ” Chemical milling , The technology of cutting material by etching ” , Great Britain : Oxford University , 1976.
William, B., Inc , A.S. , Dibari ,G. A. ,”Testing of metallic and inorganic coatings ” Chicago , 1986.
Nalbant M., Gokkaya H., Toktas I., Sur G. , Robotics and Compute Integrated Manufacturing, 2008, doi:10.1016/j.rcim.2007.11.004 DOI: https://doi.org/10.1016/j.rcim.2007.11.004
Arcaklýoglu E. ,. Energy Res., 28 (2004), 1113–1125 DOI: https://doi.org/10.1002/er.1020
Demuth H. , Beale M. , ” Neural Network Toolbox for Use with Matlab ” Version 3.0 , 1998.
Zee J. , White R.E. , Electrochemical Soc., Vol.133 , 1986 , P.5087 DOI: https://doi.org/10.1149/1.2108606
Clapper T.W. , Gale W.A. , ” Encyclopedia of Chem. Technology. ” Vol. 5, 1978 , P.50.