The Effect of Chain Tacticity on the Thermal Energy Parameters of Isotactic and Syndiotactic Polypropylene

Main Article Content

Baydaa J. Nabhan
https://orcid.org/0000-0002-2906-1101
Tawfeeq W. Mohammed
https://orcid.org/0000-0001-9316-2540
Harith H. Al-Moameri
https://orcid.org/0000-0001-5985-0235
Lubna Ghalib
https://orcid.org/0000-0001-8893-3742

Abstract

The thermal energy properties in any material affect the substance’s capacity to store or transfer heat. This study investigated the effect of the polymeric chains’ tacticity on the thermal properties of polypropylene related directly to the thermal power, i.e., the heat capacity and thermal conductivity. The study selected different commercial polypropylene groups with two steric modes: isotactic and syndiotactic. The aim is to determine the parameters: isotacticity index, degree of crystallinity, glass-transition temperature, melting point, heat capacity, and thermal conductivity. The data were collected using gel permeation chromatography (GPC), nuclear magnetic resonance (NMR), and differential scanning calorimetry (DSC). The results showed that methyl groups randomly distributed within the homo-polypropylene changed the overall content of meso diads, i.e., less isotacticity index. The differences between isotactic and syndiotactic polypropylene groups were 20-40% the degree of the crystallinity, 5-10°C the glass-transition temperature, and 10-20°C the melting point. Using suitable mathematical models, these parameters can be related directly to specific heat capacity and thermal conductivity.


 

Metrics

Metrics Loading ...

Article Details

Section
Articles

Plaudit

References

Ahmed AR, Arheem SS, Abdulhameed MF. Experimental Study for Some of the Mechanical and Physical Properties for the Binary Polymer of (Epoxy Resin-Polyurethane). Tikrit Journal of Engineering Sciences 2017;24(2):86-93. DOI: https://doi.org/10.25130/tjes.24.2.10

Al-Hadidy A-RI, Al-Kazzaz ZA, Ali AAM. Deterministic Extensional Viscosity and Cracking Index of Polypropylene-Modified-Asphalt Binder. Tikrit Journal of Engineering Sciences 2020;27(1):25-29. DOI: https://doi.org/10.25130/tjes.27.1.04

Ibraheem TK, AL-Taei AA. Effect of Low-Density Polyethylene on the Stripping Properties under Fatigue Loading of Binder Layer of HMA Mixtures. Tikrit Journal of Engineering Sciences 2020;27(4):102-113. DOI: https://doi.org/10.25130/tjes.27.4.11

Young RJ, Lovell PA. Introduction to Polymers. 3rd ed., Boca Raton: CRC Press; 2011.

Van Krevelen D. Optical properties, eds: Van Krevelen, DW, Te Nijenhuis, K., Properties of polymers: Elsevier, 287pp; 2009. DOI: https://doi.org/10.1016/B978-0-08-054819-7.00010-8

Stevens MP. Polymer Chemistry. 3rd ed., New York: Oxford; 1999.

Sperling LH. Introduction to Physical Polymer Science. 4th ed., USA: John Wiley & Sons; 2005. DOI: https://doi.org/10.1002/0471757128

Noble BB. Towards Stereocontrol in Radical Polymerization. Ph.D. Thesis. The Australian National University; Australian: 2016.

Wandrey C. Molecular Basis of the Structure and Behavior of Polymers. École Polytechnique Fédérale de Lausanne 2003.

Eastmond G. Group Transfer Polymerization. Encyclopedia of Materials: Science and Technology 2011:3658-3665. DOI: https://doi.org/10.1016/B0-08-043152-6/00653-7

Sereni JGR. Reference module in materials science and materials engineering. 2016.

Ziaee F, Nekoomanesh M, Mobarakeh HS, Arabi H. The Effect of Temperature on Tacticity for Bulk Thermal Polymerization of Styrene. E-Polymers 2008;8(1): 041, (1-10). DOI: https://doi.org/10.1515/epoly.2008.8.1.466

Chat K, Tu W, Beena Unni A, Adrjanowicz K. Influence of Tacticity on the Glass-Transition Dynamics of Poly (Methyl Methacrylate)(PMMA) under Elevated Pressure and Geometrical Nanoconfinement. Macromolecules 2021;54(18):8526-8537. DOI: https://doi.org/10.1021/acs.macromol.1c01341

Alshaiban A. Propylene Polymerization Using 4th Generation Ziegler-Natta Catalysts: Polymerization Kinetics And Polymer Microstructural Investigation. Ph.D. Thesis. University of Waterloo; Waterloo, Ontario, Canada: 2011.

Laur E, Kirillov E, Carpentier J-F. Engineering of Syndiotactic and Isotactic Polystyrene-Based Copolymers Via Stereoselective Catalytic Polymerization. Molecules 2017;22(4):594, (1-31). DOI: https://doi.org/10.3390/molecules22040594

Figueroa-Campos JL, Monroy-Barreto M, Palacios-Alquisira J. Characterization and Study of Microwave Activation Effects on the Polystyrene Tacticity. International Journal of Polymer Analysis and Characterization 2017;22(3):266-274. DOI: https://doi.org/10.1080/1023666X.2017.1283570

Chen K, Harris K, Vyazovkin S. Tacticity as a Factor Contributing to the Thermal Stability of Polystyrene. Macromol Chem Phys 2007; 208(23): 2525-2532. DOI: https://doi.org/10.1002/macp.200700426

Fritz D, Harmandaris VA, Kremer K, Van Der Vegt NF. Coarse-Grained Polymer Melts Based on Isolated Atomistic Chains: Simulation of Polystyrene of Different Tacticities. Macromolecules 2009;42(19):7579-7588. DOI: https://doi.org/10.1021/ma901242h

Huang C-L, Chen Y-C, Hsiao T-J, Tsai J-C, Wang C. Effect of Tacticity on Viscoelastic Properties of Polystyrene. Macromolecules 2011; 44(15):6155-6161. DOI: https://doi.org/10.1021/ma200695c

Negash S, Tatek YB, Tsige M. Effect of Tacticity on the Structure and Glass Transition Temperature of Polystyrene Adsorbed Onto Solid Surfaces. The Journal of Chemical Physics 2018;148(13):134705. DOI: https://doi.org/10.1063/1.5010276

Grigoriadi K, et al. Physical Ageing of Polystyrene: Does Tacticity Play a Role? Macromolecules 2019;52(15) :5948-5954. DOI: https://doi.org/10.1021/acs.macromol.9b01042

Danilov D, et al. Tacticity Dependence of Single Chain Polymer Folding. Polymer Chemistry 2020;11(20):3439-3445. DOI: https://doi.org/10.1039/D0PY00133C

Scoti M, et al. Melt-Crystallizations of α and γ Forms of Isotactic Polypropylene in Propene-Butene Copolymers. Polymers 2022;14(18): 3873, (1-16). DOI: https://doi.org/10.3390/polym14183873

Paukkeri R, Lehtinen A. Thermal Behaviour of Polypropylene Fractions: 1. Influence of Tacticity and Molecular Weight on Crystallization and Melting Behaviour. Polymer 1993;34(19):4075-4082. DOI: https://doi.org/10.1016/0032-3861(93)90669-2

Gahleitner M, Bachner C, Ratajski E, Rohaczek G, Neißl W. Effects of the Catalyst System on the Crystallization of Polypropylene. Journal of Applied Polymer Science 1999;73(12):2507-2515. DOI: https://doi.org/10.1002/(SICI)1097-4628(19990919)73:12<2507::AID-APP19>3.0.CO;2-V

van der Burgt FP. Crystallization of Isotactic Polypropylene: the Influence of Stereo-Defects. Ph.D. Thesis. Technische Universiteit Eindhoven; Eindhoven, Netherlands: 2002.

Ozzetti RA, De Oliveira Filho AP, Schuchardt U, Mandelli D. Determination of Tacticity in Polypropylene by FTIR with Multivariate Calibration. Journal of Applied Polymer Science 2002;85(4): 734-745. DOI: https://doi.org/10.1002/app.10633

De Rosa C, Auriemma F. Structure and Physical Properties of Syndiotactic Polypropylene: A Highly Crystalline Thermoplastic Elastomer. Progress in Polymer Science 2006;31(2):145-237. DOI: https://doi.org/10.1016/j.progpolymsci.2005.11.002

Aburatani R, Machida S, Nakashima H, Fujimura T. Preparation of Modified Low-Melting Point Polypropylene: Effect of Tacticity for Modification. Polymer Journal 2009;41(1):34-39. DOI: https://doi.org/10.1295/polymj.PJ2008190

Ismael A, Van Reenen A, Mokrani T. The Influence of Molecular Weight and Tacticity on Thermal, Morphological and Mechanical Properties of Ziegler–Natta Catalyzed Isotactic and Syndiotactic Polypropylene Blends. Materials Science 2016;22(3):381-389. DOI: https://doi.org/10.5755/j01.ms.22.3.9056

Vaezi J, Nekoomanesh M, Khonakdar HA, Jafari SH, Mojarrad A. Correlation of Microstructure, Rheological and Morphological Characteristics of Synthesized Polypropylene (PP) Reactor Blends Using Homogeneous Binary Metallocene Catalyst. Polymers 2017;9(3):75, (1-15). DOI: https://doi.org/10.3390/polym9030075

Afzal MAF, Younker JM, Rodriguez G. The Effect of Tacticity and Side Chain Structure on the Coil Dimensions of Polyolefins. 2018. DOI: https://doi.org/10.26434/chemrxiv.6406886

Tzounis P-N, Argyropoulou DV, Anogiannakis SD, Theodorou DN. Tacticity Effect on the Conformational Properties of Polypropylene and Poly (Ethylene–Propylene) Copolymers. Macromolecules 2018;51(17):6878-6891. DOI: https://doi.org/10.1021/acs.macromol.8b01099

De Nicola A, et al. Generation of Well Relaxed All Atom Models of Stereoregular Polymers: A Validation of Hybrid Particle-Field Molecular Dynamics for Polypropylene Melts of Different Tacticities. Soft Materials 2020;18(2-3):228-241. DOI: https://doi.org/10.1080/1539445X.2020.1716801

Avalos-Belmontes F, et al. Effect of Different Nucleating Agents on the Crystallization of Ziegler-Natta Isotactic Polypropylene. International Journal of Polymer Science 2016;2016: 9839201, (1-10). DOI: https://doi.org/10.1155/2016/9839201

Iedema PD, Remerie K, Seegers D, McAuley KB. Tacticity Changes During Controlled Degradation of Polypropylene. Macromolecules 2021;54(19):8921-8935. DOI: https://doi.org/10.1021/acs.macromol.1c01383

Lin Y, Bilotti E, Bastiaansen CW, Peijs T. Transparent Semi‐Crystalline Polymeric Materials and Their Nanocomposites: A Review. Polymer Engineering & Science 2020; 60(10): 2351-2376. DOI: https://doi.org/10.1002/pen.25489

Li Q-S, et al. Preparation and Performance of Ultra-Fine Polypropylene Antibacterial Fibers Via Melt Electrospinning. Polymers 2020;12(3):606, (1-11). DOI: https://doi.org/10.3390/polym12030606

Bioki HA, Mirbagheri Z-a, Tabbakh F, Mirjalili G. Effect of Crystallinity and Irradiation on Thermal Properties and Specific Heat Capacity of LDPE & LDPE/EVA. Applied Radiation and Isotopes 2012;70(1):1-5. DOI: https://doi.org/10.1016/j.apradiso.2011.09.001

Zinet M, Refaa Z, Boutaous Mh, Xin S, Bourgin P. Thermophysical Characterization and Crystallization Kinetics of Semi-Crystalline Polymers. Journal of Modern Physics 2013;4(07):28-37. DOI: https://doi.org/10.4236/jmp.2013.47A2005

Gofman I, et al. Influence of the Degree of Crystallinity on the Mechanical and Tribological Properties of High-Performance Thermoplastics Over a Wide Range of Temperatures: from Room Temperature up to 250 C. Journal of Macromolecular Science, Part B 2013;52(12):1848-1860. DOI: https://doi.org/10.1080/00222348.2013.808932

Graziano A, et al. Non-Isothermal Crystallization Behavior and Thermal Properties of Polyethylene Tuned by Polypropylene and Reinforced with Reduced Graphene Oxide. Nanomaterials 2020;10(8):1428, (1-17). DOI: https://doi.org/10.3390/nano10081428

Paajanen A, Vaari J, Verho T. Crystallization of Cross-Linked Polyethylene by Molecular Dynamics Simulation. Polymer 2019;171:80-86. DOI: https://doi.org/10.1016/j.polymer.2019.03.040

Maier C, Calafut T. Polypropylene: The definitive Users Guide and Databook. 1998. William Andrew Inc 452p 1998.

Tripathi D. Practical guide to polypropylene: iSmithers Rapra Publishing; 2002.

Bovey F. Configurational Sequence Studies by NMR and the Mechanism of Vinyl Polymerization. Pure and Applied Chemistry 1967;15(3-4):349-368. DOI: https://doi.org/10.1351/pac196715030349

Lanyi FJ, Wenzke N, Kaschta J, Schubert DW. On the Determination of the Enthalpy of Fusion of Α‐Crystalline Isotactic Polypropylene Using Differential Scanning Calorimetry, X‐Ray Diffraction, and Fourier‐Transform Infrared Spectroscopy: An Old Story Revisited. Advanced Engineering Materials 2020;22(9): 1900796, (1-8). DOI: https://doi.org/10.1002/adem.201900796

Currie JA, Petruska E, Tung R. Heat of Fusion of Crystalline Polypropylene by Volume Dilatometry and Differential Scanning Calorimetry. Analytical Calorimetry 1974; 3:569-577. DOI: https://doi.org/10.1007/978-1-4757-4509-2_42

Blaine RL. Thermal Applications Note. Polymer Heats of Fusion 2002.

Zhu S-N, Yang X-Z, Chûjô R. 13C NMR Chemical Shifts in Polypropylene and the Bi-Catalytic Propagation Mechanism in Polymerization. Polymer Journal 1983;15(12):859-868. DOI: https://doi.org/10.1295/polymj.15.859

Ahmed AK, Atiqullah M, Pradhan DR, Al-Harthi MA. Crystallization and Melting Behavior of i-PP: a Perspective from Flory's Thermodynamic Equilibrium Theory and DSC Experiment. RSC Advances 2017;7(67):42491-42504. DOI: https://doi.org/10.1039/C7RA06845J

Cho K, Li F, Choi J. Crystallization and Melting Behavior of Polypropylene and Maleated Polypropylene Blends. Polymer 1999;40(7):1719-1729. DOI: https://doi.org/10.1016/S0032-3861(98)00404-2

Gradys A, et al. Crystallization of Polypropylene at Various Cooling Rates. Materials Science and Engineering: A 2005; 413:442-446. DOI: https://doi.org/10.1016/j.msea.2005.08.167

Van Leeuwen P. Homogeneous Metal Catalysis: An Undergraduate Introduction. 2016. DOI: https://doi.org/10.1016/B978-0-12-409547-2.11101-1

Krumova M, Lopez D, Benavente R, Mijangos C, Perena J. Effect of Crosslinking on the Mechanical and Thermal Properties of Poly (Vinyl Alcohol). Polymer 2000;41(26):9265-9272. DOI: https://doi.org/10.1016/S0032-3861(00)00287-1

Mtshali T, Krupa I, Luyt A. The Effect of Cross-Linking on the Thermal Properties of LDPE/Wax Blends. Thermochimica Acta 2001;380(1):47-54. DOI: https://doi.org/10.1016/S0040-6031(01)00636-0

Khonakdar H, Morshedian J, Wagenknecht U, Jafari S. An Investigation of Chemical Crosslinking Effect on Properties of High-Density Polyethylene. Polymer 2003;44(15):4301-4309. DOI: https://doi.org/10.1016/S0032-3861(03)00363-X

Similar Articles

You may also start an advanced similarity search for this article.