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ABSTRACT

This paper presents a state estimation technique for speed
sensorless field oriented control of induction motors. The
theoretical basis of each algorithm is explained in detail and its
performance is tested with simulations using MATLAB package
VER.6.3.

A stochastical nonlinear state estimator, Extended Kalman
Filter (EKF) is presented. The motor model designed for EKF
application involves rotor speed, dg-axis stator currents. Thus,
using this observer the rotor speed and rotor fluxes are estimated
simultaneously. Different from the widely accepted use of EKF,
in which it is optimized for either steady- state or transient
operations, here using adjustable noise level process algorithm
the optimization of EKF has been done for both states; the

steady-state and the transient-state of operations.
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INTRODUCTION

In controlling AC machine drives speed transducers such

as tacho-generators, revolvers, or digital encoders are used to
obtain speed information.
Especially, in defective and aggressive environments, the speed
sensor might be the weakest part of the system. This would
degrade the system’s reliability and reduces the advantage of an
induction motor drive system. This has led to a great many speed
sensorless vector control methods™. On the other hand, avoiding
sensor means use of additional algorithms and added
computational complexity that requires high-speed processors for
real time applications. As digital signal processors have become
cheaper, and their performance greater, it has become possible to
use them for controlling electrical drives as a cost effective
solution. Some relatively new fully digitized methods, used for
speed sensorless field-oriented control, utilize this enhanced
processing capacity .

Usually sensorless control is defined as a control scheme
where no mechanical parameters like, speed and torque, are
measured. Traditional vector control systems use the method of
flux and slip estimations based on measurements of the phase
currents and DC link voltage of the inverter, but this has a large
error in speed estimation particularly in the low-speed range.
MRAS (model reference adaptive system) techniques are also
used to estimate the speed of an induction motor ). These also
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have a speed error in low-speed range and settle to an incorrect
steady-state value. In recent years, non-linear observers are used

to estimate induction motor parameters and states 2.

GENERAL THEORY ON OBSERVERS

Estimation of unmeasurable state variables is commonly
called observation. A device (or a computer program) that
estimates or observes the states are called a state-observer or
simply an observer An observer can be used to estimate states
which cannot be measured, or where the measurements are
corrupted by noise. If a system can be described in discrete time

as.

x(k+1)=Ax(k)+Bu(k) (1)

y(K) =C x(k)

and the system is observable, i.e. the observability matrix, M,

has full rank 1, the states can be estimated by (2) where,
CF

%(k +1) = Ax(k)+B u(k)
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K(k +1) =AX(k) +Bu(k)+L(y(k+1)- C x(k+1)) (2)
The error of the observer is defined by:
e(k) = x(k) -x(k)

e(k+1)z(A-LCA)e(k) (3)
where L is the observer gain
Kalman filter
When applied to a physical system, the observer described above
will be under the influence of two noise sources; process noise

(thermal noise) and measurement noise (quantization noise).

Considering these two noise sources, EQ.1 can be rewritten as:

x(k + 1) = Ax(k) + Bu(k) + Gv(K) (4)

y(K) = Cx(k) + w(k)

where v(k) is the process noise and w(k) is the measurement
noise.v(k) and w(k) will be regarded as zero mean, uncorrelated
white noise sequences with covariances V1(k) and V2(k). The

objective of the Kalman algorithm is to determine a gain matrix,
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L, which minimizes the mean square of the error, e. This can be

achieved with the following algorithm,

%(k) (k) 2 E x(Qly@, (2, Y(@)..... y(n) (5)

Q(k+1) 2E {e(k+1),e" (k+1)]
State estimate time update:
%(k) (Kk -1)= A(k-1) x(k)(k-1k-1) + B(k-1) u(k-1) (6)
Covariance Time update:
Q(k) =A(k-1) Q(k-1) AT (k-1) + B(k-1) V,(k-1) B"(k-1) (7
Kalman Gain Matrix
L(k)=Q(k) C" (k) [C(k) Q(k) C (k) +V, (k)] (8)
State estimation measurement update:

%(k) (Klk )= %(k) (Klk —1)+L(K)[y(k)-C (k) (k|k -1)] 9)

If anything but x kept constant, the covariance matrix will

converge towards the solution to the discrete Riccati equation:
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Q(k) = AK)IQ(K)A™ (k) +G, (k)V;Gy — L' (K)C(K)IQ(K)A' (k) (10)

where

L'(k) = AK)Q(K)CT (ICKIQKICT (k) +V (k)™ (11)

Since the variables in Riccati equation (10) are matrices, it

is rather complicated to solve symbolically.

Extended Kalman Filter

An Extended Kalman Filter is a recursive optimum state-
observer that can be used for the state and parameter estimation
of a non-linear dynamic system in real time by using noisy
monitored signals that are distributed by random noise. This
assumes that the measurement noise and system noise are
uncorrelated. In the first stage of the calculations, the states are
predicted by using a mathematical model (which contain
previous estimates) and in the second stage; the predicted states
are continuously corrected by using a feedback correction
scheme. This scheme makes use of actual measured states, by
adding a term to the predicted states (which is obtained in the
first stage). The additional term contains the weighted difference
of measured and estimated output signals. Based on the deviation
from the estimated value, the EKF provides an optimum output
value at the next input instant. In an induction motor drive the

EKF can be used for the real-time estimation of the rotor speed,
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but it can also be used for state and parameter estimation. For this
purpose the stator voltages and currents are measured and, for
example, the speed of the machine can be obtained by the EKF

[14]

quickly and precisely

Motor Model for EKF
The model for induction motor developed in stationary

reference frame and used in ™, and ®is given below:

o [LKe 0 LaRe Law, 11, ]
| 2 - _
os Ke K LLrKL trl<RL i 10
is mWr m r as
d|* |_| O - - 2 0 s 1|0 1y
— .5 |= Ky LK. LK, Y [ F— os (12)
dt [Ver| | L 1 CoKC|O v
S e A A 2 09
Wl oo I}m w, —Ti of [ Wr ] 0 0]
0o o0 0 0 o]
is, |
ds
v
i1 1 00 0 o] ° 13
i, l0 1 00 off'"
qu

where, Lr, Ls, Lm are rotor, stator and main inductance. Tr, and
Ts are rotor and stator time constants.

The application of Eq.12 to the EKF will give not only the
rotor speed, but also the rotor flux-linkage components (and

consequently the angle and modulus of the rotor flux-linkage
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space-vector will also be known). This is useful for high

performance field-oriented drive implementations.

Discretized Augmented Machine Model

The motor equations are converted to the standard form:

X-Ax+BuU (14)
dt
y=CX

And then discretized for the digital implementation of EKF as:

x(k+1)=A ,x(k)+B , u(k) (15)

y(K)=C , x(k)

A, and B, matrices in the (15) are discretized system and input

matrices, respectively. They are:

A, =e" ~ [+AT+(AT)?/2 (16)

]
B,=[e* B d; ~BT+ABT?/2 (17)
0

C.=C
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where T is the sampling time. When the last terms in (16) and
(17) are ignored, then very short sampling times, they require, are
attainable to have a stable and accurate discretized model.
However, a better approximation is obtained with the
given second-order series expansion at (16) and (17). In general
to achieve an adequate accuracy, the sampling-time should be
appreciably smaller than the characteristic time-constants of the
machine. The final choice for this should be based on obtaining
adequate execution time of the full EKF algorithm and also
satisfactory accuracy and stability. The second-order technique
obviously increases the computational time. If the second-order
terms are neglected in (16) and (17) then the discrete form of

matrices become:

A, =e" ~ +AT (18)
T
B,=[¢* B dc ~BT (19)
0
C.=C
i LA E R LA S
L I—rKL I-rKL
0 1—T% —Ttml‘évf T'I:;*E' 0
Ad: L L rlL r'NL (20)
Tom 0 1-T=  —Tw, 0
Tr r
0 TLn Tw, 1-T= 0
T, T,
0 0 0 0 1]
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-
01 1 00 0O
B,=/0 0| and Cd{ } (21)
01 000
00
_0 0_
x(K)=lis, () i) Wi k) w K] (22)

uk)=peto vawl

By considering the system noise v(k) (v is the noise vector

of states), being zero-mean white-Gaussian and independent of

X(K) with a covariance matrix Q, the system model becomes:
X(k+1)=A x(k)+B, u(k)+ v(k) (23)

By considering a zero-mean white-Gaussian measurement
noise, [1Jw(k) (noise in the measured stator currents) which is
independent of y(k) and v(k) with a covariance matrix R, the

output equation becomes :

y(K)= C x(k)+w(k) (24)
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Determination of the Noise and State Covariance Matrices

To be more specific, the goal of the Kalman filter is to
obtain unmeasurable states (i.e. covariance matrices Q, R, P of
the system noise vector, measurement noise vector, and system
state vector (x) respectively). In general, by means of noise
inputs, it is possible to take computational inaccuracies,
modeling errors, and errors in measurements into account in
modeling the system. The filter estimation (%) is obtained from
the predicted values of the states (x) and this is corrected
recursively by using a correction term, which is product of the
Kalman gain (L) and the deviation of the estimated measurement
output vector and the actual output vector (y -y [1). The Kalman
gain is chosen to result in the best possible estimated states.

Thus filtering algorithm contains basically two main
stages, a prediction stage and a filtering stage. During the
prediction stage, the next predicted values of the state x(k+1) are
obtained by using a mathematical model (state variable
equations) and also the previous values of the estimated states.

Furthermore, the predicted-state covariance matrix (P) is
also obtained before the new measurements are made and for this
purpose the mathematical model and also the covariance matrix
of the system (Q) are used. In the second stage which is the

filtering stage, the next estimated states %(k+1), are obtained

from the predicted estimate x(k+1) by adding a correction term
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L(y-y) to the predicted value. This correction term is a

weighted difference between the actual output vector (y) and the

predicted output vector (), where L is the Kalman gain. Thus

the predicted state-estimate (and also covariance matrix) is
corrected through a feedback correction scheme that makes use
of actual measured quantities. The Kalman gain is chosen to
minimize the estimation error variance of the states to be
estimated. The computations are realized by using recursive
relations.

A critical part of the design is to use correct initial values
for the various covariance matrices. These can be obtained by
considering the stochastic properties of the corresponding noises.
Since these are usually not known, in most cases they are used as
weight matrices, but it should be noted that sometimes-simple
qualitative rules could be set up for obtaining the covariance in
the noise vectors.

The system noise covariance matrix (Q) is [5x5], and the
measurement noise covariance matrix (R) is [2x2] matrix, S0 in
general this would require the knowledge of 29 elements.
However, by assuming that the noise signals are not correlated,
both Q and R are diagonal, and only 5 elements must be known
in Q and 2elements in R.However, the parameters in a [l Jand
10 axes are the same, which means that the first two elements of
the diagonal are equal (q11=qg22), the third and fourth elements
in the diagonal of Q are equal (q33=qg44), so Q =diag
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(911,911,933,933,055) contains only 3 elements which have to
be known. Similarly, the two diagonal elements in R are equal
(r11=r22), thus R=diag (r11, r11). It follows that in total only 4

noise covariance elements needs to be known.

Qis, 0 0 0 0
o % 000 r|Rle O (25)
Q= 0 Qg 0 0 0 Ri,
0

0
0 0 0 Qu
0o 0 O 0 Qw,

Starting values of the state vector xo and the starting
values of the noise covariance matrices Qo and Ro are set
together with the starting value of the state covariance matrix Po,
where P is the covariance matrix of the state vector. The starting
state covariance matrix can be considered as diagonal matrix,
where all elements are equal. The initial values of the matrices
reflect the degree of knowledge of the initial states: the higher
their value, the less accurate is any available information on the
initial states. Thus the new measurement data will be more
heavily weighted and the covariance speed of the estimation
process will increase. However, divergence problem or large
oscillations of the state estimates around the true value may
occur when too high initial covariance values are chosen. A
suitable selection allows us to obtain satisfactory speed
convergence, and avoid divergence problems or unwanted

oscillations.
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The accuracy of the state estimation is affected by the
amount of information that the stochastic filter can extract from
its mathematical model and the measurement data processing.
Some of the estimated variables, especially unmeasured ones,
may indirectly and weakly be linked to the measurement data, so
only poor information is available to the EKF. After deciding
how to initialize the covariance matrices, the next step is

prediction of the state vector.

EKF Algorithm
a. prediction of the state vector
Prediction of the state vector at sampling time (k+1) from

the input u (k), state vector at previous sampling time, X, , by

using Ad and Bd is obtained from

Xy = ApX g T B U(K) (26)
X goi= FIGHLK, X, U(K)) (27)
Where

i K, .. L R L. w 1 |

1-T—R)iS + T2 Lyd +T—"Lyd +T—V;

( KL) ds I—erL Wdr I—rKL qu KL ds

@-Theyis, ~TeReys sty LT Ly
F= L rive rivL L (27)

I-m ts 1 s s
T T,. Iy + (1_TT_r)\Vdr _TWr\Vqr
Lm is 1 s s
TT_rIqs +(1_TT_r)\Vqr +TWr\Jr/dr

w

r
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hacdka{fﬂ (28)

Igs

The notations x,, ,means that it is a predicted value at the

K| k+1
(k+1)-th instant, and it is based on measurements up to Kk-th
instant. In the following steps of the recursive EKF computation,

covariance matrix of prediction is computed.

b. prediction covariance computation

The prediction covariance is updated by:

_ _0
Pk+1\k_M Pk\k MT+Q J M_a_X(F) =%y (29)
with
Y LSS =M LU L \p;,1
KL LrKL I-rKL I—rKL
5 o 178 bW pheRe pLe o
—(F)= K. LKL LKL LKL (30)
ox Tin 0 -1 1w, TS,
Tr Tr
L 1
0 Tom T 1-T— Ty
Tr Wr Tr Wdr
o 0 0 0 1|
1 00 00O
9 h= (31)
oX 01000

The next step is the computation of the Kalman filter gain matrix.

c. kalman gain computation
The Kalman filter gain (correction matrix) is computed as;

@
OX
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Ly =P ,NT[NP

qaNT +RIT Where N= x =%, (32)
d. state vector estimation

The predicted state-vector is added to the innovation term
multiplied by Kalman gain to compute state-estimation vector.

The state-vector estimation (filtering) at time (k) is determined

as.:

Xk = Xga T LY =) (33)
Where

Vi = CaXigs (34)

e. estimation covariance computation

The last step is estimation covariance computation as ;
Pak = Py =L (Vi = ¥4) (35)
After all steps executed, set k=k+1 and start from the step-a to
continue the computation recursively.
State Estimation Simulations with EKF

In this part, the state estimation performance of EKF is
simulated. The simulation is implemented with Matlab. In this
simulation input voltages and measured currents in stationary

reference frame are produced by FOC simulation 1],
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In the simulation parameters of a 1-hp motor are used.
Base excitation frequency is 60 Hz. The observable states in this

model as mentioned previously:

s i500 v vk w,(k) )

In Fig.1 speed reversal at no-load is given with reference speed.
The estimated speed and the reference speed (linear) are plotted
together.

Measurement and state covariances are chosen so that both
the transient and steady state speed errors be optimized. One may
error speed choose different covariance and obtain almost zero
steady-state speed error with a poor transient speed estimation as
shown in Fig. 2 or vice versa.

In the case of Fig.3 simulation, state covariance is
decreased; the algorithm begins to behave such that the state
space model gives more accurate estimates compared to measure
values so it assigns less importance to the measurements. This
causes a decrease in Kalman gain, which reduces the correction
speed of the currents. In the extra time used for current correction
the algorithm finds opportunity to decrease the steady-state error.

Low speed estimation performance of the EKF is also

quite satisfactory and close to reference speed as shown in Fig

(4)-(5).
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In Fig.6 rated mechanical load is applied to the motor between
0.75-1.5 sec. To verify the performance of EKF under loaded
conditions. As shown above EKF works properly even under
fully loaded case. One may decrease steady-state error to very
low levels with appropriate state covariance optimized for steady

state.

CONCLUSION

The following points can be deduced from the previous
results

< The EKF shows high tracking performance for both high and
low speed estimations and close to reference speed. The
high performance is verified for four-quadrant speed.

<If R is large then L is small and the transient performance is
faster. Moreover, if Q is large the L is large and the
transient performance is lower.

< The performance of EKF has been verified under loaded
conditions. The EKF works properly even under fully
loaded case.

< The steady-state error may be decreased to very low levels
with appropriate state covariance optimized for steady-state

case.
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Figure. 1 — High Speed, No-Load, Four Quadrant Speed
Estimation with EKF (in (P/2)* [rad/sec])
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Figure. 2— (Zoomed at steady state) High Speed, No-Load,
Four Quadrant Speed Estimation with EKF at Steady State

(in (P/2)* [rad/sec])
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