A Systematic Review on Non-Orthogonal Multiple Access (NOMA) Based on Visible Light Communication for Intelligent Transportation Systems

Main Article Content

Seba Adnan Yosef
https://orcid.org/0009-0006-6371-3544
Lwaa Faisal Abdulameer
https://orcid.org/0000-0002-3695-2949

Abstract

Non-Orthogonal Multiple Access (NOMA) is a cutting-edge technology that permits several users to use the same frequency resources and transfer data at once. Visible light communication also known as VLC, is an innovative technology that offers access to an unoccupied spectrum, enables fast data transmission speeds, thereby making it a complementary addition to current radio frequency technology. Although VLC has its advantages, it also comes with some downsides. One major issue is the modulation bandwidth of LEDs, which can be quite challenging when creating high speed VLC systems.  Non-orthogonal multiple access (NOMA), particularly power-domain NOMA (PD-NOMA), has become a viable multiple access approach, ensuring sufficient bandwidth allocation for VLC systems. This study delves into multiple access techniques in VLC systems, in particular NOMA, and discusses its fundamental principles, key ideas and practical implementations like vehicular communication. It also addresses the associated hurdles, such as ensuring equitable distribution of optical power among users, leveraging MIMO technology, and grappling with LED nonlinearity issues. In summary, we underscore the significance of utilizing NOMA-VLC technology to enhance wireless communication systems and optimize spectral efficiency.

Metrics

Metrics Loading ...

Article Details

Section
Review Article

Plaudit

References

Salih LM, Al-Qaradaghi TM, Ameen JJH. Performance Analysis of Different Flexible Decoding Algorithms for NR-LDPC Codes: Performance Analysis. Tikrit Journal of Engineering and Science 2022; 29(4): 10–18. DOI: https://doi.org/10.25130/tjes.29.4.2

Ibhaze AE, Edeko FO, Orukpe PE. A Signal Amplification-based Transceiver for Visible Light Communication. Journal of Communication Engineering 2020; 26(11): 123–132. DOI: https://doi.org/10.31026/j.eng.2020.11.08

Mahmood RS, Shakir MA, Mahmood YT, Hussain DH. Semiconductors between Past and Present. Journal of Advanced Studies in Engineering and Technology 2022; 3(1): 54–56. DOI: https://doi.org/10.32441/jaset03.01.05

Rehman S, Ullah S, Chong P, Yongchareon S, Komosny D. Visible Light Communication: A System Perspective—Overview and Challenges. Sensors 2019; 19(5): 1153, (1-22). DOI: https://doi.org/10.3390/s19051153

Qasim AA, Abdullah MFL, Talib RB, Nemah MN, Hammoodi AT. Low Complexity DCO-FBMC Visible Light Communication System. International Journal of Electrical and Computer Engineering 2020; 10(1): 928-934. DOI: https://doi.org/10.11591/ijece.v10i1.pp928-934

Kisacik R, Yagan MY, Uysal M, Pusane AE, Yalcinkaya AD. A New LED Response Model and its Application to Pre-Equalization in VLC Systems. IEEE Photonics Technology Letters 2021; 33(17): 955-958. DOI: https://doi.org/10.1109/LPT.2021.3100924

Anous N, Ramadan T, Abdallah M, Qaraqe K, Khalil D. Impact of Blue Filtering on Effective Modulation Bandwidth and Wide-Angle Operation in White LED-Based VLC Systems. OSA Continuum 2018; 1(3): 910–929. DOI: https://doi.org/10.1364/OSAC.1.000910

Iraqi Y, Al-Dweik A. Efficient Information Transmission Using Smart OFDM for IoT Applications. IEEE Internet of Things Journal 2020; 7(9): 8397-8409. DOI: https://doi.org/10.1109/JIOT.2020.2990538

Jabori HAW, Ridha OALA. Simple 2D Chaotic Remapping Scheme for Securing Optical Communication Networks. Journal of Engineering 2019; 25(12): 85–95. DOI: https://doi.org/10.31026/j.eng.2019.12.07

Almohimmah EM, Alresheedi MT. Error Analysis of NOMA-Based VLC Systems with Higher Order Modulation Schemes. IEEE Access 2020; 8: 2792-2803. DOI: https://doi.org/10.1109/ACCESS.2019.2962331

Omer DS, Hussein MA, Mina LM. Ergodic Capacity for Evaluation of Mobile System Performance. Journal of Communication Engineering 2020; 26(10): 135–148. DOI: https://doi.org/10.31026/j.eng.2020.10.10

Mardanikorani S, Deng X, Linnartz J-PMG. Sub-Carrier Loading Strategies for DCO-OFDM LED Communication. IEEE Transactions on Communications 2020; 68(2): 1101-1117. DOI: https://doi.org/10.1109/TCOMM.2019.2953612

Yang Z, Hussein JA, Xu P, Ding Z, Wu Y. Power Allocation Study for Non-Orthogonal Multiple Access Networks with Multicast-Unicast Transmission. IEEE Transactions on Wireless Communications 2018; 17(6): 3588-3599. DOI: https://doi.org/10.1109/TWC.2018.2806972

Pradhan J, Holey P, Kappala VK, Das SK. Performance Analysis of ACO-OFDM NOMA for VLC Communication. Optical and Quantum Electronics 2022; 54(8): 531, (1-17). DOI: https://doi.org/10.1007/s11082-022-03939-7

Ahmed MS. Efficient T-OOFDM System to Mitigate the Dispersion of Long-Haul Optical Fiber Channel at WANs. Tikrit Journal of Engineering and Science 2018; 25(3): 5–11. DOI: https://doi.org/10.25130/tjes.25.3.02

Hameed SM, Abdulsatar SM, Sabri AA. Performance Enhancement for Visible Light Communication-Based ADO-OFDM. Optical and Quantum Electronics 2021; 53(6): 339, (1-30). DOI: https://doi.org/10.1007/s11082-021-02965-1

Breesam NK, Al-Hussaibi WA, Ali FH, Al-Musawi IM. Efficient Resource Allocation for Wireless-Powered MIMO-NOMA Communications. IEEE Access 2022; 10: 130302-130313. DOI: https://doi.org/10.1109/ACCESS.2022.3228754

Dai L, Wang B, Ding Z, Wang Z, Chen S, Hanzo L. A Survey of Non-Orthogonal Multiple Access for 5G. IEEE Communications Surveys & Tutorials 2018; 20(3): 2294-2323. DOI: https://doi.org/10.1109/COMST.2018.2835558

Zhang X, Zhang D, Yang L, Han G, Chen H-H, Zhang D. SCMA Codebook Design Based on Uniquely Decomposable Constellation Groups. IEEE Transactions on Wireless Communications 2021; 20(8): 4828-4842. DOI: https://doi.org/10.1109/TWC.2021.3062613

Le MTP, Ferrante GC, Quek TQS, Di Benedetto M-G. Fundamental Limits of Low-Density Spreading NOMA With Fading. IEEE Transactions on Wireless Communications 2018; 17(7): 4648-4659. DOI: https://doi.org/10.1109/TWC.2018.2828853

Hussein T, Haburi IS. BER Performance for Downlink NOMA. European Journal of Advances in Engineering and Computer Science 2022; 10(2): 216–222. DOI: https://doi.org/10.31185/ejuow.Vol10.Iss2.267

Wang G, Shao Y, Chen L-K, Zhao J. Subcarrier and Power Allocation in OFDM-NOMA VLC Systems. IEEE Photonics Technology Letters 2021; 33(4): 189-192. DOI: https://doi.org/10.1109/LPT.2021.3051020

Mounir M, El_Mashade MB, Aboshosha AM. On the Selection of Power Allocation Strategy in Power Domain Non‐Orthogonal Multiple Access (PD‐NOMA) for 6G and Beyond. Transactions on Emerging Telecommunications Technologies 2022; 33(6): e4289. DOI: https://doi.org/10.1002/ett.4289

Elewah IA, Jasman F, Ng S. Performance Enhancement for A Non-Orthogonal Multiple Access System Using 4× 4 Multiple-Input Multiple-Output Visible-Light Communication. Optical Engineering 2020; 59(12): 126104, (1-11). DOI: https://doi.org/10.1117/1.OE.59.12.126104

Shahab MM, Hardan SM, Hammoodi AS. A new Transmission and Reception Algorithms for Improving the Performance of SISO/MIMO- OFDM Wireless Communication System. Tikrit Journal of Engineering and Science 2021; 28(3): 146–158. DOI: https://doi.org/10.25130/tjes.28.3.11

Liu X, Yu H, Zhu Y, Zhang E. Power Allocation Algorithm of Optical MIMO NOMA Visible Light Communications. In: 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 2019; pp. 1-5. DOI: https://doi.org/10.1109/ICEIEC.2019.8784543

Chen C, Yang Y, Deng X, Du P, Yang H, Chen Z, Zhong WD. NOMA for MIMO Visible Light Communications: A Spatial Domain Perspective. In: 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019; pp. 1-6. DOI: https://doi.org/10.1109/GLOBECOM38437.2019.9013577

Nawaf SF. Channel Capacity Improvement of MIMO Communication Systems using Different Techniques. Tikrit Journal of Engineering and Science 2018; 25(1): 36–41. DOI: https://doi.org/10.25130/tjes.25.1.06

Dixit V, Kumar A. An Exact Error Analysis of Multi-User RC/MRC Based MIMO-NOMA-VLC System with Imperfect SIC. IEEE Access 2021; 9: 136710-136720. DOI: https://doi.org/10.1109/ACCESS.2021.3117446

Yang K, Yan X, Wang Q, Wu H-C, Qin K. Joint Power Allocation and Relay Beamforming Optimization for Weighted Sum-Rate Maximization in NOMA AF Relay System. IEEE Communications Letters 2021; 25(1): 219-223. DOI: https://doi.org/10.1109/LCOMM.2020.3023160

Ma H, Mostafa A, Lampe L, Hranilovic S. Coordinated Beamforming for Downlink Visible Light Communication Networks. IEEE Transactions on Communications 2018; 66(8): 3571-3582. DOI: https://doi.org/10.1109/TCOMM.2018.2817222

Shaleesh IS, Almohammedi AA, Mohammad NI, Ahmad AA, Shepelev V. Cooperation and radio silence strategy in Mix Zone to Protect Location Privacy of Vehicle in VANET. Tikrit Journal of Engineering and Science 2021; 28(1): 31–39. DOI: https://doi.org/10.25130/tjes.28.1.04

Cho S, Chen G, Coon JP. Zero-Forcing Beamforming for Active and Passive Eavesdropper Mitigation in Visible Light Communication Systems. IEEE Transactions on Information Forensics and Security 2021; 16: 1495-1505. DOI: https://doi.org/10.1109/TIFS.2020.3036806

Bazzi A, Campolo C, Masini BM, Molinaro A, Zanella A, Berthet AO. Enhancing Cooperative Driving in IEEE 802.11 Vehicular Networks Through Full-Duplex Radios. IEEE Transactions on Wireless Communications 2018; 17(4): 2402-2416. DOI: https://doi.org/10.1109/TWC.2018.2794967

Bazzi A, Cecchini G, Zanella A, Masini BM. Study of the Impact of PHY and MAC Parameters in 3GPP C-V2V Mode 4. IEEE Access 2018; 6: 71685-71698. DOI: https://doi.org/10.1109/ACCESS.2018.2883401

Park S, Kim B, Yoon H, Choi S. RA-eV2V: Relaying Systems for LTE-V2V Communications. Journal of Communications and Networks 2018; 20(4): 396-405. DOI: https://doi.org/10.1109/JCN.2018.000055

Noor-A-Rahim M, Ali GGMN, Nguyen H, Guan YL. Performance Analysis of IEEE 802.11p Safety Message Broadcast with and Without Relaying at Road Intersection. IEEE Access 2018; 6: 23786-23799. DOI: https://doi.org/10.1109/ACCESS.2018.2829897

Memedi A, Dressler F. Vehicular Visible Light Communications: A Survey. IEEE Communications Surveys & Tutorials 2021; 23(1): 161-181. DOI: https://doi.org/10.1109/COMST.2020.3034224

Yang Y, Yuan Z, Meng R. Exploring Traffic Crash Occurrence Mechanism Toward Cross-Area Freeways Via an Improved Data Mining Approach. Journal of Transportation Engineering Part A: Systems 2022; 148(9): 04022052. DOI: https://doi.org/10.1061/JTEPBS.0000698

Yang Y, He K, Wang Y, Yuan Z, Yin Y, Guo M. Identification of Dynamic Traffic Crash Risk for Cross-Area Freeways Based on Statistical and Machine Learning Methods. Physica A: Statistical Mechanics and Its Applications 2022; 595: 127083. DOI: https://doi.org/10.1016/j.physa.2022.127083

Wang C, Li G, Hu F, Zhao Y, Jia J, Zou P, Lu Q, Chen J, Li Z, Chi N. Visible Light Communication for Vehicle to Everything Beyond 1 Gb/s Based on an LED car Headlight and a 2× 2 PIN Array. Chinese Optics Letters 2020; 18(11): 110602, (1-6). DOI: https://doi.org/10.3788/COL202018.110602

Meucci M, Seminara M, Nawaz T, Caputo S, Mucchi L, Catani J. Bidirectional Vehicle-to-Vehicle Communication System Based on VLC: Outdoor Tests and Performance Analysis. IEEE Transactions on Intelligent Transportation Systems 2022; 23(8): 11465-11475. DOI: https://doi.org/10.1109/TITS.2021.3104498

Farahneh H, Hussain F, Fernando X. Performance Analysis of Adaptive OFDM Modulation Scheme in VLC Vehicular Communication Network in Realistic Noise Environment. EURASIP Journal on Wireless Communications and Networking 2018; 2018(243): 1-15. DOI: https://doi.org/10.1186/s13638-018-1258-3

Sharda P, Reddy GS, Bhatnagar MR, Ghassemlooy Z. A Comprehensive Modeling of Vehicle-to-Vehicle Based VLC System Under Practical Considerations, an Investigation of Performance, and Diversity Property. IEEE Transactions on Communications 2022; 70(5): 3320-3332. DOI: https://doi.org/10.1109/TCOMM.2022.3158325

Ghazijahani HA. On the Performance Analysis of NOMA-Based Vehicular Visible Light Communication Systems. Results in Optics 2023; 12: 100481, (1-8). DOI: https://doi.org/10.1016/j.rio.2023.100481

Similar Articles

You may also start an advanced similarity search for this article.