Effect of Recycle Ratio and Hydraulic Retention Time on the Performance of Extended Aeration Activated Sludge
Main Article Content
Abstract
Three laboratory scale units are designed and constructed in order to perform the present work. These units are capable of working under different hydraulic retention time (HRT) (16-32hrs), recycle ratio (0.25–1.5), and temperature (20 -35 ̊C). The results show that BOD5, COD, NO3-1, PO4-3 removal is increased with increasing HRT and recycle ratio under different temperatures. The maximum removal efficiency of COD and BOD5 is 97.16 % and 97.99 % respectively under 24 hrs retention time, 1.5 recycle ratio and 20 ̊C. However, the maximum removal efficiency of NO3-1 (83 %) was obtained under the same mentioned condition except temperature which was 35 ̊C. The maximum removal efficiency of PO4-3 (76.59 %) is obtained at 32hrs HRT, 1.25 recycle ratio, and 20 ̊C. It is obvious from the results of the present work that BOD5, COD, and NO3-1 removal increased with increasing temperature while; PO4-3 removal is decreased with increasing temperature.
Metrics
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE http://creativecommons.org/licenses/by/4.0/
Plaudit
References
Hongjing Li, Yanguang C., Guowei,Gu and Yandong Liu (2008). “Phosphorus removal in intermittent cycle extended aeration system wastewater treatment plant– effect of temperature “,Bioinformatics and Biomedical Engineering , 2970-2973 .
العبد ربه, وليد محمد شيت (1999). “استخدام وحدات الحمأة المنشطة ذات التهوية طويلة الأمد في معالجة مياه المطروحات” أطروحة
ماجستير,جامعةالموصل,العراق
Hosseni B., Darzi G.N., Sade Ghpour M. and Asadi M. (2008). ” The effect of the sludge recycle ratio in an activated sludge system for the treatment of AMOL’s INDUSTRIAL PARK WASTEWATER”, Chemical Industry and Chemical Engineering Quarterly 14(3), 173-180. DOI: https://doi.org/10.2298/CICEQ0803173H
Ghanizadeh Gh , Sarrafpour R. (2001). “The effects of temperature and pH on settability of activated sludge flocs “, Iranian J. Publ. Health,Vol.30,Nos.3-4,PP.139- . 142
Dulkadiroglu H., Cokger E.U., Artan N. and Orhan D. (2005). “The effect of temperature and sludge age on COD removal and nitrification in a moving bed sequencing batch biofilm reactor”, Water Science and Technology, Vol.51, No.11, PP.95-103. DOI: https://doi.org/10.2166/wst.2005.0395
Song Z., Ren N., Zhang K. and Tong L. (2009). “Influence of temperature on characteristics of aerobic granulation in sequencing batch airlift reactor”, Journal of Environmental Sciences, Vol.21, Issue3, PP.273-278. DOI: https://doi.org/10.1016/S1001-0742(08)62263-9
Zhang L., Wei C. and Zhang K.(2009).”Effects of temperature on simultaneous nitrification and denitrification via nitrite in a sequencing batch reactor”, J. of Bioprocess Biosyst Eng., 32: 175-182. DOI: https://doi.org/10.1007/s00449-008-0235-3
الخياط, حنان حقي إسماعيل (2010). “تأثير استخدام الأحواض الانتقائية اللاهوائية على كفاءة أنظمة الحمأة المنشطة المستمرة الجريان” أطروحة ماجستير, كلية الهندسة, جامعة الموصل, العراق.
Metcalf and Eddy (2003). “Wastewater Engineering, Treatment and Reuse “, 4th edition Revised by Techobanglous .McGraw – Hill, Inc, New York, USA .
Mustafa I.H., Ibrahim G., El Kamel A. and El ahwany A.H. (2009). “Heterogeneous modeling ,identification and simulation of activated sludge processes”, American Journal of Environmental Sciences 5(3), 352-363 . DOI: https://doi.org/10.3844/ajessp.2009.352.363
Tripathi C.S. and Allen, D.G. (1999). “Comparing of mesophilic and thermophilic aerobic biological treatment in sequencing batch reactors treating bleach Kraft pulp mill effluent”, Water Research Journal, Vol.33, No.3. DOI: https://doi.org/10.1016/S0043-1354(98)00260-7
Abdul Rahman, S.B. (2009). “Effect of temperature on submerged membrane activated sludge reactor”, M.Sc. Thesis, Faculty of Civil Engineering, University Technology Malaysia.
Suvilampi J. (2003). “Aerobic wastewater treatment under high and varying temperature, Thermophilic Process Performance and Effluent Quality “, M.Sc Thesis, Department of Biological and Environmental Science, University of Jyväskylä.
البياتي, محمد برهان علي (2010). “المعالجة البايولوجية اللاهوائيةالهموائية التعاقبية لمياه المطروحات المصنعة الحاوية على المركبات الصبغية النيتروجينية” أطروحة ماجستير, جامعة تكريت, العراق.
محمود, فخري ياسين و عباس, وعد محمد علي (2009). ” إزالة الفوسفات و الأمونيا والنترات من مياه فضلات مجمع المستشفيات في الموصل بأسلوب الجرعة المتتابعةSBR” مجلة الرافدين, مجلد65, عدد 4, ص03–22.
Garcia J., Marine M.H. and Mujeriego R. (2002). “Analysis of key variables controlling phosphorus removal in high rate oxidation ponds provided with clarifiers “, Water SA Vol.28, No.1. DOI: https://doi.org/10.4314/wsa.v28i1.4868
Whang L.M., Filipe C.D.M. and Park J.K. (2007). “Model-based evaluation of competition between polyphosphate – and glycogen accumulating organisms “, J. Water Research, Vol.41, Issue 6, PP.1312-1324. DOI: https://doi.org/10.1016/j.watres.2006.12.022
Panswad T., Dougchai A. and Anotai J. (2003). “Effect of temperature shock on activities of phosphorus-accumulating organisms “, Science Asia 29: 365-370. DOI: https://doi.org/10.2306/scienceasia1513-1874.2003.29.365
Vaboliene G., Matuzevičius A.B. and Dauknys R. (2007). “Impact of temperature phosphorus wastewater Ekologija, Vol.53, No.4, PP.95-101.
Akhbari A., Zinatizadeh A.A.L., Mohammadi P., Irandoust M. and Mansouri Y. (2011). “Process modeling and analysis of biological nutrients removal in an integrated RBC-AS system using response surface methodology”, Chemical Engineering Journal, Vol.168, Issue 1, pp.269-279. DOI: https://doi.org/10.1016/j.cej.2011.01.003
Carrera J., Vicent T. and Lafuente F.J. (2003). “Influence of temperature on denitrification of an industrial high-strength nitrogen wastewater in a two-sludge system”, Water SA, Vol.29, No.1. DOI: https://doi.org/10.4314/wsa.v29i1.4939