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ABSTRACT  

This paper deals with the linear elastic behavior of 

thick circular plates on Winkler type elastic foundations 

with both compressional and tangential resistances. The 

finite element method with different isoparametric thick 

plate and brick finite elements are used to solve problems, 

which were previously solved by the finite difference 

method.  Good agreement was noticed between the 

different methods   
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NOMENCLUTURES   

Symbols Description 

a Radius of circular plate. 

[B] Strain-displacement matrix. 

c2 Correction factor for transverse shear. 

D Flexural rigidities of isotropic plates. 

[D] Matrix of elastic constants. 

E Modulus of elasticity of isotropic plates. 

Fr,Fθ Horizontal frictional forces in r andθ  directions. 

G Shearing modulus for isotropic plates. 

h Plate thickness. 

[J] Jacobian matrix. 

[K] Element stiffness matrix for plate-foundation 

system. 

[Kf] Stiffness matrix for the foundation. 

[Kp] Stiffness matrix for the plate. 

Kr,Kθ,Kz Moduli of subgrade reactions in r, θ and z 

directions. 

Mr, Mθ Bending moments in rz and θz planes (per unit 

width). 

Mrθ Twisting moments (per unit width) in r and θ 

direction. 

[N] Matrix contains the interpolation shape functions 

N1,N2… Shape functions. 

P Applied concentrated load.  
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NOMENCLUTURES- 

Continued   

Symbols Description 

Qr, Qθ Transverse shearing force per unit area width in r 

and θ direction. 

q(r,θ) Transverse load per unit area in r, θ direction. 

u,v Displacements in r and θ directions 

w Displacement in z-direction. 

wc Displacement in z-direction at centre of plate. 

  nodal displacements. 

{δ} Total displacements in the system. 

εr, εθ, εz Normal strains in r, θ and z directions. 

ξ,ή Local coordinates system. 

μr, μθ External moments per unit area in rz and θz-

planes 

ν  Poisson ratio of isotropic material. 

ψr,ψθ Rotations of the transverse sections in rz and θz - 

planes. 

γ rθ,γrz,γθz Engineering shearing strains in rθ, rz and θz- 

planes.  

τrθ,τrz,τ θz  Shearing stresses in rθ, rz and θz- planes. 

σr,σθ,σz Normal stresses in r, θ and z directions. 

 

INTRODUCTION 

Circular plates are plane structures of constant or variable 

thickness and bounded by two surfaces which are the top and 

bottom faces of the plate and by curved transverse edges. They can 
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sustain generalized transverse loads by the development of bending 

and twisting moments and by transverse shearing forces in the 

transverse sections of the plate.  

The problem of thick circular plates on elastic foundations 

was investigated by Naghdi and Rowely (1953)[10]. They extended 

Reissner’s theory of thick plates to include the effect of elastic 

foundations that would behave according to the classical Winkler 

assumption. Only problems of axially symmetric bending of thick 

infinite plates on Winkler foundations were considered.  

Fredrick (1956) modified the basic equations of Reissner’s 

theory to include an elastic foundation in the same manner of 

Naghdi and Rowely. Fredrick presented the solution of 

axisymmteric and asymmetric isotropic thick circular plates on 

elastic foundations using Bessel functions. The results were given in 

tables for different plate thickness to radius ratios and the 

comparisons between an infinite and a finite circular plate on an 

elastic foundation were shown in graphical plots [4]. 

         Perakatte and Lehnhoff (1971) used Mindlin’s linear shear 

deformation theory of elastic isotropic thick plate for solving axially 

symmetric deformation of uniform circular plates with static loads. 

The flexural equilibrium equations are solved for (12) specific cases 

of loading and boundary conditions. The solutions and numerical 
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results are presented in non-dimensional forms with a shear 

correction factor (c2=0.86) [11]. 

 Many investigators have presented higher-order theories for 

thick plates. Schmidt (1977) and Levinson (1980) presented a theory 

for thick isotropic plates of uniform thickness including transverse 

shearing deformations. In this theory, the cross sections are allowed 

to warp in such a fashion that they remain normal to the shear free 

faces of the plate (thus not requiring a transverse shear correction 

factor). Mindlin’s plate theory and the theory developed by Schmidt 

and Levinson lead to the same results if the shear correction factor 

in Mindlin’s theory is taken to be (c2=5/6) [7,14]. 

  Liu and Solecki (2001) studied an infinite thick plate on 

Winkler foundation. The effect of shear between the plate and the 

foundation on the deflection and the stresses was analyzed. It is 

assumed that the foundation has stiffness Kfs (the force needed to 

produce a unit displacement per area) and reacts in compression as 

well as tension. The effect of a concentrated normal unit force is 

investigated. The solution is based on Airy stress function 

formulation. In particular, the following two special cases are 

studied; first deflections of a relatively thin plate are compared to 

the results obtained by Timoshenko and Woinowsky Krieger, which 

give excellent correlation. Second when the thickness becoming 

(5-34) 5 
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infinite, the solution of Boussinesq’s problems is readily recovered 

[8]. 

          In this paper, Mindlin’s thick plate theory is used to analyze 

thick circular plates on elastic foundations subjected to generalized 

loadings which are externally distributed shearing forces at top and 

bottom faces of the plate and distributed moments, in addition to the 

usually applied transverse loads. The transverse section has three 

degrees of the freedom (the deflection w and the two rotations of the 

normal line to the middle plane ψ r and ψ θ in case of plate bending 

element) or (the deflection w and the displacements u and v in case 

of brick elements). The elastic foundation is represented by a 

Winkler model, which is assumed that the base is consisting of 

closely spaced independent linear springs for normal and tangential 

reactions as shown in figure (1). 

  

FINITE ELEMENT MODEL 

The two-dimensional isoparametric thick plate element in 

local coordinates  and  has n nodes [5]. Each node i has three 

degrees of freedom. They are (wi, ri, i) in polar cylindrical 

coordinates. Thus, the element degrees of freedom may be listed in 

the vector (or column matrix). 

 

{e} =[w1, r1, 1,………….. wni, rn,n]    

(6-34) 6 
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 The family of elements and polynomials are indicated in 

figure (2). 

           For the eight-node isoparametric quadrilateral element, the 

shape functions are: 
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The degrees of freedom in polar cylindrical coordinate 

),,w( irii  can be defined as: 
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 The r andθ  coordinate can be defined as: 
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Thus, the geometry and the assumed displacement field are 

described in a similar fashion using the shape functions and the 

nodal values (thus, the name of isoparametric element is given). 

The Jacobian matrix [J] is obtained from the following 

expression: 
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The inverse of Jacobian matrix [J]-1can be readily obtained by 

using standard matrix inversion techniques: 
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The shape function derivatives are calculated from the 

expression: 
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      The strains in polar cylindrical coordinates are obtained: 
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The strain matrix [Bi] contains shape function derivatives 

which may be calculated from the Expression (6) and r, which may 

be calculated at the Gauss point, coordinates from Expression (3) 

The generalized stress-strain relationship for a plate of thick 

isotropic plate in polar cylindrical coordinates is written as: 
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where D=E.h3/ 12(1- 2ν ) is the flexural rigidity of  the section of the 

plate.  

or 
 

 }{ε[D]}{σ ee =                                                     ... (10) 
 

where [D] is the matrix of elastic constants for elastic thick plate in 

polar cylindrical coordinates. 

         Similarly, the stress at any point within the element for a plate 

can be expressed as: 

 

}[S]{δ}[D][B]{δ}{σ eee ==                                       ... (11) 
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The element stiffness matrix for isotropic elastic plates in 

polar coordinates is given as: 
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where [D] is given in equation (9) for isotropic plates. 

For a foundation represented by Winkler model for both 

compressional and frictional resistances for a thick plate element, 
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In polar cylindrical coordinates: 
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The element stiffness matrix for the plate–foundation system 

is given as: 

 

[K]= [KP] + [Kf]                                   ... (15) 

 

The twenty-node isoparametric brick element shown in figure 

(3) is used in the analysis. The element in local coordinates ζ)η,ξ,(  

at node i has the nodal displacements ui, vi and wi respectively [6]. 

Thus,  
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where, Ni ),,(   represents the shape functions for the global 

coordinates x ),,(   ,y ),,(  , z ),,(    at node i. The shape 

functions for twenty node elements are shown in Table (1). 

   

          In polar cylindrical coordinates: 
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where r,  and z are the polar cylindrical coordinates at any point 

and ii ,r   and zi are the nodal coordinates(for node i).. 

 

The Jacobian matrix i can be expressed as: 
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By substituting of Equation (17) in Equation (18), the 

Jacobian matrix [J] is constructed in the form: 
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The inverse of Jacobian matrix can be written as: 
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The strain matrix in polar cylindrical coordinates can be 

written as: 
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The strain matrix [Bi] contains the shape function derivatives 

         In polar cylindrical coordinates the stresses are calculated 

from the expression: 
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where, 
( ) ( ) ν)2(1

E
andG

2ν-1ν)(1

E.ν
D,

2ν-1ν)(1

ν)E.(1
D 21

+
=

+
=

+

−
=  

in which D1 and D2 are the elastic constant for the isotropic elastic 

material and G is the shear modulus for the isotropic material. 

or 

}[D]{ε}{σ ee =                                    ... (24) 

       

The element stiffness matrix in polar cylindrical coordinates 

is given as: 

 

dζηddetJd]r [D][B][B][K
n
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1

1

1

i

T

ip    
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+

−

+

−

+

−

=                      ... (25) 

 

where D is the elastic constant matrix given in Equations (23). 

 

For a foundation represented by Winkler model for the both 

compressional and frictional resistances on a brick element, the 

stiffness matrix. 
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where,  
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In polar cylindrical coordinates: 
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                                  …(27) 

 

The element stiffness matrix for the plate –foundation system 

is given as: 

 

[K]= [KP] + [Kf]                                   ... (28) 

 
         The finite element methods in polar cylindrical coordinates are 

used to analyze circular plate by using 9 isoparametric plate bending 

elements with 8 nodes over a quarter of the plate or 9 isoparametric 

brick elements with twenty nodes. The mesh of the finite element is 

shown in figure (4).  

 

 

 (17-34) 17

22 



Tikrit Journal of Eng. Sciences/Vol.13/No.4/December  2006 

 

   

APPLICATIONS 

Two cases of thick circular plates on elastic foundations are 

considered in this paper. The cases are a simply supported and a 

fixed edge plate under uniform distributed load as shown in figure 

(5).  

   

DISCUSSION 

1. For the simply supported edge circular plate, figures (6) and 

(7) show the deflection profiles and bending moment diagram 

in r-direction by both the finite difference [Al-Azzawi (1995) 

[2]] and the present study. The results show good agreement 

by these two methods. The difference in central deflection is 

1.53% and in central moment is 0.99 % in case of plate 

bending element and the difference in central deflection is 

1.42 % and in central moment is 0.39 % in case of brick 

element.  The difference in results with the exact solutions in 

central deflection is 0.36 % and in central moment is 0.57 % 

in case of brick element [15].  

 

2. For the clamped edge plate figures (8) and (9) show the 

deflection profiles and the bending moment diagram in r-

direction by both the finite difference   [Al-Azzawi (1995) [2]] 

and the present study. The difference in central deflection is 
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1.75 % and in central moment 0.68 % in case of plate bending 

element and the difference in central deflection is 1.74 % and 

in central moment 0.57 % in case of brick element. The 

difference between the present study and the exact solutions 

in central deflection is 0.79 % and in central moment 0.35 % 

in case of brick element [15].  

Parametric Study 

To study the effects of elastic foundations and thickness on 

the behavior of thick circular plates, a simply supported thick plate 

with is studied (Kr=Kθ =20000 kN/m3) as shown in figure (10). The 

loading was taken to be uniformly distributed load (q=25 kN/m2). 

The effects of variation of vertical and horizontal subgrade reactions 

on the results of central deflections and bending moments of thick 

circular plates are considered. The following points are concluded 

from the study of the variation of vertical and horizontal subgrade 

reactions. 

• To show the effect of variation of vertical subgrade reaction 

on the results, a circular plate with clamped edge and resisted 

by vertical subgrade reaction of various values (neglecting the 

effect of frictional restraints) are studied. Figures (11) and 

(12) show the variation of the vertical subgrade reaction on 

the central deflection and bending moment. From these 

figures the central deflection and central moment will 
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decrease as the vertical subgrade reaction is increased because 

of increasing foundation stiffness (resistance to deflection). It 

was found that by increasing the vertical subgrade reaction 

from (0.0 to 30000 kN/m3), the central deflection is decreased 

by 0.20 % and the central moment is decreased by 0.25 % [1]. 

• To show the effect of variation of horizontal subgrade 

reaction, a simply supported thick plate with vertical subgrade 

reaction (Kz=10000 kN/m3) and horizontal subgrade reactions 

of various values of (Kr and Kθ) are considered. Figures (13) 

and (14) show the variation of horizontal subgrade reaction 

(Kr and Kθ) with central deflection and central bending 

moment. From these figures, a reduction on central deflection 

and bending moment occurs as the horizontal subgrade 

reactions are increased. It was found that by increasing the 

horizontal subgrade reaction from (0.0 to 30000 kN/m3), the 

central deflection is decreased by 0.34125% and the central 

moment by 0.43383%  [1]. 

• To study the effect of thickness (or stiffness) of plate on the 

results of central deflection and central moment, a simply 

supported plate with various thicknesses is considered. 

Figures (15) and (16) show the effect of variation of thickness 

of the plate on central deflection and bending moment of the 

thick circular plate. From these figures, the central deflection 
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will decrease as the thickness of the plate is increased because 

the stiffness of plate increased. But, the central resisting 

moment will increase as thickness of the plate increased 

because of increasing stiffness. It was found that by 

increasing the thickness of the thick plate from (0.15 to  0.3 

m), the central deflection is decreased by 96.21 % and the 

central resisting moment is increased by 75% [1].  

 

CONCLUSIONS 

1. The results from the finite element method are plotted with 

the results by finite differences. Good agreement is obtained 

between these methods.  

2. The effect of distributed moments are small on transverse 

deflections of plates and on stress resultants. 

3. The effect of varying the modulus of elastic foundation on the 

deflections and internal stress resultants of thick plates 

becomes slowly insignificant as the thickness increase. 

4. The effect of thickness (stiffness) of plates on deflection is 

found to be more significant than the effect on stress 

resultants.  
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Table (1): Shape Functions for Twenty Node Isoparametric 

Brick Element. 

 

Local node 

number 

iξ  iη  iζ  ),,(N i   

i=1,3,5,7,13, 

15,17,19 

 1  1  1 ))(1)(1)(1(
8

1
iiiiii +++++

 

i=2,6,14,18 

 

0  1  1 
)1)(1)(1(

4

1
ii

2 ++−  

i=9,10,11,12  1 0  1 
)1)(1)(1(

4

1
i

2
i +−+  

i=4,8,16,20 

 

 1  1 0 
)1)(1)(1(

4

1 2
ii −++  

 

 

 

 

 

 

 

 

 

 

 (24-34) 24

9 



Tikrit Journal of Eng. Sciences/Vol.13/No.4/December  2006 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): Winkler Compression and Friction Model. 
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Figure (2): Types of Two-dimensional Isoparametric 

Elements for Thick Plates. 
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Figure (3): 20-node Isoparametric Brick Element. 
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Figure (4): Finite Element Mesh.  
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Figure (5): Circular Plate Geometry and Loading. 
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Figure (6): Deflection Profile in r- Direction for 

Simply Supported Thick Circular Plate. 
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Figure (8): Deflection Profile in r- Direction for 

Clamped Thick Circular Plate. 
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                 Figure (10): Circular Plate Properties and Loading. 
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Figure (11): Effect of Vertical Subgrade Reaction on Central 

Deflection of Clamped Circular Plate.  
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Figure (12): Effect of Vertical Subgrade Reaction on Central 

Moment of Clamped Circular Plate. 
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Figure (13): Effect of Horizontal Subgrade Reaction on 

Central Deflection of Clamped Circular Plate. 
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Figure (15): Effect of Thickness on Central Deflection of 

Clamped Thick Circular Plate.  
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Figure(14): Effect of Horizontal Subgrade Reaction on 

Central Moment of Clamped Circular Plate. 
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Figure (16): Effect of Thickness in Central Moment of 

Clamped Thick Circular Plate.  
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 لالواح الدائرية السميكةلالعناصر المحددة بتحليل ال
  المسندة علي اسس مرنةو  

 

 د. رياض جواد عزيز                                د. عادل عبدالامير العزاوي 

 مدرس                                               استاذ مساعد     

 جامعة النهرين–قسم الهندسة المدنية 

 مصطفى حميد العلاف                                   

 باحث                                     

 جامعة النهرين–قسم الهندسة المدنية 
 

  الخلاصة
هذا البحث يتناول دراسة التصرف الخطي  المرن للصفائح السميكه الدائريه 

تبار مقاومات الانضغاط المسنده على اسس مرنه من نوع ونكلرمع الاخذ بنظر الاع
والاحتكاك بين التربه والصفائح . تم استخدام طريقة العناصر المحدده)عنصر الصفيحة 
السميكة والعنصر الطابوقي( لحل مجموعة من المسائل التي سبق وان حلت بطريقة 

 الطريقة المستخدمة.    ءةالفروق المحددة وقد وجد ان هنالك توافق جيد مما يدل على كفا
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