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A B S T R A C T  

One of the significant problems facing the 
water resource engineer is calculating the 
coefficient of roughness for subsequent design 
calculations of the discharge amount of a 
channel or river. In this study, experiments 
were conducted in a semi-circular, straight 
channel to investigate the factors affecting bed 
roughness and flow discharge using Artificial 
Neural Network (ANN). For this purpose, 
three semi-circular channel models with free 
overfall were constructed and installed in a 6-
meter-long laboratory flume. The length of 
these models was 2.50 m with three different 
diameters (D= 150, 187, and 237mm) and 
three bed slopes (S=0.004, 0.008, and 0.012). 
Three sand particle sizes (ds) were used for 
each semi-circular channel to roughen the bed. 
The results showed that the Manning 
roughness coefficient obtained using a rough 
bed surface was higher than the channel with a 
smooth bed surface. Also, the results revealed 
that the Manning roughness coefficient and 
the Froude number were inversely related. 
(ANN) analysis showed a good agreement 
between the experimental and predicted 
results of flow and roughness. The bring depth 
(yb) had an 85.8% impact percentage on the 
free overfall discharge for semi-circular 
channels, while the bottom slope (S) had only 
1.1%. 
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القنوات نصف الدائرية باستخدام  دراسة العوامل المؤثرة على مسقط الجريان الحر وخشونة القاع في 

 الشبكة العصبية الاصطناعية 

 العراق.  - كلية الهندسة / جامعة تكريت / تكريت  /هندسة البيئةقسم                  رعد هوبي ارزوقي

 العراق.  -   تكريت /جامعة تكريت  / كلية الهندسة /سة المدنيةقسم الهند                      أياد سعود نجم

 الخلاصة

هي حساب معامل الخشونة لحسابات التصميم اللاحقة لكمية تصريف    واحدة من أكبر المشاكل التي تواجه مهندس الموارد الميائية
القاع   المؤثرة على خشونة  العوامل  قناة مستقيمة نصف دائرية لاستقصاء  التجارب في  الدراسة، أجريت  النهر. في هذه  أو  القناة 

ة نماذج لقنوات نصف دائرية ذات  (. لهذا الغرض، تم إنشاء ثلاث ANNوتصريف الجريان باستخدام الشبكة العصبية الاصطناعية )
 ,D=150, 187متر وبأقطار مختلفة )  2.50أمتار. جميع نماذج هذه القنوات بطول    6مسقط حر وتم تثبيتها في قناة مختبرية بطول  

and 237( ملم، مع ثلاثة ميول لقاع القناة )S= 0.004, 0.008 and 0.012( تم استخدام ثلاثة أحجام لحبيبات الرمل .)ds  )  لكل
( الذي تم الحصول عليه  nنموذج من القنوات نصف الدائرية لتخشين طبقة قاع القناة. أظهرت النتائج أن معامل مانينغ للخشونة )

باستخدام سطح قاع خشن أعلى من قيمته في القناة ذات سطح القاع الأملس. كما أوضحت النتائج وجود علاقة عكسية بين معامل  
( اتفاقاً جيدًا بين النتائج المختبرية والمتوقعة لتصريف الجريان والخشونة، وإن  ANN. أظهر تحليل )مانينغ للخشونة ورقم قرود

٪ على تصريف الجريان الحر للقنوات نصف دائرية، بينما ميل    85.8( له نسبة تأثير  ybعمق الجريان عند نقطة السقوط الحر )
 ٪ فقط. 1.1القاع كانت نسبة تأثيره 

  . عامل مانينغ للخشونة، القنوات نصف الدائرية، المسقط الحر، الشبكة العصبية الاصطناعيةم : الدالة الكلمات
1.INTRODUCTION
Roughness data is often limited or unavailable, 
especially in flood situations. Therefore, one of 
the tasks of the water resource engineer is to 
estimate the roughness values of the river, 
waterway, or channel. Then the engineer can 
use these values to calculate discharge, which is 
used as a basis for the values adopted in this 
study. Buffington and Montgomery (1999) 
noted that determining the Manning roughness 
coefficient (n) has become more difficult for 
engineers and researchers because the values of 
this coefficient cannot be calculated 
consistently for all sorts of open channels [1]. 
Guo et al. (2008) showed that, for a particular 
bed roughness size, the relative spacing of 
roughness, defined as the ratio of the center-to-
center distance to the height of the strip, had a 
significant impact on the flow [2]. Bilgil and 
Altun (2008) used ANN to forecast the friction 
factor in a smooth open channel flow [3, 4]. 
Sadeque et al. (2009) presented the findings of 
an experimental investigation of flow around 
cylindrical objects on a rough surface in an open 
channel [5]. Mohammed et al. (2011) 
investigated the impact of bed roughness on the 
flow depths of free overfall (normal, critical, 
and brink depth). This research revealed that 
complete bed roughness significantly impacted 
on steeper slopes [6]. Devkota et al. (2012) 
investigated the relationship between water 
depth under low-flow circumstances, 
Manning's roughness coefficient, and water 
depth in partly filled culverts [7]. Mohammed-
Ali (2012) investigated the hydraulic properties 
of sharp-crested weirs with a semielliptical 
shape. The study's dimensional analysis was 
supported by experimental work. The findings 
of the dimensional study showed that the ratios 

of the water height above the weir's crest to its 
short and long radiuses to its height (P/H) were 
the parameters that significantly influenced the 
discharge of flow over this type of weir. The 
results demonstrated very high agreement with 
the experimental result for calculating the 
discharge with knowledge of the weir's long and 
short-cutting radius (a) and (b), as well as the 
height of the crest (P) [8]. Ahmad et al. (2017) 
investigated the channel with a gravel bed 
surface. The results showed that the channel 
with a gravel bed surface had more significant 
flow resistance than the channel without a 
gravel bed surface. The flow pattern was 
considered subcritical since the Froude number 
for both situations in the flume was less than 1. 
In conclusion, it was determined that the kind 
of bed roughness, flow rate, and channel slope 
impacted the hydraulic roughness [9]. 
Mohammed (2018) investigated the critical 
depth and discharge model, free overfall 
utilizing a feed-forward back-propagation kind 
of neural network, and the multi-nonlinear 
regression model using statistical 
programming. For this purpose, 215 sets of 
experimental data for training and validation 
were used. The trained, validated, and tested 
neural network model outcomes were 
compared to the data collected in the lab. The 
calculated values were in good agreement with 
the measurements [10]. Irzooki and Hasan 
(2018) presented the results of a laboratory 
study on the properties of free overfall in rough 
and smooth triangular channels. In this 
experimental investigation, the authors 
examined four channel bed slopes (zero, 
0.0041, 0.0082, and 0.0123), channel side 
slopes (0.8H:1V, 1H:1V, and 1.33H:1V), and 
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three roughness components in which the 
channel was roughened with gravel of varying 
sizes (1.18, 2.36, and 4.75 mm) for Froude 
numbers between 0.31 and 1.47 [11]. 
Jahanpanah et al. (2019) used an artificial 
neural network (ANN) and three additional soft 
computing models to predict the flow through 
rectangular channels. The models employed 
data from previously published research. 
Compared to other approaches, the ANN 
model's performance was better [12]. Ahmad et 
al. (2020) conducted experiments in a 
rectangular compound flume with fixed and 
nonaggregated bedding to assess the bed 
roughness as well as flow characteristics of the 
open rectangular channel. There were five 
sections of the flume. Crushed, coarse 
aggregates, and a clear channel were tested. The 
values calculated from the data collected 
throughout the investigation were between 
0.008 and 0.018 for the clear channel, 0.013 
and 0.030 for crushed aggregate, and 0.016 and 
0.041 for coarse aggregate that was crushed 
[13]. The present paper concentrated on 
influencing factors on the flow and bed 
roughness in semi-circular channels. Artificial 
Neural Network (ANN) was used with 
experimental data to understand how the 
characteristics of semi-circular channels affect 
the roughness coefficient since it is one of the 
key variables in determining the flow 
characteristics in open channels. 

2.METHODOLOGY 
The work of this research was divided into two 
main parts, which are as follows: 

2.1.Experimental work  
2.1.1.Laboratory flume and semi-
circular channel models  
Experiments were carried out at the Hydraulic 
Laboratory of the Environmental Engineering 
Department at Tikrit University. This study was 
conducted in a 6 m long, rectangular flume with 
a cross-section of 0.3 m in width and 0.4 m in 
height. The flume’s walls were made of 
Plexiglass, and the bed was made of painted 
iron, as shown in Fig. 1.  

 
Fig. 1 Laboratory flume. 

Each test used a PVC pipe to construct the semi-
circular free overfall channel models. (D1, D2, 
and D3) represented semi-circular channels 
with 150, 187, and 237 mm diameters, 
respectively. The channel structure was made 
using square-shaped iron sections of 
dimensions (1×1) inch to fix the semi-circular 
channel at the height of 200 mm from the bed 
of the laboratory flume. This height was 
selected to ensure a free vertical drop at the 
model's end. The bottom of the channel was 
supported along with the structure by 
adjustable supports. The adjustable supports 
were used to avoid getting bends and 
curvatures of the channel bed during the 
experiments, as shown in Fig. 2. 

 
Fig. 2 Steel frame for supporting the semi-

circular channels. 

n0 denotes the roughness of the channel bed 
without any roughing material, while n1, n2, and 
n3 denote the roughness of the channel bed with 
sand grain sizes (ds) of 1.18, 2.36, and 4.75 mm, 
respectively. S0 is the horizontal bed slope, 
whereas S1, S2, and S3 are the semi-circular 
channel bed slopes, which were (1/250=0.004), 
(2/250=0.008), and (3/250=0.012), 
respectively. For each case of this study, four 
distinct discharges were passed. 
2.1.2.Create the roughness of the 
channel bed 
Three sand particle sizes (ds) were used to 
roughen the bed for each channel model, as 
shown in Fig. 3. This roughness was fixed by 
applying adhesive paper to the channel’s bed 
and then gluing the roughness to the sticky 
paper, as illustrated in Fig. 4. 
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Fig. 3 Bed roughness materials. 

 

 
Fig. 4 Stages of installing the roughness layer 

 

2.1.3.Water depth measurement 
Two-point gauge scales with an accuracy of 0.1 
mm were used to measure the depth of the 
water. One was used to measure the water 
depth along the semi-circular channel, and the 
other was used to measure the depth of the 
water over the triangular weir to calculate the 
discharge passing through each experiment. 
Fig. 5 shows a 90-degree V-notch weir with a 
sharp crest used to measure the channel 
discharge. This weir was constructed with 10 
mm thick Plexiglass. The rate of these 
discharges was calculated using the following 
discharge equation for a weir with a triangular 
opening [14]. 

𝑄 =  0.012  𝐻2.552    (1) 
Q is the rate of discharge (ℓ/sec), and H is the 
depth of water over the weir crest (cm). 

Fig. 5 Discharge measurement. 

The water’s depth was measured depending on 
the material used for constructing the channel 
bed. The following two methods can be used to 
determine the depth: 
1.Depth measurement in smooth channels 
Water flows uniformly through the bed of 
smooth channels at their upstream edges; 
hence the level of the bed was used as a direct 
reference when measuring the depth of the 
flow.  
2.Depth measurement in rough channels 
The flow over the channel’s rough bed was non-
uniform, as the depth varied continuously with 
the flow direction. To approximate the state of 
the flow in channels to the state of uniform flow, 
a uniform level of height for the bed of the 
channel was chosen, which was adopted as an 
actual line to measure the depth of flow. 
Schlichting (1937) conducted his conception 
regarding the geometrical bottom level of the 
channel. Schlichting considered that all the 
roughness models melted into the form of a 
smooth bottom, and the surface level was used 
as the actual level of measurement [15]. Morris 
(1959), who relied on that, considered that the 
highest level of roughness was the level of the 
bottom [16]. According to Gordienko (1967), 
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the designed depth was more significant than 
the top of a rough surface, which was less than 
the calculated depth of the lower bottom of the 
channel structure (ℎ + 𝑦𝑒 > 𝑦 > 𝑦𝑒) [17]. In his 
study on rough channels with zigzag beams 
when (L/h is greater than 1.414), the channel's 
design depth (𝑦) was:  

𝑦 = 𝑦𝑒 + ℎ −  
2ℎ2

𝑙2      (2) 

where y_e is the measurement of flow depth 
taken from the highest point of the roughness 
components, h is the roughness components’ 
height, and L is the longitudinal distance from 
the center to the center of the roughness 
components. The flow depth was measured in 
the present study, as shown in Fig. 6. The 
geometric mean of a bottom level was used as 
the actual level for measuring the normal 
depths upstream of the edge area: 

𝑦 =  
𝑦𝑒+(𝑦𝑒+ℎ)

2
= 𝑦𝑒 +

ℎ

2
     (3) 

where y_e is the measurement of flow depth 
was taken from the highest point of the 
roughness components to the top water surface 
level, and h is the height of the roughness 
component (the distance from the bottom of the 
channel to the top of the roughness 
components). 

 
Fig. 6 Depth measurement in semi-circular 

channels. 

2.2.Artificial Neural Network Modeling 
An artificial neural network is a powerful 
modeling technique for datasets with nonlinear 
relationships between variables. An essential 
function of ANNs is data analysis with many 
inputs and outputs. Sets for identifying and 
training correlated input patterns and data 
pairs for output are the most vital component of 
modeling using (ANN), allowing for 
extrapolation and predicting results from new 
data sets for input. In a network structure based 
on (ANN), neurons are structured in three 
layers in a completely integrated pattern: the 
input layer, the hidden layers, and the output 
layer are all present. Neurons present an input 
layer that gets information from a data file. 

Neurons present publish the network’s reaction 
to the input data at the output layer. Neurons in 
the hidden layer perform the data processing. A 
method of communication between neurons 
separated into three different layers creates a 
framework, either a pattern or a network, from 
which a solution may be derived. According to 
the theory, approximating most functions is as 
simple as only one covert level [18]. (ANN) 
modeling has been gaining popularity and 
utilized as an advanced computational tool in 
numerous disciplines of water resources 
engineering. Several authors, including 
(Dolling and Varas, 2002) [19], (Sahu et al., 
2011) [20], and (Jamel, 2018) [21], explored the 
use of (ANN) modeling for the prediction of 
flow parameters. 
2.2.1.Implementing Artificial Neural 
Networks  
An ANN model consists of an input layer, 
hidden layer, and output layer that are linked in 
some way [4]. One or even more hidden layers 
may be formed by connecting the nodes of the 
input and output layers. No two neurons in the 
same layer are connected; however, all neurons 
in the same layer are linked to all neurons in the 
next layer Fig. 7. Data taken in by the input 
layer is processed in the hidden layer and then 
output to either a class label or a continuous 
value prediction. Each value from the input 
layer that passes through a hidden node is 
multiplied by a set of predefined integers called 
weights, and the sum of these products is the 
output. The obtained value is then used as the 
input into a nonlinear mathematical function 
called the activation function, which returns a 
value between zero and one. In Fig. 8, Eqs. 4 
and 5 represent the net sum of the weighted 
inputs entering a node j and the output 
activation function that converts a neuron’s 
weighted input to its output activation (the 
most usually used is the sigmoid function). 

𝑆𝑗 = ∑ 𝑥𝑖𝑤𝑖𝑗
𝑛
𝑖=1   (4) 

𝑂𝑗 =
1

1+𝑒
𝑆𝑗

           (5) 

 
Fig. 7 Neural network architecture. 
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Fig. 8 Active node. 

Neurons, and by implication ANNs, may either 
be in “training mode,” where they are being 
learned, or in “using mode,” where they are 
being applied. Train the system to anticipate 
outputs, inputs, and results from a real-world 
data set will be utilized during the training 
phase. This kind of supervised learning starts 
with randomly generated weights and then uses 
gradient descent search techniques like 
Backpropagation to perfect them for the 
specific job. The error function uses the 
discrepancy between the desired and actual 
output values to motivate improvement. 
It is necessary to adjust the weights to minimize 
the error, which in turn affects the error 
function. An error in a neuron’s output may be 
described as follows: 

𝐸𝑗 =
1

2
(𝑂𝑗 − 𝑡𝑗)

2
   (6) 

The given training set 
{ (𝑥1, 𝑡1), (𝑥2, 𝑡2), … , (𝑥𝑘 , 𝑡𝑘)} consists of k-
ordered pairs of n inputs and m dimensional 
vectors (n-inputs, m-outputs), also known as 
the input and output patterns. Whereas the 
network’s error function, which must be 
minimized, is defined as: 

𝐸𝑗 =
1

2
∑ (𝑂𝑗 − 𝑡𝑗)

2𝑘
𝑗=1   (7) 

where 𝑡𝑗 is the desired value, and 𝑂𝑗  is the 

output generated by the network when fed the 
input pattern 𝑥𝑗  from the training set. A value of 

∆𝑤𝑖𝑗 = −𝛾
𝜕𝐸

𝜕𝑤𝑖𝑗
 adjusts each weight throughout 

training, where g is a constant that represents 
the learning rate. However, the search route 
may get imprisoned around the ideal solution if 
the learning rate is too high, making 
convergence impossible. Once a decent weight 
set has been determined, the neural network 
model can automatically forecast the outputs 
for a new dataset whose values are unknown 
[22]. The (ANN) model was developed utilizing 
the database of experimental results. The 
developed model links the output variables to 
the input variables. The variables used to build 
the (ANN) to study the factors affecting the 
discharge and roughness are shown below. 

2.2.2.Data for factors that affect 
discharge over free overfall of a semi-
circular channel  
The neural network model was developed and 
validated using the Multilayer Perceptron 
(MLP) Module of IBM SPSS Statistics 26. 
Multilayer Perceptrons (MLPs) are neural 
networks trained to utilize a back-propagation 
learning technique that uses gradient descent to 
update the weights to minimize the error 
function. All variables were normalized to the 
range 0-1 using the formula 
(x−min)/(max−min), and only data from the 
training set was used in the training process. 
About 74% of the observed experimental data 
were examined as training samples in the 
processing of (ANN), while the remaining 26% 
were examined as testing samples, as shown in 
Table 1. The parameters (yb, D, S, n) are the 
input variables, while the discharge (Q) is the 
output variable, where (yb) is the bring depth. 

Table 1 Processing summary of the ANN model 

Details N Persent 

Sample 
Training 80 74.1% 

Testing 28 25.9% 
Vaild 108 100% 
Excluded 0 - 
Total 108 - 

The (ANN) model enables users to choose the 
number of hidden layers as well as the 
maximum and minimum units that may be 
chosen for each hidden layer. The most effective 
number of units in the hidden layer was 
determined using the automated architecture. 
Fig. 9 illustrates how automatic architecture 
selection utilizes the preset activation functions 
of the hidden and output layers. Where the bias 
node of a neural network is the number added 
to the sum of the features and the weights. The 
purpose is to counteract the effect, And it aids 
models in changing the activation function to 
the positive or negative value. 

 
Fig. 9 Activation function of a hidden layer for 

free overfall discharge of semi-circular 
channel. 
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2.2.3.Data for factors that affect the 
Manning roughness coefficient of a 
semi-circular channel  
About 68.5% of the observed experimental data 
were examined as training samples in the 
processing of (ANN), while the remaining 
31.5% were examined as testing samples, as 
shown in Table 2. The parameters (yn, D, S, Q) 
are the input variables, the Manning roughness 
coefficient (n) is the output variable, and yn is 
the normal depth. 

Table 2 Processing summary of Manning 
Roughness Coefficient ANN model 

Details N Persent 

Sample 
Training 74 68.5% 

Testing 34 31.5% 
Vaild 108 108 
Excluded 0 - 
Total 108 - 

The network architecture used is a multilayered 
network architecture (multilayer). The network 
diagram used by SPSS to predict the course 
outcome for the Manning roughness coefficient 
is shown in Fig. 10 below. 

 
Fig. 10 Activation function of a hidden layer 

for Manning (n) of semi-circular channel. 

3.RESULTS AND DISCUSSION 
Overall, 192 tests were made of flow in the semi-
circular channels. The range of tested 
discharges was between 0.000198 and 
0.005267 m3/hr. 
3.1.Determine the Manning roughness 
coefficient values 
The values of the normal depth and discharge 
were found in each experiment. Manning’s 
equation was used to evaluate the correct values 
of manning’s roughness coefficient based on 
the models of the bed roughness for all cases, as 
follows:  

𝑛 =
𝐾𝑅2/3𝑆1/2

(𝑄/𝐴)
  (8) 

Since K = constant is equal to 1 when Eq. 8 is in 
the international system (SI), K=1.49 when Eq. 
8 is in the British units, n is Manning’s 

roughness coefficient (s/𝑚
1

3), Q is flow 
discharge (𝑚3/s), V is flow velocity (m/s), R is 
the hydraulic radius (m) = A/𝑝𝑤, A is the area of 
flow cross-section (𝑚2), 𝑝𝑤 is wet perimeter 
(m), and S is the channel bed slope. An average 

parameter (n) value was found for each 
roughness model with different bottom 
inclinations, which was classified in Table 3. 

Table 3 Manning’s roughness coefficient 

ds 
mm 

D1=150 mm D2=187 mm D3=237 mm Average n 

1.18 n1 0.01958 n1 0.01572 n1 0.01863 0.01797 

2.36 n2 0.02198 n2 0.01832 n2 0.02251 0.02094 

4.75 n3 0.034398 n3 0.02526 n3 0.02309 0.027584 

Table 3 illustrates the importance of the 
conception that the most significant roughness 
appeared for a grain size of 4.75 mm for the 
third model, in which Manning's coefficient 
value of roughness (n) equals 0.027584. It is 
shown that the effect of roughness increased as 
the grain size increased, although the 
roughness coefficient value was taken as an 
average for several cases. The rate of change of 
Manning's roughness coefficient values (n) with 
sand grain size (ds) used as channel roughness 
(for grain diameters, ds = 1.18 mm, 2.36 mm, 
and 4.75 mm) is represented in Fig. 11. 

 
Fig. 11 Manning's roughness coefficient. 

The obtained results were compared with the 
results of Ali (2014), who used a rough 
triangular channel with the same sand grain 
size used in this study [23]. From Fig. 11, the 
coefficient of determination (R2) equals 0.7873. 
There is apparent convergence in the results, 
and there may be a little difference due to the 
different channel shapes and the flows passing 
through the channel.  
3.2.Effect of the channel slope and 
diameter on the Manning roughness 
coefficient 
The relationship between the bed slope of a 
semi-circular channel with a diameter of 0.237 
m and the average Manning roughness 
coefficient is shown in Fig. 12. This figure shows 
that for a channel with a similar roughness 
material, the roughness coefficient increased as 
the channel bed slope increased. Additionally, 
the roughness coefficient increased with 
increasing the size of roughened material for 
the channel, which is consistent with what was 
found by Devkota et al. (2012) [7]. The same 
results were observed for channels with 
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diameters (0.187 and 0.150 m), as shown in 
Figs. (13, 14), respectively. It is important to 
note that, while the bed slope and roughened 
material were constant, it seems from these 
figures that the roughness coefficient increased 
with decreasing the channel diameter. 

 
Fig. 12 Effect of bed slope on Manning's 
roughness coefficient for a semi-circular 

channel with a diameter of 0.237m. 

 
Fig. 13 Effect of bed slope on Manning's 
roughness coefficient for a semi-circular 

channel with a diameter of 0.187m. 

 
Fig. 14 Effect of bed slope on Manning's 
roughness coefficient for a semi-circular 

channel with a diameter of 0.15m. 

3.3.Effect of the Manning roughness 
coefficient on the Froude Number 
The relationship between the Froude number 
and Manning's roughness coefficient for 
channels with diameters of 0.187 m and 0.237 
m that passed a discharge of 0.0042 m3/sec is 
shown in Fig 15. This figure demonstrates the 
Manning roughness coefficient decreases with 
increasing Froude Number. In addition, this 
figure disply an inversely related between the 
Manning roughness coefficient and the 
diameter of the channel, where this coefficient 
increases with decreasing the channel diameter 
for the same Froude Number. 

 
Fig. 15 Relationship between Manning roughness 

coefficient and Froude Number. 

3.4.Analysis the results using ANN 
model for discharge 
The sum of squares error for Training was 
1.319, and the relative error was 0.036. For 
testing, the sum of squares error for Training 
was 1.087, and the relative error was 0.065. The 
parameter estimates are listed in Table 4.  
Table 5 displays the relative weights of the input 
variables. As can be seen, the bring depth (yb) 
had a significant percentage of 85.8%, making 
it the parameter that had the most significant 
impact on discharge over a semi-circular 
channel free overfall. Additionally, the bottom 
slope relevance percentage was only 1.1%. The 
comparison between predicted values of (Q) by 
ANN and experimental values agreed with the 
coefficient of determination (R²), equaling 
0.9521, as shown in Fig. 16. 

Table 4 Parameter estimates for Discharge 

Predictor 

Predicted 

Hidden Layer 1 
Output 
Layer 

H(1:1) H(1:2) H(1:3) H(1:4) Q 

Input 
Layer 

(Bias) -0.472 0.675 -0.003 -.0360  

n 0.189 0.140 0.052 0.168  

S 0.190 0.041 -0.104 -0.436  

D -0.555 -0.234 .0362 -0.467  

Yb -0.162 -0.745 -0.836 0.305  

Hidden 
Layer 1 

(Bias)     0.263 
H(1:1)     -0.359 
H(1:2)     -0.976 
H(1:3)     -0.772 
H(1:4)     0.011 

Table 5 Importance percentage of input variables on 
discharge over free overfall of semi-circular channel 

Independent 
Variable 

Importance Normalized 
importance 

n 0.092 10.7% 
S 0.011 1.3% 
D 0.040 4.6% 

𝑦𝑏 0.858 100.0% 

 
Fig. 16 Comparison between predicted and 
observed discharge over free overfall of semi-

circular channel. 
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3.5.Analysis of the results using the ANN 
model for the Manning roughness 
coefficient 
The sum of squares error for training was 2.943, 
and the relative error was 0.081. For testing, the 
sum of squares error for training was 1.130, and 
the relative error was 0.070. The parameter 
estimates are listed in Table 6. 

Table 6 Parameter Estimates for Manning 
roughness coefficient 

Predictor 

Predicted 

Hidden Layer 1 Output Layer 

H(1:1) H(1:2) N 

Input 
Layer 

(Bias) .212 1.414  

S -.969 -.077  

D -.457 -.199  

Q 1.515 2.182  

yn -1.881 -.611  

Hidden 
Layer 1 

(Bias)   .697 

H(1:1)   -.912 

H(1:2)   -1.176 

The result of the analysis of factors affecting the 
roughness coefficient of semi-circular channels 
by ANN is presented in Table 7. The discharge 
had a significant percentage of 44.6%, making 
it the parameter that had the most significant 
impact on the Manning roughness coefficient of 
the semi-circular channel free overfall. 
Additionally, the bottom slope relevance 
percentage was only 13.2%. 

Table 7 Importance percentage of input 
variables on Manning roughness coefficient of 
the semi-circular channel 

Independent 
Variable 

Importance 
Normalized 
importance 

S 0.132 29.5% 
D 0.091 20.4% 
Q 0.446 100.0% 
yn 0.331 74.2% 

The comparison between predicted values of 
(n) by (ANN) and experimental values gave a 
good agreement with the coefficient of 
determination (R²) equaling 0.9232, as shown 
in Fig 17. 

 
Fig. 17 Comparison between predicted and 

observed n for semi-circular channel. 

4.CONCLUSIONS  
The present study investigated the flow 
characteristics of semi-circular channels with 

free overfalls. The experiments included 
passing different flows through channels with 
variable bed slopes, diameters, and bed 
roughness. Based on the analysis of the results 
of 192 tests, the following are the most 
significant findings of this study: 

1. The roughness coefficient increased as the 
channel bed slope increased.  

2. The roughness coefficient increased with 
increasing the size of roughened material for 
the channel. 

3. The roughness coefficient increased with 
decreasing channel diameter.  

4. The Manning roughness coefficient 
decreased with increasing Froude Number. 
An inverse relation between the Manning 
roughness coefficient and the diameter of 
the channel was found. In contrast, the 
Manning roughness coefficient increased 
with decreasing the channel diameter for the 
same Froude Number. 

5. (ANN) analysis showed a good agreement 
between the experimental and predicted 
results. The bring depth (yb) had the most 
significant impact on the discharge of free 
overfall for a semi-circular channel with a 
percentage of 85.8%, while the bottom slope 
(S) had a minimum impact with a 
percentage of only 1.1%. 

6. Good agreement was observed between the 
(n) values predicted by the (ANN) and the 
experimental values. The discharge was the 
characteristic that most affected the 
Manning roughness coefficient of the semi-
circular channel's free overfall. 
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