Boosted Query Expansion for Agricultural Decision Support: A Hybrid Framework Combining Case-Based Reasoning, Fuzzification, and Machine Learning

Main Article Content

Surabhi Solanki
Vaibhav Srivastav
Anirban Bhattacharya
https://orcid.org/0009-0000-0488-848X
Pulakesh Roy
https://orcid.org/0000-0001-5538-6201
Suprava Ranjan Laha
Sachin Kumar
Debasish Swapnesh Kumar Nayak
https://orcid.org/0000-0001-5553-5692

Abstract

This framework, “BQ-CBRS,” Hybrid Bigger Query-Case Based Reasoning System model, is the first of its kind to unite contextual embedding-based query expansion (using BERT), IndRNN-based semantic similarity scoring, the fuzzification of uncertain parameters, and XGBoost classification within one application to support precision agriculture. Some of the steps include query preprocessing, generating contextual embeddings utilizing a pre-trained method (for example, BERT), semantic similarity scoring using IndRNN, and expanding the query by adding top-ranked search terms. Fuzzification will acknowledge any uncertainty present in the data, while XGBoost will enhance the predictive power and efficacy of the present work. The proposed methodology consists of query preprocessing, contextual representations using pre-trained models (like BERT), calculating a similarity score through IndRNN, and expanding the query according to the top-scoring terms. Fuzzification will address the uncertainty in the data, and XGBoost will enhance prediction accuracy and efficiency. The Crop Recommendation Dataset consists of parameters, such as nitrogen, phosphorus, pH, temperature, and rainfall. The present model has low accuracy and low mean square error (MSE). Also, it improves over traditional approaches. The model will utilize precision agriculture technology to link historical cases and improve approaches for more effective resource management and advancing sustainable farming. This combination of symbolic reasoning and deep learning in the agriculture domain is novel, establishing a generalizable framework for intelligent decision support in dynamic and uncertain situations.

Article Details

Section
Articles

Plaudit

References

Lorena AC, Carvalho ACPLF, Carvalho YHM. A GA/SVM Approach for Data Classification. arXiv preprint 2024; arXiv:2401.04947.

Xu D, Li C, Zhang Y, Wang J, Liu H. Large Language Models for Generative Information Extraction: A Survey. Frontiers of Computer Science 2024; 18(3): 181301. DOI: https://doi.org/10.1007/s11704-024-40555-y

Laha SR, Mohanty SN, Mishra S, Dash L. Smart Waste Management Framework for Green Cities: Integrating IoT, LoRa, and Deep Learning for Efficient Waste Classification and Management. Tikrit Journal of Engineering Sciences 2025; 32(SP1): 1–14. DOI: https://doi.org/10.25130/tjes.sp1.2025.1

Dash L, Laha SR, Mishra S, Mohanty SN. Energy Efficient Localization Technique Using Multilateration for Reduction of Spatially and Temporally Correlated Data in RFID System. Tikrit Journal of Engineering Sciences 2024; 31(1): 101–112. DOI: https://doi.org/10.25130/tjes.31.1.9

Panja S. Information Retrieval Systems in Healthcare: Understanding Medical Data Through Text Analysis. Transformative Approaches to Patient Literacy and Healthcare 2024; 125-140. DOI: https://doi.org/10.4018/979-8-3693-3661-8.ch009

Dagdelen J, Dunn A, Lee S, Walker N, Rosen AS, Ceder G. Structured Information Extraction from Scientific Text with Large Language Models. Nature 2024; 625(7995): 570-575. DOI: https://doi.org/10.1038/s41467-024-45563-x

Wei X, Zhang Y, Li Q, Wang H. Chatie: Zero-Shot Information Extraction via Chatting with ChatGPT. arXiv preprint 2024; arXiv:2401.04947.

Kim HW, Park S, Lee J, Choi D. A Cross-Sectional Study on Natural Language Processing and Medical Information Retrieval. Seizure: European Journal of Epilepsy 2024; 115: 45-52.

Hu D, Chen L, Wang Y, Liu M. Zero-Shot Information Extraction from Radiological Reports Using ChatGPT. International Journal of Medical Informatics 2024; 181: 105291. DOI: https://doi.org/10.1016/j.ijmedinf.2023.105321

Nguyen C, Tran B, Le D, Pham H. Captain at COLIEE 2023: Efficient Methods for Legal Information Retrieval and Entailment Tasks. arXiv preprint 2024; arXiv:2401.04947.

Loukachevitch N, Braslavski P, Ivanov V. NEREL: A Russian Information Extraction Dataset with Rich Annotation for Nested Entities, Relations, and Wikidata Entity Links. Language Resources and Evaluation 2024; 58(1): 125-145. DOI: https://doi.org/10.1007/s10579-023-09674-z

Vaidya K, Rajan BS. Multi-Access Cache-Aided Multi-User Private Information Retrieval. IEEE Transactions on Communications 2024; 72(4): 2100-2115. DOI: https://doi.org/10.1109/TCOMM.2024.3375810

Wu H, Zhang R, Li X, Zhou Y. Exploring Noise Control Strategies for UMLS-based Query Expansion in Health and Biomedical Information Retrieval. Journal of Ambient Intelligence and Humanized Computing 2024; 15(2): 845-860. DOI: https://doi.org/10.1007/s12652-018-0836-x

Cuconasu F, Trappolini G, Siciliano F, Santilli A, Ruggeri S. The Power of Noise: Redefining Retrieval for RAG Systems. Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval 2024; 1450-1455. DOI: https://doi.org/10.1145/3626772.3657834

Le DVT, Nguyen HT, Wang Y. Natural Language Processing Methods for Symbolic Music Generation and Information Retrieval: A Survey. arXiv preprint 2024; arXiv:2402.17467.

Campos R, Jorge A, Jatowt A, Mangaravite V. The 7th International Workshop on Narrative Extraction from Texts: Text2Story 2024. Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval 2024; 3450-3453. DOI: https://doi.org/10.1145/3687273.3687289

Barnett S, Risch J, Stray J. Seven Failure Points When Engineering a Retrieval Augmented Generation System. Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval 2024; 1256-1261. DOI: https://doi.org/10.1145/3644815.3644945

Ma X, Liu Z, Zhang Y, Sun W. Fine-Tuning Llama for Multi-Stage Text Retrieval. Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval 2024; 1123-1132. DOI: https://doi.org/10.1145/3626772.3657951

Sun W, Ma X, Liu Z, Zhang Y. Learning to Tokenize for Generative Retrieval. Advances in Neural Information Processing Systems 2024; 37: 24500-24512.

Levy M, Barkan E, Averbuch-Elor H. Chatting Makes Perfect: Chat-Based Image Retrieval. Advances in Neural Information Processing Systems 2024; 37: 26789-26801.

Nguyen DV, Tran MH, Le TK. Assessing Industrial Wastewater Effluent Toxicity Using Boosting Algorithms in Machine Learning: A Case Study on Ecotoxicity Prediction and Control Strategy. Environmental Pollution 2024; 345: 123456. DOI: https://doi.org/10.1016/j.envpol.2023.123017

Das P, Roy K, Ghosh S. A Comparative Study of Machine Learning Models for Construction Costs Prediction with Natural Gradient Boosting Algorithm and SHAP Analysis. Asian Journal of Civil Engineering 2024; 25(4): 4123-4138. DOI: https://doi.org/10.1007/s42107-023-00980-z

Apribowo CHB, Saptoro A, Kumar P. Early Prediction of Battery Degradation in Grid-Scale Battery Energy Storage System Using Extreme Gradient Boosting Algorithm. Results in Engineering 2024; 21: 101789. DOI: https://doi.org/10.1016/j.rineng.2023.101709

Razavi-Termeh SV, Sadeghi-Niaraki A, Choi SM. Enhancing Spatial Prediction of Groundwater-Prone Areas through Optimization of a Boosting Algorithm with Bio-Inspired Metaheuristic Algorithms. Applied Water Science 2024; 14(5): 112. DOI: https://doi.org/10.1007/s13201-024-02301-4

Chepurnenko AS, Litvinov AV, Nelyub VA. Prediction of Rheological Parameters of Polymers Using the CatBoost Gradient Boosting Algorithm. Polymer Science, Series D 2024; 17(1): 45-52. DOI: https://doi.org/10.1134/S199542122370020X

Gurung N, Sharma R, Patel J. Algorithmic Trading Strategies: Leveraging Machine Learning Models for Enhanced Performance in the US Stock Market. Journal of Business and Economic Development 2024; 9(2): 55-67.

Kumari P, Singh AK, Verma S. Indoor Occupancy Detection and Counting System Based on Boosting Algorithm Using Different Sensor Data. Building Research & Information 2024; 52(3): 287-301. DOI: https://doi.org/10.1080/09613218.2023.2206090

Hossain MN, Islam MS, Rahman MM. Performance of Machine Learning Algorithms for Lung Cancer Prediction: A Comparative Study. International Journal of Medical Science and Public Health Research 2024; 5(1): 12-25. DOI: https://doi.org/10.37547/ijmsphr/Volume05Issue11-05

Korobei K, Al-Dosary M, Zhang L. Ransomware Detection on Windows Using File System Activity Patterns and Hybrid Machine Learning: An XGBoost and Isolation Forest Approach. arXiv preprint 2024; arXiv:2401.04947. DOI: https://doi.org/10.31219/osf.io/r5sw4

Nayak SK, Laha SR, Dash L, Mishra S. A Robust Deep Learning-Based Speaker Identification System Using Hybrid Model on KUI Dataset. International Journal of Electrical and Electronics Research 2024; 12(4): 1502–1507. DOI: https://doi.org/10.37391/ijeer.120446

Laha SR, Mohanty SN, Mishra S, Dash L. IoT‐Enabled Machine Learning for Comprehensive Water Quality Assessment in the Mahanadi River: A Multibelt Analysis of Seasonal Contamination and Predictive Modeling. Journal of Engineering 2025; 2025(1): 5549990. DOI: https://doi.org/10.1155/je/5549990

Laha SR, Mohanty SN, Mishra S, Dash L. A Smart Waste Management System Framework Using IoT and LoRa for Green City Project. International Journal on Recent and Innovation Trends in Computing and Communication 2023; 11(9): 342–357. DOI: https://doi.org/10.17762/ijritcc.v11i9.8370

Laha SR, Mohanty SN, Mishra S, Dash L. U-INS: An Android-Based Navigation System. Cognitive Informatics and Soft Computing: Proceeding of CISC 2020; Springer Nature Singapore: Singapore; 2021. pp. 125–132. DOI: https://doi.org/10.1007/978-981-16-1056-1_11

Mohapatra A, Laha SR, Dash L, Mishra S. Software Quality Prediction Using Machine Learning. Advances in Data Science and Management: Proceedings of ICDSM 2021; Springer Nature Singapore: Singapore; 2022. pp. 137–146. DOI: https://doi.org/10.1007/978-981-16-5685-9_14

Similar Articles

You may also start an advanced similarity search for this article.