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One of the significant problems facing the
water resource engineer is calculating the
coefficient of roughness for subsequent design
calculations of the discharge amount of a
channel or river. In this study, experiments
were conducted in a semi-circular, straight
channel to investigate the factors affecting bed
roughness and flow discharge using Artificial
Neural Network (ANN). For this purpose,
three semi-circular channel models with free
overfall were constructed and installed in a 6-
meter-long laboratory flume. The length of
these models was 2.50 m with three different
diameters (D= 150, 187, and 237mm) and
three bed slopes (S=0.004, 0.008, and 0.012).
Three sand particle sizes (ds) were used for
each semi-circular channel to roughen the bed.
The results showed that the Manning
roughness coefficient obtained using a rough
bed surface was higher than the channel with a
smooth bed surface. Also, the results revealed
that the Manning roughness coefficient and
the Froude number were inversely related.
(ANN) analysis showed a good agreement
between the experimental and predicted
results of flow and roughness. The bring depth
(yb) had an 85.8% impact percentage on the
free overfall discharge for semi-circular
channels, while the bottom slope (S) had only
1.1%.
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1. INTRODUCTION

Roughness data is often limited or unavailable,
especially in flood situations. Therefore, one of
the tasks of the water resource engineer is to
estimate the roughness values of the river,
waterway, or channel. Then the engineer can
use these values to calculate discharge, which is
used as a basis for the values adopted in this
study. Buffington and Montgomery (1999)
noted that determining the Manning roughness
coefficient (n) has become more difficult for
engineers and researchers because the values of
this coefficient cannot be calculated
consistently for all sorts of open channels [1].
Guo et al. (2008) showed that, for a particular
bed roughness size, the relative spacing of
roughness, defined as the ratio of the center-to-
center distance to the height of the strip, had a
significant impact on the flow [2]. Bilgil and
Altun (2008) used ANN to forecast the friction
factor in a smooth open channel flow [3, 4].
Sadeque et al. (2009) presented the findings of
an experimental investigation of flow around
cylindrical objects on a rough surface in an open
channel [5]. Mohammed et al. (2011)
investigated the impact of bed roughness on the
flow depths of free overfall (normal, critical,
and brink depth). This research revealed that
complete bed roughness significantly impacted
on steeper slopes [6]. Devkota et al. (2012)
investigated the relationship between water
depth  under low-flow circumstances,
Manning's roughness coefficient, and water
depth in partly filled culverts [7]. Mohammed-
Ali (2012) investigated the hydraulic properties
of sharp-crested weirs with a semielliptical
shape. The study's dimensional analysis was
supported by experimental work. The findings
of the dimensional study showed that the ratios

of the water height above the weir's crest to its
short and long radiuses to its height (P/H) were
the parameters that significantly influenced the
discharge of flow over this type of weir. The
results demonstrated very high agreement with
the experimental result for calculating the
discharge with knowledge of the weir's long and
short-cutting radius (a) and (b), as well as the
height of the crest (P) [8]. Ahmad et al. (2017)
investigated the channel with a gravel bed
surface. The results showed that the channel
with a gravel bed surface had more significant
flow resistance than the channel without a
gravel bed surface. The flow pattern was
considered subcritical since the Froude number
for both situations in the flume was less than 1.
In conclusion, it was determined that the kind
of bed roughness, flow rate, and channel slope
impacted the hydraulic roughness [9].
Mohammed (2018) investigated the critical
depth and discharge model, free overfall
utilizing a feed-forward back-propagation kind
of neural network, and the multi-nonlinear
regression model using statistical
programming. For this purpose, 215 sets of
experimental data for training and validation
were used. The trained, validated, and tested
neural network model outcomes were
compared to the data collected in the lab. The
calculated values were in good agreement with
the measurements [10]. Irzooki and Hasan
(2018) presented the results of a laboratory
study on the properties of free overfall in rough
and smooth triangular channels. In this
experimental investigation, the authors
examined four channel bed slopes (zero,
0.0041, 0.0082, and 0.0123), channel side
slopes (0.8H:1V, 1H:1V, and 1.33H:1V), and
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three roughness components in which the
channel was roughened with gravel of varying
sizes (1.18, 2.36, and 4.75 mm) for Froude
numbers between 0.31 and 147 [11].
Jahanpanah et al. (2019) used an artificial
neural network (ANN) and three additional soft
computing models to predict the flow through
rectangular channels. The models employed
data from previously published research.
Compared to other approaches, the ANN
model's performance was better [12]. Ahmad et
al. (2020) conducted experiments in a
rectangular compound flume with fixed and
nonaggregated bedding to assess the bed
roughness as well as flow characteristics of the
open rectangular channel. There were five
sections of the flume. Crushed, -coarse
aggregates, and a clear channel were tested. The
values calculated from the data collected
throughout the investigation were between
0.008 and 0.018 for the clear channel, 0.013
and 0.030 for crushed aggregate, and 0.016 and
0.041 for coarse aggregate that was crushed
[13]. The present paper concentrated on
influencing factors on the flow and bed
roughness in semi-circular channels. Artificial
Neural Network (ANN) was used with
experimental data to understand how the
characteristics of semi-circular channels affect
the roughness coefficient since it is one of the
key variables in determining the flow
characteristics in open channels.

2. METHODOLOGY
The work of this research was divided into two
main parts, which are as follows:

2.1.Experimental work

2.1.1.Laboratory flume and semi-
circular channel models

Experiments were carried out at the Hydraulic
Laboratory of the Environmental Engineering
Department at Tikrit University. This study was
conducted in a 6 m long, rectangular flume with
a cross-section of 0.3 m in width and 0.4 m in
height. The flume’s walls were made of
Plexiglass, and the bed was made of painted
iron, as shown in Fig. 1.

_
Fig. 1 Laboratory flume.

Each test used a PVC pipe to construct the semi-
circular free overfall channel models. (D1, D2,
and D3) represented semi-circular channels
with 150, 187, and 237 mm diameters,
respectively. The channel structure was made
using square-shaped iron sections of
dimensions (1x1) inch to fix the semi-circular
channel at the height of 200 mm from the bed
of the laboratory flume. This height was
selected to ensure a free vertical drop at the
model's end. The bottom of the channel was
supported along with the structure by
adjustable supports. The adjustable supports
were used to avoid getting bends and
curvatures of the channel bed during the
experiments, as shown in Fig. 2.

Fig. 2 Steel frame for suppo‘I.':tingA the semi-
circular channels.

n, denotes the roughness of the channel bed
without any roughing material, while n,, n,, and
n; denote the roughness of the channel bed with
sand grain sizes (ds) of 1.18, 2.36, and 4.75 mm,
respectively. S, is the horizontal bed slope,
whereas S,, S,, and S; are the semi-circular
channel bed slopes, which were (1/250=0.004),
(2/250=0.008), and (3/250=0.012),
respectively. For each case of this study, four
distinct discharges were passed.

2.1.2.Create the roughness of the
channel bed

Three sand particle sizes (ds) were used to
roughen the bed for each channel model, as
shown in Fig. 3. This roughness was fixed by
applying adhesive paper to the channel’s bed
and then gluing the roughness to the sticky
paper, as illustrated in Fig. 4.
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Roughness height=4.75mm

Fig. 3 Bed roughness materials.

SN AW
Fig. 4 Stages of installing the roughness layer

y |
2.1.3.Water depth measurement
Two-point gauge scales with an accuracy of 0.1
mm were used to measure the depth of the
water. One was used to measure the water
depth along the semi-circular channel, and the
other was used to measure the depth of the
water over the triangular weir to calculate the
discharge passing through each experiment.
Fig. 5 shows a 90-degree V-notch weir with a
sharp crest used to measure the channel
discharge. This weir was constructed with 10
mm thick Plexiglass. The rate of these
discharges was calculated using the following
discharge equation for a weir with a triangular
opening [14].

Q = 0.012 H%552 (1)
Q is the rate of discharge ({/sec), and H is the
dgpth of water over the weir crest (cm).

-
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Fig. 5 Discharge measurement.
The water’s depth was measured depending on
the material used for constructing the channel
bed. The following two methods can be used to
determine the depth:

1.Depth measurement in smooth channels
Water flows uniformly through the bed of
smooth channels at their upstream edges;
hence the level of the bed was used as a direct
reference when measuring the depth of the
flow.

2.Depth measurement in rough channels
The flow over the channel’s rough bed was non-
uniform, as the depth varied continuously with
the flow direction. To approximate the state of
the flow in channels to the state of uniform flow,
a uniform level of height for the bed of the
channel was chosen, which was adopted as an
actual line to measure the depth of flow.
Schlichting (1937) conducted his conception
regarding the geometrical bottom level of the
channel. Schlichting considered that all the
roughness models melted into the form of a
smooth bottom, and the surface level was used
as the actual level of measurement [15]. Morris
(1959), who relied on that, considered that the
highest level of roughness was the level of the
bottom [16]. According to Gordienko (1967),
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the designed depth was more significant than
the top of a rough surface, which was less than
the calculated depth of the lower bottom of the
channel structure (h + y, >y > y,) [17]. In his
study on rough channels with zigzag beams
when (L/h is greater than 1.414), the channel's
design depth (y) was:

2
y=ye+h-% @

where y_e is the measurement of flow depth
taken from the highest point of the roughness
components, h is the roughness components’
height, and L is the longitudinal distance from
the center to the center of the roughness
components. The flow depth was measured in
the present study, as shown in Fig. 6. The
geometric mean of a bottom level was used as
the actual level for measuring the normal
depths upstream of the edge area:

Ye+(ye+h)

2

y= =y +2 (3)

where y_e is the measurement of flow depth
was taken from the highest point of the
roughness components to the top water surface
level, and h is the height of the roughness
component (the distance from the bottom of the
channel to the top of the roughness

components).
™ ve I 1 )
_\"z-| E d

yn

Water surface level e

Bed of channel  \luelliidbeliell ih

Fig. 6 Depth measurement in semi-circular
channels.

2.2 Artificial Neural Network Modeling
An artificial neural network is a powerful
modeling technique for datasets with nonlinear
relationships between variables. An essential
function of ANNs is data analysis with many
inputs and outputs. Sets for identifying and
training correlated input patterns and data
pairs for output are the most vital component of
modeling using (ANN), allowing for
extrapolation and predicting results from new
data sets for input. In a network structure based
on (ANN), neurons are structured in three
layers in a completely integrated pattern: the
input layer, the hidden layers, and the output
layer are all present. Neurons present an input
layer that gets information from a data file.

Neurons present publish the network’s reaction
to the input data at the output layer. Neurons in
the hidden layer perform the data processing. A
method of communication between neurons
separated into three different layers creates a
framework, either a pattern or a network, from
which a solution may be derived. According to
the theory, approximating most functions is as
simple as only one covert level [18]. (ANN)
modeling has been gaining popularity and
utilized as an advanced computational tool in
numerous disciplines of water resources
engineering. Several authors, including
(Dolling and Varas, 2002) [19], (Sahu et al.,
2011) [20], and (Jamel, 2018) [21], explored the
use of (ANN) modeling for the prediction of
flow parameters.

2.2.1.Implementing Artificial Neural
Networks

An ANN model consists of an input layer,
hidden layer, and output layer that are linked in
some way [4]. One or even more hidden layers
may be formed by connecting the nodes of the
input and output layers. No two neurons in the
same layer are connected; however, all neurons
in the same layer are linked to all neurons in the
next layer Fig. 7. Data taken in by the input
layer is processed in the hidden layer and then
output to either a class label or a continuous
value prediction. Each value from the input
layer that passes through a hidden node is
multiplied by a set of predefined integers called
weights, and the sum of these products is the
output. The obtained value is then used as the
input into a nonlinear mathematical function
called the activation function, which returns a
value between zero and one. In Fig. 8, Egs. 4
and 5 represent the net sum of the weighted
inputs entering a node j and the output
activation function that converts a neuron’s
weighted input to its output activation (the
most usually used is the sigmoid function).

S = Y1 XiWij 4)
1

0; = 5 (5)

1+e”J

Input layer

Hidden layer

X1

Qutput layer

X2

Out,
X3

Out,
X
X5

Out,,

Xn

Fig. 7 Neural network architecture.
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Fig. 8 Active node.

Neurons, and by implication ANNs, may either
be in “training mode,” where they are being
learned, or in “using mode,” where they are
being applied. Train the system to anticipate
outputs, inputs, and results from a real-world
data set will be utilized during the training
phase. This kind of supervised learning starts
with randomly generated weights and then uses
gradient descent search techniques like
Backpropagation to perfect them for the
specific job. The error function uses the
discrepancy between the desired and actual
output values to motivate improvement.

It is necessary to adjust the weights to minimize
the error, which in turn affects the error
function. An error in a neuron’s output may be
described as follows:

E=2(0-1) (6)

The given training set
{ (x1, t1), (x3,t2), v, (x4, t,)}  consists of k-
ordered pairs of n inputs and m dimensional
vectors (n-inputs, m-outputs), also known as
the input and output patterns. Whereas the
network’s error function, which must be
minimized, is defined as:

B =355(0- )" @

where t; is the desired value, and 0;is the
output generated by the network when fed the

input pattern x; from the training set. A value of

oE
Awj =~y

adjusts each weight throughout

wi j

training, where g is a constant that represents
the learning rate. However, the search route
may get imprisoned around the ideal solution if
the learning rate is too high, making
convergence impossible. Once a decent weight
set has been determined, the neural network
model can automatically forecast the outputs
for a new dataset whose values are unknown
[22]. The (ANN) model was developed utilizing
the database of experimental results. The
developed model links the output variables to
the input variables. The variables used to build
the (ANN) to study the factors affecting the
discharge and roughness are shown below.

2.2.2,Data for factors that affect
discharge over free overfall of a semi-
circular channel

The neural network model was developed and
validated using the Multilayer Perceptron
(MLP) Module of IBM SPSS Statistics 26.
Multilayer Perceptrons (MLPs) are neural
networks trained to utilize a back-propagation
learning technique that uses gradient descent to
update the weights to minimize the error
function. All variables were normalized to the
range 0-1 using the formula
(x-min)/(max-min), and only data from the
training set was used in the training process.
About 74% of the observed experimental data
were examined as training samples in the
processing of (ANN), while the remaining 26%
were examined as testing samples, as shown in
Table 1. The parameters (y,, D, S, n) are the
input variables, while the discharge (Q) is the
output variable, where (yy,) is the bring depth.

Table 1 Processing summary of the ANN model

Details N Persent
Sample Training 80 74.1%

Testing 28 25.9%
Vaild 108 100%
Excluded o -
Total 108

The (ANN) model enables users to choose the
number of hidden layers as well as the
maximum and minimum units that may be
chosen for each hidden layer. The most effective
number of units in the hidden layer was
determined using the automated architecture.
Fig. 9 illustrates how automatic architecture
selection utilizes the preset activation functions
of the hidden and output layers. Where the bias
node of a neural network is the number added
to the sum of the features and the weights. The
purpose is to counteract the effect, And it aids
models in changing the activation function to
the positive or negative value.

Synaptic Weight = 0
s Synaptic Weight < 0

@
@

””, ’
|
1))

‘@

Fig. 9 Activation function of a hidden layer for

free overfall discharge of semi-circular
channel.
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2.2.3.Data for factors that affect the
Manning roughness coefficient of a
semi-circular channel

About 68.5% of the observed experimental data
were examined as training samples in the
processing of (ANN), while the remaining
31.5% were examined as testing samples, as
shown in Table 2. The parameters (y,, D, S, Q)
are the input variables, the Manning roughness
coefficient (n) is the output variable, and y, is
the normal depth.

Table 2 Processing summary of Manning
Roughness Coefficient ANN model

Details N Persent
Training 74 68.5%

Sample Testing 34 31.5%

Vaild 108 108

Excluded o -

Total 108 -

The network architecture used is a multilayered
network architecture (multilayer). The network
diagram used by SPSS to predict the course
outcome for the Manning roughness coefficient
is shown in Fig. 10 below.

.\ °

07.
n / sz)

Fig. 10 Activation function of a hidden layer
for Manning (n) of semi-circular channel.

3.RESULTS AND DISCUSSION

Overall, 192 tests were made of flow in the semi-
circular channels. The range of tested
discharges was between 0.000198 and
0.005267 m3/hr.

3.1.Determine the Manning roughness
coefficient values

The values of the normal depth and discharge
were found in each experiment. Manning’s
equation was used to evaluate the correct values
of manning’s roughness coefficient based on
the models of the bed roughness for all cases, as
follows:

_ KR2/351/2
@A
Since K = constant is equal to 1 when Eq. 8 is in

the international system (SI), K=1.49 when Eq.
8 is in the British units, n is Manning’s

(C))

1
roughness coefficient (s/m3), Q is flow
discharge (m3/s), V is flow velocity (m/s), R is
the hydraulic radius (m) = A/p,,, A is the area of
flow cross-section (m?2), p,, is wet perimeter
(m), and S is the channel bed slope. An average

parameter (n) value was found for each
roughness model with different bottom
inclinations, which was classified in Table 3.

Table 3 Manning’s roughness coefficient

d;

o D1=150 mm D2=187 mm D3=237 mm Averagen

1.18 ni 0.01958 ni  0.01572 ni 0.01863 0.01797
2.36 n2 0.02198 n2 0.01832 n2 0.02251 0.02094

4.75 n3 0.034398 n3 0.02526 n3 0.02309 0.027584

Table 3 illustrates the importance of the
conception that the most significant roughness
appeared for a grain size of 4.75 mm for the
third model, in which Manning's coefficient
value of roughness (n) equals 0.027584. It is
shown that the effect of roughness increased as
the grain size increased, although the
roughness coefficient value was taken as an
average for several cases. The rate of change of
Manning's roughness coefficient values (n) with
sand grain size (d,) used as channel roughness
(for grain diameters, d; = 1.18 mm, 2.36 mm,
and 4.75 mm) is represented in Fig. 11.

0.029

[ | present sfudy ° Al} 2014 elm— Average .
0.027
£ L~
g o002 /
) / o
§ 0.023 ® /
o /
o
g
g 0.021 /‘
<
./ /
0.019

0.017
1 15 2 25 3 35 4 4.5 5

ds (mm)

Fig. 11 Manning's roughness coefficient.

The obtained results were compared with the
results of Ali (2014), who used a rough
triangular channel with the same sand grain
size used in this study [23]. From Fig. 11, the
coefficient of determination (R2) equals 0.7873.
There is apparent convergence in the results,
and there may be a little difference due to the
different channel shapes and the flows passing
through the channel.

3.2.Effect of the channel slope and
diameter on the Manning roughness
coefficient

The relationship between the bed slope of a
semi-circular channel with a diameter of 0.237
m and the average Manning roughness
coefficient is shown in Fig. 12. This figure shows
that for a channel with a similar roughness
material, the roughness coefficient increased as
the channel bed slope increased. Additionally,
the roughness coefficient increased with
increasing the size of roughened material for
the channel, which is consistent with what was
found by Devkota et al. (2012) [7]. The same
results were observed for channels with
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diameters (0.187 and 0.150 m), as shown in
Figs. (13, 14), respectively. It is important to
note that, while the bed slope and roughened
material were constant, it seems from these
figures that the roughness coefficient increased

with decreasing the channel diameter.

0.03
®ds=1.18mm Mds=2.36mm A ds=4.75mm

-0.025

0.02

|

o

.015

Manning Roughness (n

0.01
0.002 0.004 0.006 0.008 0.01 0.012 0.014
Channel Bed Slope (S)
Fig. 12 Effect of bed slope on Manning's
roughness coefficient for a semi-circular
channel with a diameter of 0.237m.

@®ds=1.18mm Mds=2.36mm A ds=4.75mm

025 A/‘/_‘
-

0.01
0.002 0.004 0.006 0.008 0.01 0.012 0.014
Channel Bed Slope (S)

Fig. 13 Effect of bed slope on Manning's
roughness coefficient for a semi-circular
channel with a diameter of 0.187m.

P

éhness (n:

=1
~

r
!
l

Mamning Rou

0.04
@®ds=1.18mm Mds=2.36mm A ds=4.75mm

0.035

|

o
o
@®

0.025

+

\T

Manning Roughness (N)

0.015

0.002 0.004 0.006 0.008 0.01 0.012 0.014
Channel Bed Slope (S)

Fig. 14 Effect of bed slope on Manning's
roughness coefficient for a semi-circular
channel with a diameter of 0.15m.

3.3.Effect of the Manning roughness
coefficient on the Froude Number

The relationship between the Froude number
and Manning's roughness coefficient for
channels with diameters of 0.187 m and 0.237
m that passed a discharge of 0.0042 m3/sec is
shown in Fig 15. This figure demonstrates the
Manning roughness coefficient decreases with
increasing Froude Number. In addition, this
figure disply an inversely related between the
Manning roughness coefficient and the
diameter of the channel, where this coefficient
increases with decreasing the channel diameter
for the same Froude Number.
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Fig. 15 Relationship between Manning roughness
coefficient and Froude Number.

3.4.Analysis the results using ANN
model for discharge

The sum of squares error for Training was
1.319, and the relative error was 0.036. For
testing, the sum of squares error for Training
was 1.087, and the relative error was 0.065. The
parameter estimates are listed in Table 4.
Table 5 displays the relative weights of the input
variables. As can be seen, the bring depth (y;,)
had a significant percentage of 85.8%, making
it the parameter that had the most significant
impact on discharge over a semi-circular
channel free overfall. Additionally, the bottom
slope relevance percentage was only 1.1%. The
comparison between predicted values of (Q) by
ANN and experimental values agreed with the
coefficient of determination (R2), equaling
0.9521, as shown in Fig. 16.

Table 4 Parameter estimates for Discharge
Predicted

Predictor Hidden Layer 1

Output
Layer
H(1:1)  H(:2) H(1:3) H@4) Q
(Bias) -0.472 0.675 -0.003 -.0360
n 0.189 0.140 0.052  0.168

Input
Layer S 0.190  0.041  -0.104 -0.436
D -0.555 -0.234 .0362 -0.467
Yb -0.162  -0.745 -0.836 0.305
(Bias) 0.263
. H(1:1) -0.359
paden i
H(1:3) -0.772
H(1:4) 0.011

Table 5 Importance percentage of input variables on
discharge over free overfall of semi-circular channel

Independent Importance Normalized
Variable importance
n 0.092 10.7%
S 0.011 1.3%
D 0.040 4.6%

YV 0.858 100.0%

0 0.002 0.004 0.006
Observed value of Q (m3/sec)
Fig. 16 Comparison between predicted and
observed discharge over free overfall of semi-
circular channel.
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3.5.Analysis of the results using the ANN
model for the Manning roughness
coefficient

The sum of squares error for training was 2.943,
and the relative error was 0.081. For testing, the
sum of squares error for training was 1.130, and
the relative error was 0.070. The parameter
estimates are listed in Table 6.

Table 6 Parameter Estimates for Manning
roughness coefficient

Predicted

Predictor Hidden Layer 1 Output Layer
H(1:1) H(1:2) N
(Bias) 212 1.414
S -.969 -.077
IL‘;‘;EE D -.457 -199
Q 1.515 2.182
yn -1.881 -.611
. (Bias) .697
E;ggfrl' H(1:1) -.912
H(1:2) -1.176

The result of the analysis of factors affecting the
roughness coefficient of semi-circular channels
by ANN is presented in Table 7. The discharge
had a significant percentage of 44.6%, making
it the parameter that had the most significant
impact on the Manning roughness coefficient of
the semi-circular channel free overfall.
Additionally, the bottom slope relevance
percentage was only 13.2%.

Table 7 Importance percentage of input
variables on Manning roughness coefficient of
the semi-circular channel

Independent I 5 Normalized
Variable mportance importance
N 0.132 29.5%
D 0.091 20.4%
Q 0.446 100.0%
yn 0.331 74.2%

The comparison between predicted values of
(n) by (ANN) and experimental values gave a
good agreement with the coefficient of
determination (R2) equaling 0.9232, as shown
in Fig 17.

0.04
0.036

= 0.032

n

0.028

0.024

Predicted value of

0.02

0.016

0.012
0.012 0.016 0.02 0.024 0.028 0.032 0.036 0.04

Observed value of (n)

Fig. 17 Comparison between predicted and
observed n for semi-circular channel.

4.CONCLUSIONS
The present study investigated the flow
characteristics of semi-circular channels with

free overfalls. The experiments included
passing different flows through channels with
variable bed slopes, diameters, and bed
roughness. Based on the analysis of the results
of 192 tests, the following are the most
significant findings of this study:

1. The roughness coefficient increased as the
channel bed slope increased.

2. The roughness coefficient increased with
increasing the size of roughened material for
the channel.

3. The roughness coefficient increased with
decreasing channel diameter.

4. The Manning roughness coefficient
decreased with increasing Froude Number.
An inverse relation between the Manning
roughness coefficient and the diameter of
the channel was found. In contrast, the
Manning roughness coefficient increased
with decreasing the channel diameter for the
same Froude Number.

5. (ANN) analysis showed a good agreement
between the experimental and predicted
results. The bring depth (y;,) had the most
significant impact on the discharge of free
overfall for a semi-circular channel with a
percentage of 85.8%, while the bottom slope
(S) had a minimum impact with a
percentage of only 1.1%.

6. Good agreement was observed between the
(n) values predicted by the (ANN) and the
experimental values. The discharge was the
characteristic that most affected the
Manning roughness coefficient of the semi-
circular channel's free overfall.
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