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ABSTRACT
This paper deals with the linear elastic behavior of

thick circular plates on Winkler type elastic foundations
with both compressional and tangential resistances. The
finite element method with different isoparametric thick
plate and brick finite elements are used to solve problems,
which were previously solved by the finite difference
method.  Good agreement was noticed between the

different methods
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NOMENCLUTURES

Symbols Description

a Radius of circular plate.

[B] Strain-displacement matrix.

c? Correction factor for transverse shear.

D Flexural rigidities of isotropic plates.

[D] Matrix of elastic constants.

E Modulus of elasticity of isotropic plates.

Fr,Fo Horizontal frictional forces in r and6 directions.

G Shearing modulus for isotropic plates.

h Plate thickness.

[J] Jacobian matrix.

[K] Element stiffness matrix for plate-foundation
system.

[Ks] Stiffness matrix for the foundation.

[Ko] Stiffness matrix for the plate.

K., Ko, K; Moduli of subgrade reactions in r, 6and z
directions.

M;, My Bending moments in rz and 0z planes (per unit
width).

M:o Twisting moments (per unit width) in r and 0
direction.

[N] Matrix contains the interpolation shape functions

N1,Na... Shape functions.

P Applied concentrated load.
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NOMENCLUTURES-
Continued

Symbols
QI’) Qe

q(r,0)
UV

\Ifr,\lfe
Y 10,Yrz,Y6z

TrG,TrZ,T 0z

Gr,Ge,Gz

INTRODUCTION

Description

Transverse shearing force per unit area width in r
and 0 direction.

Transverse load per unit area in r, 6 direction.
Displacements in r and 0 directions
Displacement in z-direction.

Displacement in z-direction at centre of plate.
nodal displacements.

Total displacements in the system.

Normal strains in r, 6 and z directions.

Local coordinates system.

External moments per unit area in rz and 6z-
planes

Poisson ratio of isotropic material.

Rotations of the transverse sections in rz and 0z -
planes.

Engineering shearing strains in 10, rz and 0z-
planes.

Shearing stresses in r0, rz and 0z- planes.

Normal stresses in r, 0 and z directions.

Circular plates are plane structures of constant or variable

thickness and bounded by two surfaces which are the top and

bottom faces of the plate and by curved transverse edges. They can
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sustain generalized transverse loads by the development of bending
and twisting moments and by transverse shearing forces in the
transverse sections of the plate.

The problem of thick circular plates on elastic foundations
was investigated by Naghdi and Rowely (1953)[%, They extended
Reissner’s theory of thick plates to include the effect of elastic
foundations that would behave according to the classical Winkler
assumption. Only problems of axially symmetric bending of thick
infinite plates on Winkler foundations were considered.

Fredrick (1956) modified the basic equations of Reissner’s
theory to include an elastic foundation in the same manner of
Naghdi and Rowely. Fredrick presented the solution of
axisymmteric and asymmetric isotropic thick circular plates on
elastic foundations using Bessel functions. The results were given in
tables for different plate thickness to radius ratios and the
comparisons between an infinite and a finite circular plate on an
elastic foundation were shown in graphical plots [,

Perakatte and Lehnhoff (1971) used Mindlin’s linear shear
deformation theory of elastic isotropic thick plate for solving axially
symmetric deformation of uniform circular plates with static loads.
The flexural equilibrium equations are solved for (12) specific cases

of loading and boundary conditions. The solutions and numerical
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results are presented in non-dimensional forms with a shear
correction factor (c?=0.86) [,

Many investigators have presented higher-order theories for
thick plates. Schmidt (1977) and Levinson (1980) presented a theory
for thick isotropic plates of uniform thickness including transverse
shearing deformations. In this theory, the cross sections are allowed
to warp in such a fashion that they remain normal to the shear free
faces of the plate (thus not requiring a transverse shear correction
factor). Mindlin’s plate theory and the theory developed by Schmidt
and Levinson lead to the same results if the shear correction factor
in Mindlin’s theory is taken to be (c?=5/6) [""14],

Liu and Solecki (2001) studied an infinite thick plate on
Winkler foundation. The effect of shear between the plate and the
foundation on the deflection and the stresses was analyzed. It is
assumed that the foundation has stiffness Ky (the force needed to
produce a unit displacement per area) and reacts in compression as
well as tension. The effect of a concentrated normal unit force is
investigated. The solution is based on Airy stress function
formulation. In particular, the following two special cases are
studied; first deflections of a relatively thin plate are compared to
the results obtained by Timoshenko and Woinowsky Krieger, which

give excellent correlation. Second when the thickness becoming
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infinite, the solution of Boussinesq’s problems is readily recovered
[81

In this paper, Mindlin’s thick plate theory is used to analyze
thick circular plates on elastic foundations subjected to generalized
loadings which are externally distributed shearing forces at top and
bottom faces of the plate and distributed moments, in addition to the
usually applied transverse loads. The transverse section has three
degrees of the freedom (the deflection w and the two rotations of the
normal line to the middle plane v and v in case of plate bending
element) or (the deflection w and the displacements u and v in case
of brick elements). The elastic foundation is represented by a
Winkler model, which is assumed that the base is consisting of
closely spaced independent linear springs for normal and tangential

reactions as shown in figure (1).

FINITE ELEMENT MODEL

The two-dimensional isoparametric thick plate element in
local coordinates & and n has n nodes Bl. Each node i has three
degrees of freedom. They are (wi, wi, wei) in polar cylindrical
coordinates. Thus, the element degrees of freedom may be listed in

the vector (or column matrix).

{66} :[Wl, A R V¢ P Whi, \Vrn,\ven]

(6-34)
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The family of elements and polynomials are indicated in
figure (2).
For the eight-node isoparametric quadrilateral element, the

shape functions are:

N, =(1-9-n)(1+E+n)/4
N, =(1-&")(1-n)2

Ny =1+ -m(E-n-1)/4
N, =(1+&(1-n")2

Ng =(1+(I+n)(E+n-1)/4
Ng =(1-&)(1+n)(-E+n-1)/4
N; =(1-9(1-n)(-L+n-1)/4
N, = (1-§)(1-n°)/2

The degrees of freedom in polar cylindrical coordinate

()

(W;, W, W )can be defined as:

w(&,m) :Zl:Ni-Wi
Wr(gaﬂ):_z::Ni-Wri . (2)

W@(fiﬂ):gNi-V/a

The r and® coordinate can be defined as:
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r&)=> N
i

0(5) =Zn:Ni9i
iz

. (3)

Thus, the geometry and the assumed displacement field are
described in a similar fashion using the shape functions and the
nodal values (thus, the name of isoparametric element is given).

The Jacobian matrix [J] is obtained from the following

expression:
o d] [N oN
_lee ee|_ & et ee
[J]= o oo _Zl N, N, . (4)
om on]  |on ' o'

The inverse of Jacobian matrix [J]*can be readily obtained by

using standard matrix inversion techniques:

% o . b _d
a1 | o or | _ 8r] 8‘%
] = a_é @r “Gew| o o .. (5)

50 09 o ¢
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The shape function derivatives are calculated from the

expression:
N, N 2 oN; o
or o or on or (6)
N, N, & oN; o
00 o5 09 on 09

where %@% and @ are obtained from [J] ™.
or or 09 09

The strains in polar cylindrical coordinates are obtained:

o N g
) 0
) | N1y
“o 16N r@lele N
Yo Zl roo  or ks (7)
er % —Ni 0 \Vel
YGZ al’
ON; N,
| 100 i
or
n
%)= % [Bi]{ée} .. (8)
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The strain matrix [B;] contains shape function derivatives
which may be calculated from the Expression (6) and r, which may
be calculated at the Gauss point, coordinates from Expression (3)

The generalized stress-strain relationship for a plate of thick

isotropic plate in polar cylindrical coordinates is written as:

M) [D vD 0 0 0 Jfe,

M,| |vD D (1_ov)D 0 0 |lg,

M= 0 0 > 0 0 Yo .. (9)
Q, 0 O 0 c2Gh 0 ||7=
Q) [0 O 0 0  cGh|lYe

where D=E.h%/ 12(1-v?) is the flexural rigidity of the section of the
plate.

or

{c"}=ID] {¢"} . (10)

where [D] is the matrix of elastic constants for elastic thick plate in
polar cylindrical coordinates.
Similarly, the stress at any point within the element for a plate

can be expressed as:

{c"}=[DI[BI$"}=[S{5"} - (11)

(10-34)
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The element stiffness matrix for isotropic elastic plates in

polar coordinates is given as:

n +1+1

[K,]=>[ [[B.1"[DI[B Irdetidzdn

i=1 11

where [D] is given in equation (9) for isotropic plates.

.. (12)

For a foundation represented by Winkler model for both

compressional and frictional resistances for a thick plate element,

the stiffness matrix:

_[RW] 0 0 0 0
0 [Ryy] 0 0 0
[Kel=f 0 0 [Ry] 0 0
0 0 0 [Rw] 0
i 0 0 0 0 [RW]_nxn
where,
K¢y O 0
[Rwl=| 0 Kg O
0 0 K

In polar cylindrical coordinates:

Ky, = [L[N,.K,.rdetd.dédn

.. (13)
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2
e, = [N et e on - (14)
2
Ky = [ [IN;. Ky h r.detJ.de.dn

The element stiffness matrix for the plate—foundation system
IS given as:

[K]= [Kp] + [Kd] .. (15)

The twenty-node isoparametric brick element shown in figure

(3) is used in the analysis. The element in local coordinates (&,n,0)

at node i has the nodal displacements u;, v; and w; respectively [,
Thus,

€y _
{6~}=[w ,ul,vl,....,wn,un,vn]

The isoparametric definition of the brick element is:

n
u&mn,¢) = 2 Nj(Eno)u; )
i=1

v(EM, Q) = 2 Ni(En Q)i ... (16)

i=1

n
W(En, &) = 2 N;j (€ n,O)wi

i—1 J

~—
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where, Ni(&,n,4) represents the shape functions for the global
coordinates x(&,1n,¢) y(&,n,8), z(&,n,4) at node i. The shape

functions for twenty node elements are shown in Table (1).

In polar cylindrical coordinates:

\

((En &)= N(En s
9(§,n,é’)=gNi(émOﬂi > .. (17)

z(é,n,:)=§Ni(én,oZi

J

where r, 6 and z are the polar cylindrical coordinates at any point

and r;,0; and z; are the nodal coordinates(for node i)..

The Jacobian matrix i can be expressed as:

o o oz
o8 05 08
or 00 oz
J=— — — ... (18
[J] o on on (18)
o o o
|06 oL o

13
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By substituting of Equation (17) in Equation (18), the

Jacobian matrix [J] is constructed in the form:

ON, N, ON,
o o B
| 6N, oN. . N,
J: ir |e_ Lo
[J] Zl 5nr. on 5]12
N, oN.  oN.
Iri |ei IZ-
| &G g g

The inverse of Jacobian matrix can be written as:

& o
or or
DEED) g
& o
|0z 0z

a
or
29
00
x
0z

.. (19)

.. (20)

The strain matrix in polar cylindrical coordinates can be

written as:

(14-34)
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% 0 0
Y
) Np 1Ny
gf r r oo N
0 :
. 1o 0 a_z' Ui
17 =le 1N, N, N, Vi - (21)
Yo, r oo or r i
) [N LN
0z r oo
o NN,
i oz or _
or
n
{£°}=2[B;1{5%} .. (22)
i=1

The strain matrix [Bi] contains the shape function derivatives
In polar cylindrical coordinates the stresses are calculated

from the expression:

s,) [D, D, D, 0 0 0],
s,| |[D, D, D, 0 0 Ofle,
6,|_|D, D, D, 0 0 0]s, e
./ |0 0 0 G 0 0y,
t,] |0 0 0 0 G 0lly,
] [0 0 0 0 0 Glly,
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E(1-v) E.v E

where, D, = D, = andG=——
(1+v)(1-2v) (1+v)(L-2v) 2(1+v)

in which D; and D, are the elastic constant for the isotropic elastic

material and G is the shear modulus for the isotropic material.

or
{c°}=[DNK"} .. (24)
The element stiffness matrix in polar cylindrical coordinates
IS given as:
n +1+1+1 T
[K,1=>_ | [ [[B.]"[DI[B]r detiddndg . (25)
i=1 1141

where D is the elastic constant matrix given in Equations (23).

For a foundation represented by Winkler model for the both
compressional and frictional resistances on a brick element, the

stiffness matrix.

[Kel=

[Rwl

0

0
0
0

0
[R]
0
0
0

0

0
[Ru]

0

0

0

0

0
[Rw]

0

0
0
0

0

[Rw]]

nxn

.. (26)

(16-34)
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where,
K¢ O 0
[Ryl=| 0 Kp 0
0 0 K

In polar cylindrical coordinates:

K :T +ﬁlNi.Kz.rdetded ndg
4 -11

K., :T TTNi.Kr.rdetJdir nd¢
41 11

K :T +ﬁlNi.Ky.rdetJdér ndg

-1 -1-1

The element stiffness matrix for the plate —foundation system

IS given as:

[K]= [Ke] + [K]

The finite element methods in polar cylindrical coordinates are
used to analyze circular plate by using 9 isoparametric plate bending
elements with 8 nodes over a quarter of the plate or 9 isoparametric

brick elements with twenty nodes. The mesh of the finite element is

shown in figure (4).

..27)

.. (28)

17
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APPLICATIONS
Two cases of thick circular plates on elastic foundations are
considered in this paper. The cases are a simply supported and a

fixed edge plate under uniform distributed load as shown in figure

(5).

DISCUSSION
1. For the simply supported edge circular plate, figures (6) and
(7) show the deflection profiles and bending moment diagram
in r-direction by both the finite difference [Al-Azzawi (1995)
[21] and the present study. The results show good agreement
by these two methods. The difference in central deflection is
1.53% and in central moment is 0.99 % in case of plate
bending element and the difference in central deflection is
1.42 % and in central moment is 0.39 % in case of brick
element. The difference in results with the exact solutions in
central deflection is 0.36 % and in central moment is 0.57 %

in case of brick element 3],

2. For the clamped edge plate figures (8) and (9) show the
deflection profiles and the bending moment diagram in r-
direction by both the finite difference [Al-Azzawi (1995) 1]
and the present study. The difference in central deflection is

(18-34)
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1.75 % and in central moment 0.68 % in case of plate bending
element and the difference in central deflection is 1.74 % and
in central moment 0.57 % in case of brick element. The
difference between the present study and the exact solutions
in central deflection is 0.79 % and in central moment 0.35 %
in case of brick element 191,
Parametric Study
To study the effects of elastic foundations and thickness on
the behavior of thick circular plates, a simply supported thick plate
with is studied (K=K =20000 kN/m?) as shown in figure (10). The
loading was taken to be uniformly distributed load (q=25 kN/m?).
The effects of variation of vertical and horizontal subgrade reactions
on the results of central deflections and bending moments of thick
circular plates are considered. The following points are concluded
from the study of the variation of vertical and horizontal subgrade
reactions.

e To show the effect of variation of vertical subgrade reaction
on the results, a circular plate with clamped edge and resisted
by vertical subgrade reaction of various values (neglecting the
effect of frictional restraints) are studied. Figures (11) and
(12) show the variation of the vertical subgrade reaction on
the central deflection and bending moment. From these

figures the central deflection and central moment will

(19-34)
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decrease as the vertical subgrade reaction is increased because
of increasing foundation stiffness (resistance to deflection). It
was found that by increasing the vertical subgrade reaction
from (0.0 to 30000 kN/m?3), the central deflection is decreased
by 0.20 % and the central moment is decreased by 0.25 % [,
To show the effect of variation of horizontal subgrade
reaction, a simply supported thick plate with vertical subgrade
reaction (K,=10000 kN/m?®) and horizontal subgrade reactions
of various values of (K, and Ky) are considered. Figures (13)
and (14) show the variation of horizontal subgrade reaction
(K: and Kg) with central deflection and central bending
moment. From these figures, a reduction on central deflection
and bending moment occurs as the horizontal subgrade
reactions are increased. It was found that by increasing the
horizontal subgrade reaction from (0.0 to 30000 kN/m?), the
central deflection is decreased by 0.34125% and the central
moment by 0.43383% [,

To study the effect of thickness (or stiffness) of plate on the
results of central deflection and central moment, a simply
supported plate with various thicknesses is considered.
Figures (15) and (16) show the effect of variation of thickness
of the plate on central deflection and bending moment of the

thick circular plate. From these figures, the central deflection

(20-34)
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will decrease as the thickness of the plate is increased because
the stiffness of plate increased. But, the central resisting
moment will increase as thickness of the plate increased
because of increasing stiffness. It was found that by
increasing the thickness of the thick plate from (0.15 to 0.3
m), the central deflection is decreased by 96.21 % and the

central resisting moment is increased by 75% [,

CONCLUSIONS
1. The results from the finite element method are plotted with

the results by finite differences. Good agreement is obtained

between these methods.

. The effect of distributed moments are small on transverse

deflections of plates and on stress resultants.

. The effect of varying the modulus of elastic foundation on the

deflections and internal stress resultants of thick plates

becomes slowly insignificant as the thickness increase.

. The effect of thickness (stiffness) of plates on deflection is

found to be more significant than the effect on stress

resultants.
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Table (1): Shape Functions for Twenty Node Isoparametric

Local node

number

Brick Element.

Ni (@TLC)

1I=1,3,5,7,13,
15,17,19

S @+ EQ@ MM+ GOGE+ M+ GiO)

1=2,6,14,18

A=A+ G

1I=9,10,11,12

A+ EOE- 1)+ LO)

1=4,8,16,20

QD ine-c?)
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Kz KZ

P P U U P O F U O U U U S S

Figure (1): Winkler Compression and Friction Model.

Polynomial Linear Quadratic

Element

Figure (2): Types of Two-dimensional Isoparametric

Elements for Thick Plates.
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a=25m

Figure (4): Finite Element Mesh.

26



27 Tikrit Journal of Eng. Sciences/VVol.13/No.4/December 2006 (27-34)

q
I YV YV VYV VVVVVYY

0=25 kN/m?
D=5m
h=2m
(a) Simply Supported Edge E=25*10° kN/m?
Plate. v=0.15
K,=1*10°% kN/m?3
K= Ko =2*10% KN/m?

|:(D/Kz )0.25
B: Kr/ Ke

(b) Clamped Edge Plate.

Figure (5): Circular Plate Geometry and Loading.
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>

—Al-Azzawi(1995)
- = =Plate element

—m—Brick element

0.1 0.2

0.3

0.4

0.5

0.6

0.7 0.8 0.9 1

Figure (6): Deflection Profile in r- Direction for
Simply Supported Thick Circular Plate.

| | |
—Al-Azzawi(1995)
- - -plate element

—a—Brick element

Figure (7): Bending Moment (My) Diagram for Thick
Simply Supported Circular Plate.
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—Al-Azzawi(1995)
- = -Plate element

—=—Brick elemen

)y
/

Figure (8): Deflection Profile in r- Direction for
Clamped Thick Circular Plate.

—Al-Azzawi(1995)
- - -Plate element
—=—Brick element

K

N

AN

Figure (9): Bending Moment (My) Diagram for
Clamped Thick Circular Plate.
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g=25 KN/m?
D=1m

h=0.25 m
E=24*10° kN/m?

v=10.3
K;=10000 kN/m?
Kr= Kg =20000 KN/m?

Figure (10): Circular Plate Properties and Loading.

5000 10000 15000 20000 25000 30000

A

e

-~

Vertical subgrade reaction (Kz)[KN/m®]

Figure (11): Effect of Vertical Subgrade Reaction on Central
Deflection of Clamped Circular Plate.
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5000 10000 15000 20000 25000 30000
Vertical subgrade reaction (Kz) (kN.m?)

Figure (12): Effect of Vertical Subgrade Reaction on Central
Moment of Clamped Circular Plate.

-0.246157

-0.246257

-0.246357

-0.246457

-0.246557

-0.246657

-0.246757

-0.246857

-0.246957

-0.247057

Horizontal subgrade reaction ( Kr,Ko) [KN/m?]

Figure (13): Effect of Horizontal Subgrade Reaction on
Central Deflection of Clamped Circular Plate.
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.

N

~

5000 10000 15000 20000 25000 30000

Horizontal subgrade reaction (K:,Ko) [kN/m?]

Figure(14): Effect of Horizontal Subgrade Reaction on
Central Moment of Clamped Circular Plate.
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Figure (15): Effect of Thickness on Central Deflection of
Clamped Thick Circular Plate.
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Figure (16): Effect of Thickness in Central Moment of
Clamped Thick Circular Plate.
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