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ABSTRACT 

 This paper presents a state estimation technique for speed 

sensorless field oriented control of induction motors. The 

theoretical basis of each algorithm is explained in detail and its 

performance is tested with simulations using MATLAB package 

VER.6.3. 

 A stochastical nonlinear state estimator, Extended Kalman 

Filter (EKF) is presented. The motor model designed for EKF 

application involves rotor speed, dq-axis stator currents. Thus, 

using this observer the rotor speed and rotor fluxes are estimated 

simultaneously. Different from the widely accepted use of EKF, 

in which it is optimized for either steady- state or transient 

operations, here using adjustable noise level process algorithm 

the optimization of EKF has been done for both states; the 

steady-state and the transient-state of operations.   
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INTRODUCTION 

In controlling AC machine drives speed transducers such 

as tacho-generators, revolvers, or digital encoders are used to 

obtain speed information. 

Especially, in defective and aggressive environments, the speed 

sensor might be the weakest part of the system. This would 

degrade the system’s reliability and reduces the advantage of an 

induction motor drive system. This has led to a great many speed 

sensorless vector control methods
[1]

. On the other hand, avoiding 

sensor means use of additional algorithms and added 

computational complexity that requires high-speed processors for 

real time applications. As digital signal processors have become 

cheaper, and their performance greater, it has become possible to 

use them for controlling electrical drives as a cost  effective 

solution. Some relatively new fully digitized methods, used for 

speed sensorless field-oriented control, utilize this enhanced 

processing capacity 
[2-4]

. 

Usually sensorless control is defined as a control scheme 

where no mechanical parameters like, speed and torque, are 

measured. Traditional vector control systems use the method of 

flux and slip estimations based on measurements of the phase 

currents and DC link voltage of the inverter, but this has a large 

error in speed estimation particularly in the low-speed range. 

MRAS (model reference adaptive system) techniques are also 

used to estimate the speed of an induction motor 
[5-7]

. These also 
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have a speed error in low-speed range and settle to an incorrect 

steady-state value. In recent years, non-linear observers are used 

to estimate induction motor parameters and states 
[8-12]

. 

 

GENERAL THEORY ON OBSERVERS  

Estimation of unmeasurable state variables is commonly 

called observation. A device (or a computer program) that 

estimates or observes the states are called a state-observer or 

simply an observer An observer can be used to estimate states 

which cannot be measured, or where the measurements are 

corrupted by noise. If a system can be described in discrete time 

as: 

 

    x(k+1)=Ax(k)+Bu(k)                                                          (1) 

 

    y(k) =C x(k) 

 

and the system is observable, i.e. the observability matrix, oM , 

has full rank 1, the states can be estimated by (2) where,    
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)1k(x̂  = A )k(x̂ +B u(k) 
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)1k(x̂  =A )k(x̂ +Bu(k)+L(y(k+1)– C )1k(x̂  )                           (2) 

 

The error of the observer is defined by: 

 

            e(k) ̂  x(k) - )k(x̂  

 

e(k+1) ̂ (A-LCA)e(k)                                                       (3) 

 

where L is the observer gain 

 

Kalman filter  

When applied to a physical system, the observer described above 

will be under the influence of two noise sources; process noise 

(thermal noise) and measurement noise (quantization noise). 

Considering these two noise sources, Eq.1 can be rewritten as: 

 

x(k + 1) = Ax(k) + Bu(k) + Gv(k)                                             (4) 

 

y(k) = Cx(k) + w(k) 

       

where v(k) is the process noise and w(k) is the measurement 

noise.v(k) and w(k) will be regarded as zero mean, uncorrelated 

white noise sequences with covariances  V1(k) and V2(k). The 

objective of the Kalman algorithm is to determine a gain matrix, 
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L, which minimizes the mean square of the error, e. This can be 

achieved with the following algorithm, 

  

  )k(x̂ ( nk ) ̂E )n(y),...,3(y),2(y),1(y)k(x                                      (5) 

 

   Q(k+1) ̂E )1k(e),1k(e T   

 

State estimate time update: 

 

)k(x̂ ( 1kk  )= A(k-1) )k(x̂ ( 1k1k  ) + B(k-1) u(k-1)                (6)                             

 

Covariance Time update: 

 

Q(k) =A(k-1) Q(k-1) A T (k-1) + B(k-1) V 1 (k-1) B T (k-1)         (7) 

 

Kalman Gain Matrix 

 

L(k)=Q(k) C T (k) [C(k) Q(k) C T (k) + V 2 (k)] 1                         (8) 

 

State estimation measurement update: 

 

 )k(x̂ ( kk )= )k(x̂ ( 1kk  )+L(k)[y(k)-C )k(x̂ ( 1kk  )]                  (9) 

 

If anything but x kept constant, the covariance matrix will  

converge towards the solution to the discrete Riccati equation: 
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                                                                                                  (10) 

 

where 

 

                                                                                                  (11) 

 

Since the variables in Riccati equation (10) are matrices, it 

is rather complicated to solve symbolically.  

 

Extended Kalman Filter 

An Extended Kalman Filter is a recursive optimum state-

observer that can be used for the state and parameter estimation 

of a non-linear dynamic system in real time by using noisy 

monitored signals that are distributed by random noise. This 

assumes that the measurement noise and system noise are 

uncorrelated. In the first stage of the calculations, the states are 

predicted by using a mathematical model (which contain 

previous estimates) and in the second stage; the predicted states 

are continuously corrected by using a feedback correction 

scheme. This scheme makes use of actual measured states, by 

adding a term to the predicted states (which is obtained in the 

first stage). The additional term contains the weighted difference 

of measured and estimated output signals. Based on the deviation 

from the estimated value, the EKF provides an optimum output 

value at the next input instant. In an induction motor drive the 

EKF can be used for the real-time estimation of the rotor speed, 

)()()()()()()()()( 1
1 kAkQkCkLGVkGkAkQkAkQ TT

vv  

1
2 )()()()()[()()()(  kVkCkQkCkCkQkAkL T
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but it can also be used for state and parameter estimation. For this 

purpose the stator voltages and currents are measured and, for 

example, the speed of the machine can be obtained by the EKF 

quickly and precisely 
[14]

. 

 

Motor Model for EKF 

The model for induction motor developed in stationary 

reference frame and used in 
[13]

, and  
[9] 

is given below: 
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                                                             (13) 

 

where, Lr, Ls, Lm are rotor, stator and main inductance.  Tr, and 

Ts are rotor and stator time constants. 

The application of Eq.12 to the EKF will give not only the 

rotor speed, but also the rotor flux-linkage components (and 

consequently the angle and modulus of the rotor flux-linkage 
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space-vector will also be known). This is useful for high 

performance field-oriented drive implementations.  

 

Discretized Augmented Machine Model 

The motor equations are converted to the standard form: 

  

    
dt

dx
=A x + B u                                                                 (14)                               

       y = C x 

 

And then discretized for the digital implementation of EKF as: 

   

   x(k+1)=A dx(k)+B d u(k)                                          (15)                               

 

   y(k)=C dx(k) 

 

A d and B d  matrices in the (15) are discretized system and input 

matrices, respectively. They are: 

 

A d=
ATe  I+AT+(AT) 2 /2                                        (16) 

 

B d = 


T

0

Ae B d BT+ABT 2 /2                              (17) 

C d=C 
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where  T is the sampling time. When the last terms in (16) and 

(17) are ignored, then very short sampling times, they require, are 

attainable to have a stable and accurate discretized model. 

However, a better approximation is obtained with the 

given second-order series expansion at (16) and (17). In general 

to achieve an adequate accuracy, the sampling-time should be 

appreciably smaller than the characteristic time-constants of the 

machine. The final choice for this should be based on obtaining 

adequate execution time of the full EKF algorithm and also 

satisfactory accuracy and stability. The second-order technique 

obviously increases the computational time. If the second-order 

terms are neglected in (16) and (17) then the discrete form of 

matrices become: 

 

A d=
ATe  I+AT                               (18) 

 

B d = 


T

0

Ae B d BT                               (19) 
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B d =
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  x(k)=  Tr

s

qs

s

ds

s

qs

s

ds )k(w)k()k()k(i)k(i                              (22)  

 

  u(k)=  Ts
qs

s
ds kVkV )()(  

 

By considering the system noise )k( ( v  is the noise vector 

of states), being zero-mean white-Gaussian and independent of 

x(k) with a covariance matrix Q, the system model becomes: 

 

x(k+1)=A dx(k)+B d u(k)+ )k(                                                  (23) 

  

      By considering a zero-mean white-Gaussian measurement 

 (noise in the measured stator currents) which is 

independent of y(k) and )k(  with a covariance matrix R, the 

output equation becomes : 

 

y(k)= C x(k)+w(k)                                                          (24) 
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Determination of the Noise and State Covariance Matrices 

 

To be more specific, the goal of the Kalman filter is to 

obtain unmeasurable states (i.e. covariance matrices Q, R, P of 

the system noise vector, measurement noise vector, and system 

state vector (x) respectively). In general, by means of noise 

inputs, it is possible to take computational inaccuracies, 

modeling errors, and errors in measurements into account in 

modeling the system. The filter estimation ( x̂ ) is obtained from 

the predicted values of the states (x) and this is corrected 

recursively by using a correction term, which is product of the 

Kalman gain (L) and the deviation of the estimated measurement 

output vector and the actual output vector ( ŷy 

gain is chosen to result in the best possible estimated states. 

Thus filtering algorithm contains basically two main 

stages, a prediction stage and a filtering stage. During the 

prediction stage, the next predicted values of the state x(k+1) are 

obtained by using a mathematical model (state variable 

equations) and also the previous values of the estimated states.  

Furthermore, the predicted-state covariance matrix (P) is 

also obtained before the new measurements are made and for this 

purpose the mathematical model and also the covariance matrix 

of the system (Q) are used. In the second stage which is the 

filtering stage, the next estimated states )1k(x̂  , are obtained 

from the predicted estimate x(k+1) by adding a correction term 
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L( ŷy  ) to the predicted value. This correction term is a 

weighted difference between the actual output vector (y) and the 

predicted output vector ( ŷ ), where L is the Kalman gain. Thus 

the predicted state-estimate (and also covariance matrix) is 

corrected through a feedback correction scheme that makes use 

of actual measured quantities. The Kalman gain is chosen to 

minimize the estimation error variance of the states to be 

estimated. The computations are realized by using recursive 

relations. 

A critical part of the design is to use correct initial values 

for the various covariance matrices. These can be obtained by 

considering the stochastic properties of the corresponding noises. 

Since these are usually not known, in most cases they are used as 

weight matrices, but it should be noted that sometimes-simple 

qualitative rules could be set up for obtaining the covariance in 

the noise vectors.  

The system noise covariance matrix (Q) is [5x5], and the 

measurement noise covariance matrix (R) is [2x2] matrix, so in 

general this would require the knowledge of 29 elements. 

However, by assuming that the noise signals are not correlated, 

both Q and R are diagonal, and only 5 elements must be known 

in Q and 2elements in R.However, the parameters in α β 

the diagonal are equal (q11=q22), the third and fourth elements 

in the diagonal of Q are equal (q33=q44), so Q =diag 
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(q11,q11,q33,q33,q55) contains only 3 elements which have to 

be known. Similarly, the two diagonal elements in R are equal 

(r11=r22), thus R=diag (r11, r11). It follows that in total only 4 

noise covariance elements needs to be known. 
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Starting values of the state vector xo and the starting 

values of the noise covariance matrices Qo and Ro are set 

together with the starting value of the state covariance matrix Po, 

where P is the covariance matrix of the state vector. The starting 

state covariance matrix can be considered as diagonal matrix, 

where all elements are equal. The initial values of the matrices 

reflect the degree of knowledge of the initial states: the higher 

their value, the less accurate is any available information on the 

initial states. Thus the new measurement data will be more 

heavily weighted and the covariance speed of the estimation 

process will increase. However, divergence problem or large 

oscillations of the state estimates around the true value may 

occur when too high initial covariance values are chosen. A 

suitable selection allows us to obtain satisfactory speed 

convergence, and avoid divergence problems or unwanted 

oscillations.  
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The accuracy of the state estimation is affected by the 

amount of information that the stochastic filter can extract from 

its mathematical model and the measurement data processing. 

Some of the estimated variables, especially unmeasured ones, 

may indirectly and weakly be linked to the measurement data, so 

only poor information is available to the EKF. After deciding 

how to initialize the covariance matrices, the next step is 

prediction of the state vector. 

 

EKF Algorithm 

a. prediction of the  state vector 

    Prediction of the state vector at sampling time (k+1) from 

the input u (k), state vector at previous sampling time, 
kk

X , by 

using Ad and Bd is obtained from 

 

x
1kk 
= A dx kk

+ B d u(k)                                  (26) 
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1kk 
= F(k+1,k, x
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,u(k))                    (27) 
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   h ̂C d x
1kk 
=
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    The notations x
1kk 
means that it is a predicted value at the 

(k+1)-th instant, and it is based on measurements up to k-th 

instant. In the following steps of the recursive EKF computation, 

covariance matrix of prediction is computed. 

 

b. prediction covariance computation 

   The prediction covariance is updated by: 
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The next step is the computation of the Kalman filter gain matrix. 

 

c. kalman gain computation 

The Kalman filter gain (correction matrix) is computed as; 

x

h




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1T

1kk

T

1kkk ]RNNP[NPL 


  Where N=                                  (32) 

                                                                      

d. state vector estimation 

    The predicted state-vector is added to the innovation term 

multiplied by Kalman gain to compute state-estimation vector. 

The state-vector estimation (filtering) at time (k) is determined 

as: 

 

)ŷy( kkk1kkkk



Lxx                                                             (33) 

 

Where 

 

1kkdkŷ


 XC                                                                         (34) 

 

e. estimation covariance computation 

The last step is estimation covariance computation as ; 

)ŷy( kkk1kkkk



LPP                                                             (35) 

After all steps executed, set k=k+1 and start from the step-a to 

continue the computation recursively. 

State Estimation Simulations with EKF 

   In this part, the state estimation performance of EKF is 

simulated. The simulation is implemented with Matlab. In this 

simulation input voltages and measured currents in stationary 

reference frame are produced by FOC simulation 
[15]

.  

1
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
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kk
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In the simulation parameters of a 1-hp motor are used. 

Base excitation frequency is 60 Hz. The observable states in this 

model as mentioned previously:  

 

 

 

 

In Fig.1 speed reversal at no-load is given with reference speed. 

The estimated speed and the reference speed (linear) are plotted 

together. 

Measurement and state covariances are chosen so that both 

the transient and steady state speed errors be optimized. One may 

error speed choose different covariance and obtain almost zero 

steady-state speed error with a poor transient speed estimation as 

shown in Fig. 2 or vice versa. 

In the case of Fig.3 simulation, state covariance is 

decreased; the algorithm begins to behave such that the state 

space model gives more accurate estimates compared to measure 

values so it assigns less importance to the measurements. This 

causes a decrease in Kalman gain, which reduces the correction 

speed of the currents. In the extra time used for current correction 

the algorithm finds opportunity to decrease the steady-state error. 

Low speed estimation performance of the EKF is also 

quite satisfactory and close to reference speed as shown in Fig 

(4)-(5).  
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In Fig.6 rated mechanical load is applied to the motor between 

0.75-1.5 sec. To verify the performance of EKF under loaded 

conditions. As shown above EKF works properly even under 

fully loaded case. One may decrease steady-state error to very 

low levels with appropriate state covariance optimized for steady 

state. 
 

 

CONCLUSION 

The following points can be deduced from the previous 

results: 

 The EKF shows high tracking performance for both high and 

low speed estimations and close to reference speed. The 

high performance is verified for four-quadrant speed. 

 If R is large then L is small and the transient performance is 

faster. Moreover, if Q is large the L is large and the 

transient performance is lower. 

 The performance of EKF has been verified under loaded 

conditions. The EKF works properly even under fully 

loaded case.  

 The steady-state error may be decreased to very low levels 

with appropriate state covariance optimized for steady-state 

case.  
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Figure. 1 – High Speed, No-Load, Four Quadrant Speed 

Estimation with EKF (in (P/2)* [rad/sec]) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2– (Zoomed at steady state) High Speed, No-Load, 

Four Quadrant Speed Estimation with EKF at Steady State 

(in (P/2)* [rad/sec]) 
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Figure. 3- High Speed, No-Load, Speed Estimation with EKF 

–Steady State Performance Optimized (in (P/2)* [rad/sec]) 

Figure. 4– Low Speed, No-Load, Four Quadrant Speed 

Estimation with EKF( in (P/2)*[rad/sec]) 
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Figure. 5– (Zoomed) Low Speed, No-Load, Speed 

Estimation with EKF at   Steady State to Transient 

State (in (P/2)* [rad/sec]) 

 

Figure. 6- High Speed, Full-Load, Speed Estimation with 

EKF (in (P/2)* [rad/sec])  
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 تخميه السرعة باستخدام تقنية مرشح كالمان الموسع

 أياد قاسم حسين
 كمية التقنيات الكهربائية والإلكترونية

 مدرس مساعد 

 الخلاصة

حخوصادهاه( State Estimation)ناول هذا اهاحث اقهتةنيادهت ايااهاحات يا ا هيت
ياادهتاا هثعالياادهاحطاايل مهحلااااو هاحالااااهحلا  يااو هاح ايااديهالطااخهاحنم ياادهحياا هخلا  ا

ههMATLABشاااا  أوهلاختثااااو هاااخأااااوهثاطااااتخاا هاحا ويااااومه ااااا هاح ةيثاااادهاحث اايااااده
(هحتخااي هEKFيهفا هذا اهاحث اقهتا هاطاتخاا ها شااهيوحااو هاحالطا ه هه6.3الصاا ه

احات ي ا هاحلاخليادهلدااهت اا هناال مهاحا ا ره ح ا قهتلثياكها شااهيوحااو (ه لا ه
 ي(Stator)حاوث هحلا  رهتيو ا هاحا ءهالهه(Rotor)ط  دهاحا ءهاحالا ه

ياا اهفااو هدااي هطاا  دهاحااا ءهاحااالا هلاحناايقهاحنااوتءه اا هتيااو ا هاحااا ءهههههههههاحااالا هلذ
 ه ااا هاحا شاااهههههههشااا ههيهاه(observer)ت ااااهدياأااوه"نيااوخهثوطااتخاا هذاا اهاح اصاااه

 Optimization)تنمااااااي هاطااااااتلسهاح ل ااااااوءهثوطااااااتخاا هخلا  ايااااااو هااوحيااااااده

Algorithms)اطااتة مهلاتنتةوحياادهحلاطااتاوثدهاحعااوث مهحات ياا هاحطاا  دهحلا اا رهل وحاادهاححه
ههه يههه( Induction Motor )اح ا ه

ه
ه
ه

 الكممات الدالة 
ها  ره ا ه،ها شاهيوحاو ه،هتخاي هه،ها ويومهه
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