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ABSTRACT

Flat tubes are vital components of various technical applications including modern
heat exchangers, thermal power plants, and automotive radiators. This paper
presents the hybridization of computational fluid dynamic (CFD) and artificial
neural network (ANN) approach to predict the thermal-hydraulic characteristics of
in-line flat tubes heat exchangers. A 2D steady state and an incompressible laminar
flow in a tube configuration are considered for numerical analysis. Finite volume
technique and body-fitted coordinate system are used to solve the Navier—Stokes
and energy equations. The Reynolds number based on outer hydraulic diameter
varies between 10 and 320. Heat transfer coefficient and friction are analyzed for
various tube configurations including transverse and longitudinal pitches. The
numerical results from CFD analysis are used in the training and testing of the
ANN for predicting thermal characteristics and friction factors. The predicted
results revealed a satisfactory performance, with the mean relative error ranging
from 0.39% to 5.57%, the root-mean-square error ranging from 0.00367 to 0.219,
and the correlation coefficient (R?) ranging from 99.505% to 99.947%. Thus, this
study verifies the effectiveness of using ANN in predicting the performance of
thermal-hydraulic systems in engineering applications such as heat transfer
modeling and fluid flow in tube bank heat exchangers.
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1. INTRODUCTION

is based on the empirical correlations of heat transfer and
pressure drop. Cross-flow heat exchangers with tube banks

The fluid flow and heat transfer in tube banks are essential to numerous thermal and chemical
demonstrate the real-life  applications
industrially significant processes. Tube bundles are widely ~ recently introduced for modern heat exchanger
employed in cross-flow heat exchangers, and their design  applications such as automotive radiators. Unlike circular

of wvarious engineering processes [1-4]. Flat tube designs have been
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Nomenclature

Cp specific heat capacity of fluid, (J/kg K)
Dy hydraulic diameter of tube, (m)

do longitudinal diameter of tube, (m)

dr transverse diameter of tube, (m)

G;,G; contravariant velocity components

J Jacobian of the transformation

k thermal conductivity of fluid, (W/m K)
\ number of rows in flow direction

p pressure, (Pa)

P: longitudinal distance, (m)

P transverse distance, (m)

PL longitudinal pitch

Pr transverse pitch

S source term

T temperature, (°C)

u, v velocity components, (m/s)

Uy, U dimensionless velocity

X, Y Cartesian coordinates, (m)

Dimensionless groups

f friction factor

j Colburn factor

Nu overall Nusselt number
Re Reynolds number

Greek symbols

u dynamic viscosity, (kg/m s?)
p density, (kg/m®)
a, B,y coefficients of transformation
Subscripts
* dimensionless quantity
N numerical data
out outlet
w tube wall
tubes, flat tubes have appropriate pressure drop

characteristics [5-7].

Artificial neural networks (ANN) are used in
numerous engineering applications because these tools
provide excellent and highly reasonable solutions [8].
Ermis et al. [9] used a feed-forward back-propagation
ANN to conduct numerical and experimental analysis of
the heat transfer resulting from the phase change process in
finned tubes. The experimental study yielded a mean
relative error of 5.58%, whereas that of the numerical
model is 14.99%. Fadare and Fatona [10] studied ANN in
modeli-ing staggered multi-row, multi-column in cross-
flow, tube-to-tube heat exchangers, as well as the
experimental data for air flow over a bundle of tubes.
Results demonstrated that the mean absolute relative errors
are less than 4% and 1% for the testing and training data
sets, respectively. Islamoglu and Kurt [11] used an ANN to
model the predicted heat transfer in corrugated channels.
The mean absolute error between the experimental results
and the ANN approach was less than 4%. The developed
ANN models for predicting heat transfer coefficient and
friction factor in helically coiled tubes used the empirical
data for the prediction, which is then compared with
previously published experimental correlations [12,13].

This study focuses on the applicability of ANN for
the analyses of heat transfer and friction factor in in-line

flat tube banks. Such analyses elucidate whether the use of
in-line flat tube banks in the design of heat exchangers
promotes heat transfer. CFD simulation results are
compared with ANN model results, and various
geometrical parameters on heat transfer coefficient and
friction factor are discussed.

2. CFD SIMULATION AND FORMULATION

Four horizontal flat tubes isothermal heated in the row
at the direction of the external flow. A flat tube with two
outside diameters, namely, transverse dr and longitudinal
di, as well as the surface temperature of tube Ts placed in
the velocity u, and the uniform inlet free stream of
temperature T, in the in-line arrangement are used. The
three longitudinal pitch-to-outside small  diameter
(transverse) ratio, P = P1/dr, are 3.0, 4.0, and 6.0, and the
four transverse pitch-to-outside small diameter ratio,
Pt = PJ/dr, are 1.5, 2.5, 3.5, and 4.5. A sufficiently long
flat tube is required to neglect the end effect of the tube.
Therefore, flow field is assumed to be two-dimensional.
The tube configuration and flow field calculation for the
in-line flat tube banks are presented in Fig. 1(a).

The governing equations are transformed into
dimensionless forms upon incorporating the following
non-dimensional variables.

o *)z(x,y) L__ P
PO P T x|
w U)_(u,v) T*_T—Tm L
1»Y2) — Uy ) _Ts_Too' I (1)
Ue X Dy, U X cp
Rep, = ——"  pr=
éon v ’ k J

The outer side hydraulic diameter of the flat tube can
be written as follows:

. _4x[%d%+(dL—dT)xdT]
h = 7TdT + Z(dL - dT)

where (x, y) are the Cartesian coordinates, m; p is the air
density, kg/m®; p is pressure, N/m?; ui, is the air inlet
velocity, m/s; (u, v) is the velocity components of fluid,
m/s; T is the fluid temperature, °C; Ti, is the inlet free
stream temperature, °C; Ty is the surface temperature of
tube, °C; Dy is the outside hydraulic diameter of the tube,
m; d._is the outside longitudinal diameter of tubes, m; dr is
the outside transverse diameter, m; u is the air dynamic
viscosity, kg/(m s); ce is the air specific heat, J/(kg K); and
k is the air thermal conductivity, W/(m K).

The following assumptions are made in developing
the model: (i) the physical properties of air flow are
constant; (ii) the air flow is incompressible and laminar
flow; and (iii) steady-state flow and heat transfer. The
governing equations for 2D continuity and Navier—Stokes
for momentum and energy can be written as follows [14]:
The continuity equation

(2)

V.v=0 3)
Momentum (Navier-Stokes) equation
pV(vv) = —VP + uV.(Vv) 4)

Energy equation
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k
V(vT) = —V.(VT 5
(V) = = v.(VT) (5)
In Egs. (3) and (4), v is the velocity vector (u, v).

The physical system considered in this study is
illustrated in Fig. 1(a). The boundary conditions used for
the solution domain are uniform inlet velocity, fully
developed outflow, and combined symmetry and no-slip
tube surfaces at the bottom and top boundaries. To
complete the formulation, boundary conditions are
determined to simplify the 2D solution domain as
presented in Fig. 1(a). The boundary conditions can
summarize as below:

The entrance the domain:

U1=1, U2=T*=0

Symmetric lines:
aU,/dy* =0, U, =0,0T*/dy" =0

The exit of the domain:
du,/dx* =0, dU,/dx* =0, dT*/dx* =0

61

The surface of tubes:
U]_:O, UZZO, T*

The set of conservation Egs. (3) to (5) can be
generally written in Cartesian coordinates as Eq. (6).

0(U1¢) 0Up) 0 (F a9

6]
Oox* dy* ~ ox* ax*) * dy

The continuity equation, Eq. (3), without diffusion and
source terms, can be used to derive an equation for
correcting pressure. The grid generation scheme based on
elliptic partial differential equations is used in the present
study to generate curvilinear coordinates. Eq. (6) can be
transformed from the physical to computational domain on
the  basis of the following transformation
& =80y, n =n"(x"y*) [15, 16]. The schematic
of the computational grid is illustrated in Fig. 1(b).

The final form of the transformed equation can be
written as Eq. (7):

=1

i (rg—ﬁ) +S; (6)

a ¢
7m0+ 506 = o [ agl g2 + o [ (o + v oo )| +47x5; 7
ag P D=3l )| o 3 ; e
Entrance Py @ ‘_ du _b

— % ) O &7

u;

Tin

. H .

Sae i R g

Entrance domain Inner (main) domain Exit domain

(b)

Fig. 1. In-line flat tube bank (a) tube arrangement and computational domain, and (b) schematic of computational grid
systems generated by the body-fitted coordinates.

which are expressed as follows:

. ay” dax”
G1=U1W— 250"
ax* ay”
G =U,— 5 - U, = 5
dy* d0x* 0dx* oy~
T 9¢ an 9% o’

L

-2 -2,
dx ax) (ay ay)

9
r=(zam) * Gean

This study determines the overall Nusselt number, the
Coburn j-factor, the friction factor or the resulting air flow,
and the temperature fields, which are expected to represent
the total pressure drop for the flat tube bank system.

The overall Nusselt number, (Nu), is defined as follows:

h x Dy, 9
p ©)
The calculation of the Colburn j-factor is presented
through the following non-dimensional parameter:

Nu
Rep, X Pri/3

Nu =

j= (10)

The friction factor in the expiration is calculated as
follows [17]:
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(pin - pout)
Zp X (umax)z X NL

f= (11)
where Np is the number of transverse rows, which is
regarded as
4 in this study.

The mass velocity at minimum flow area can be
calculated by Eq. (12) [18]:

Pr

Uy X ————
(Pr—1)

(12)

umax -

2.1.Numerical Methods

The governing equations are solved numerically with
the use of FORTRAN 95 (FTN95). The computer code
solved the equation of continuity, momentum, and energy,
which are discretized by a finite-volume technique. The
technique is based on a non-orthogonal coordinate system
with Cartesian velocity components and a non-staggered
(collocated) grid [19] with the SIMPLE algorithm [20].
The convergence of the steady state is monitored using the
determined iterator-to-iterator variations of a field variable
that is normalized by its domain. The normalized
maximum root-mean-square (RMS) is defined as follows:

|Xnew - Xoldl
(Xmax - Xmin)
where y are Uy, Uy, p*, and T*.

The RMS values are checked in every nodal location,
and the determined convergences of the upper values of
RMS are typically less than 1 x 107,

RMS = (13)

2.2.Code Validation and Grid Independent
Testing

Code validation is an essential aspect of numerical
investigation. This section aims to address the code
validation issue. The validation with FORTRAN95
(FTN95) code resolved numerous test problems and
predictions, which were compared with the code developed
from exact solutions, experimental data, or standard
problems from previous studies. The numerical model was
validated with the publication of certain standard
problems. Comparison of the results of this study and
Bahaidarah's research [21] are illustrated in Table 1. The
results presented in Table 1 include the numerical forecasts
of heat transfer by the code, which completely match the
numerical forecasts by Bahaidarah [21]. The maximum
deviation in the overall Nusselt number is 3.034% or less.

Grid independence test was conducted by modifying
the grid numbers with various expansion and contraction
factors. The general mesh testing matches the independent
solution of the grid. A study was conducted on grid
independence test; P. = 4.0 and Pt = 2.5 at Repnh = 160 in
the domain, and the overall Nusselt number and the friction
factor are increased. The study indicated that 601 nodes
(along the x-direction) by 21 nodes (along the y-direction)
cater to the best results, whereas increases in the number of
grids do not affect the result. Table 2 presents the summary
of the independent results of the grid. Therefore, to
minimize the error and optimum uses of CPU resources,
the ideal shape of the grid is 601 x 21.

Table 1
Comparison of overall Nusselt number between the present
simulation results and Bahaidarah et al. [21].

Bahaidarah Present Deviation

etal. [21]  simulation (%)
Rep, =50
2nd
HEM 9.228 9.508 3.034
3rd HEM 9.229 9.207 0.238
4th HEM 9.229 9.157 0.780
Rep, =200
2nd 12.440 12.631 1535
HEM ' ' '
3rd HEM 12.430 12.532 0.821
4th HEM 12.420 12.424 0.032

% Deviation = |Nupyoy — Nupyes|/Nuppoy X 100
HEM: heat exchanger module

3. CALCULATION PROCEDURE FOR ANN
MODEL

ANNs are information processing systems that
possess certain properties that work effectively with
biological neural networks. ANNs are one of the most
commonly used and developed models in investigating the
relationship between linear or non-linear input-output
patterns. The neural network is a mapping between its
inputs and outputs based on a number of known sample
input-output pairs. Moreover, ANNSs facilitate the training
and the approximation of the test team. Performance of
ANN usage has predictable success. The literature
provides numerous detailed ANN types that are related to
the approximation function [22,23]. Schematic diagrams
for specific artificial intelligence models used in the
analysis are shown in Fig. 2. The first input layer feeds data
to a hidden intermediate layer. The hidden layer processes
the data and transports it to the

P

Longitudinal pitch

J S

Transverse pitch

ReD,, q

Reynolds number

Input layer Hidden layer
. . (b) .
Fig. 2. Typical scheme for system models (a) input and
output, and (b) Configuration on a 3-5-3 the neural
networks.

Qutput layer
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Table 2

Results of grid independence test and proportional error analysis with different grid sizes at P. = 4.0, Pr=2.5 and

Repn = 160.
No. of grids in No. of gridsin  Overall Nusselt Nu Friction f
x*-direction y*-direction number % diff. factor % diff.
401 21 16.1702 - 0.0265 -
501 21 15.8731 1.872 0.0270 1.852
601 21 15.7470 0.801 0.0272 0.735
601 21 15.7227 0.155 0.0273 0.366
601 21 15.7125 0.065 0.0273 0.0
601 31 15.7117 0.005 0.0274 0.365
601 41 15.7104 0.008 0.0275 0.364

% diff = |@i41) — @i|/@g+1) X 100 ; @ is any parameters.

output layer. Only the tap weights between the hidden layer
and the output layer are modified during training. Each
hidden layer neuron represents a basis function of the
output space with respect to a particular center in the input
space. The second layer is the hidden layer which is
composed of nonlinear units that are connected directly to
all of the nodes in the input layer. It is of high enough
dimensions which serves a different purpose from
that in a multilayer perceptron. Each hidden unit takes its
input from all the nodes at the components of the input
layer and the hidden units contain a basis function, which
has the parameters center and width. The transformation
from the input space to the hidden unit space is nonlinear,
whereas the transformation to the hidden unit space to the
output space is linear. The neural networks were
determined with the use of MATLAB program, and all of
the tests were implemented in a computer. Activating the
error function in this study is a function of the logistic
sigmoid and the standard total of the squared error
function.

The data that was numerically evaluated in this study
were normalized to obtain the values by using the
following Eq. (14):

( Actual — Minimum

Maximum — Minimum

where the maximum and minimum are the maximum and
minimum data values, respectively, such that, the low is the
minimum normalized data value = 0.1, and the high is the
maximum normalized data value = 0.9 [20]. In general, the
proposed correlations formula can be assessed statistically
by measuring the coefficient of determination, R?, as
pointed out by Kvalseth [25]. The R2-value is mostly
computed with the use of data points. The R?-value is the
standard of the appropriateness of the regression model
designed for the fitted test data [26]. R2=1 refers to the
perfect correlation when all of the residuals (the difference
between the estimated and the actual data values at each
test point) are equal to zero.

The relative error (Er) for variable (y), and the mean
relative error (MEr) between the empirical and predicted
data is estimated by Eq. (15) [27]:

N P
Er(%) = %—N’p' x 100
(15)

MEr(%) = %Z Er(%); J
i=1

) % (High data — Low data) + Low data
data

The root mean square error (RMSE) can be evaluated by
Eqg. (16) [28]:

1 n 1/2
RMSE = [—Z(uﬂv - r/ﬂ’)?l (16)
n i=1
The correlation coefficient (R?) is defined by [29]:
@Y =P
RZ=1-22L7 17
AR a7

where (N) is the numerical data, (P) is the predicted result,
and (n) is the number of numerical data.

4. RESULTS AND DISCUSSION

Numerical evaluations were conducted to verify the
results of the ANN model. Sixty numerical simulation data
were utilized to produce the ANN model. To improve the
proposed model, data from 46 cases (approximately
76.67%) were used for training, and the remaining 14 cases
were used for the testing performance (approximately
23.33%) to evaluate the ANN model. The original data

(14)

(CFD) that were employed to produce the ANN model are
listed in Table 3.

Results of the developed ANN model with the
training data are shown in Fig. 3. The figure shows the
overall Nusselt number, Colburn j-factor, and friction
factor. An excellent agreement exists between the output
data from the ANN model and the data obtained from the
simulations; the maximum relative error are approximately
+3.84%, +5.87%, and £13.87%, and the mean relative error
are approximately 1.43%, 2.43%, and 5.57%, for the
Nusselt number, Colburn j-factor, and friction factors,
respectively. For the overall Nusselt number, the best
agreement between the ANN predictions and the CFD
simulation results (R?=99.916%) are provided in Fig. 3(a).
The j-factor predictions of ANN that were in excellent
agreement with the numerical simulation results
(R?=99.947%) are depicted in Fig. 3(b). The predictions
of the ANN for the friction factor that were in best
agreement with the CFD simulation results (R?= 99.914%)
are indicated in Fig. 3(c), which is a powerful indication of
excellent data fitting. Performance through the ANN
models is assessed on the basis of the statistical evaluation
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Table 3

The original (CFD) values using in the training and testing of the ANN model.

Run

Run

no. P Pr Reon Nu j f no. P. Pr Rebn Nu j f
1,TS 3 15 10 7.236 0.811 0935 |31,TS 4 35 10 5.885  0.659 0.293
2,TS 3 15 40 10.339 0.290 0.246 | 32TR 4 35 40 8576  0.240 0.074
3, TR 3 15 80 12,311  0.172 0.117 |33, TR 4 35 80 10.324 0.145 0.036
4 TR 3 15 160 14344 0.100 0.058 | 34 TR 4 35 160 14.173 0.099 0.019
5TR 3 15 320 18.127 0.063 0.038 | 35, TR 4 35 320 15874 0.056 0.013
6,TS 3 25 10 6.512 0.730 0.401 |36, TS 4 45 10 5629  0.631 0.276
7,TR 3 25 40 9.305 0.261 0.099 | 37,TR 4 45 40 8.216  0.230 0.069
8, TR 3 25 80 11.080 0.155 0.047 | 38 TR 4 45 80 9.890 0.139 0.034
9,TR 3 25 160 12910 0.090 0.023 | 39,TR 4 45 160 13577 0.095 0.018
10,TR 3 25 320 16.314 0.057 0.015 | 40,TR 4 45 320 15.207 0.053 0.012
11,TS 3 35 10 5.868 0.658 0.300 | 41,TS 6 15 10 7.238 0.811 0.975
12TR 3 35 40 8.384 0.235 0.074 |42TR 6 15 40 10.645 0.298 0.154
13TR 3 35 80 9.983 0.140 0035 |43, TR 6 15 80 12.781 0.179 0.139
14TR 3 35 160 11.632 0.081 0.017 |44TR 6 15 160 17.769 0.124 0.076
15TR 3 35 320 14699 0.051 0.012 |45TR 6 15 320 19.877 0.070 0.052
16,TS 3 45 10 5.615 0.629 0.263 | 46,TS 6 25 10 6.586  0.738 0.437
17TR 3 45 40 8.023 0.225 0.065 |47TR 6 25 40 9.687  0.271 0.115
18 TR 3 45 80 9.554 0.134 0031 |48TR 6 25 80 11.631 0.163 0.058
19TR 3 45 160 11.131 0.078 0.015 |49TR 6 25 160 16.169 0.113 0.032
20TR 3 45 320 14.067 0.049 0.010 | 50,TR 6 25 320 18.088 0.063 0.022
21,TS 4 15 10 7.238 0.811 0.955 | 51,TS 6 35 10 5943  0.666 0.322
22TS 4 15 40 10564 0.296 0.261 |52TR 6 35 40 8.742  0.245 0.085
23 TR 4 15 80 12,717 0.178 0.127 |53, TR 6 35 80 10.495 0.147 0.043
24TR 4 15 160 17458 0.122 0.067 | 54TR 6 35 160 14591 0.102 0.023
25TR 4 15 320 19.554 0.068 0.047 |55 TR 6 35 320 16.322 0.057 0.016
26TS 4 25 10 6.514 0.730 0.420 | 56,TS 6 45 10 5700 0.639 0.277
21, TR 4 25 40 9.508 0.266 0.106 | 57,TR 6 45 40 8.383  0.235 0.073
28TR 4 25 80 11445 0.160 0.051 |58 TR 6 45 80 10.065 0.141 0.037
29TR 4 25 160 15713 0.110 0.027 | 59TR 6 45 160 13.993 0.098 0.020
300TR 4 25 320 17599 0.062 0.019 |60,TR 6 45 320 15653 0.055 0.014

TR, TS are the training and testing data selected for training and testing the ANN model, respectively.

functions mentioned in Egs. (15)-(17), as commonly
employed [11,23,29].

The predicted results of the testing deviation values for
overall Nusselt number were MEr = 0.39%, RMSE
=3.28x1072, whereas in predicting j-factor the values were
MEr = 1.54%, RMSE = 8.88x103, and for friction factor,
they were MEr = 4.50%, RMSE = 2.11x102 The
comparisons of testing data sets for the predicted value
results of the overall Nusselt number, j-factor, and friction
factor of the developed ANN and the original data (CFD
simulation) are plotted in Fig. 4, where the solid line refers
the ideal fit (predicted equal original data). The excellent
agreement of the figures among the ANN predicted results
and the original values with the correlation coefficient
higher than R? = 99.505% are notable. Furthermore, lower
MRE and MSE values of the test data sets, as well as the
difference between the values of acceptable deviation to
teas and train data sets, refers to the verification of the
ANN models. In addition, the overall Nusselt number, j-

factor, and friction factor for the testing data predicted by
ANN and actual (CFD) with different geometry and flow
parameters are tabulated in Table 4. The maximum relative
error was determined at approximately +1.068%, +4.369%,
and +6.592%, for overall Nusselt number, j-factor, and
friction factor, respectively.

Utilizing the Eq. (15) on the original CFD value to
produce the relative error results of the ANN model for the
training and testing data is shown in Fig. 5. Fig. 5(a) clearly
illustrates the maximum relative errors (Ermax) for overall
Nusselt number are approximately £1.07% for testing and
+3.85% for training, with the mean relative error (MEr) at
0.39% and 1.43%, respectively. The relative error of j-
factor is presented in Fig.5(b). The Erma are
approximately +4.39% for testing and +5.87% for training,
with the MEr at 1.55% and 2.43%, respectively. The f
factor's ANN prediction against the CFD values are
presented in Fig. 5(c). The ANN yields Ermax at approxim-
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Table 4
Comparison the overall Nusselt number, j-factor and friction factor of numerical and ANN model for testing data.
Runno. 1 2 6 11 16 21 22 26 31 41 46 51 56
Overall Nusselt number
CFD 7.236 10.339 6.512 5.868 5.615 7.238 10.564 6.514 5.875 5.629 7.238 6.586 5.943
ANN 7.243 10.339 6.582 5.837 5.626 7.174 10.564 6.527 5.832 5.651 7.238 6.618 5.909
%Er 0.096 0.001 1.068 0.519 0.190 0.884 0.001 0.205 0.734 0.403 0.006 0.481 0.580
%MEr 0.390
Colburn j-factor
CFD 0.811 0.290 0.730 0.658 0.629 0.811 0.296 0.730 0.659 0.631 0.811 0.738 0.666
ANN 0.815 0.278 0.736 0.663 0.637 0.807 0.309 0.726 0.650 0.619 0.799 0.747 0.679
%Er 0.527 4.159 0.787 0.862 1.248 0.579 4.396 0.570 1.353 1.836 1.470 1.152 1.884
%MEr 1.535
Friction factor
CFD 0.935 0.246 0.401 0.300 0.263 0.955 0.261 0.420 0.293 0.276 0.975 0.437 0.322
ANN 0.987 0.230 0.411 0.320 0.278 0.958 0.246 0.393 0.297 0.263 0.965 0.410 0.305
%Er 5.664 6.283 2.489 6.469 5.640 0.326 5.722 6.592 1.384 4.805 1.017 6.169 5.142
%MEr 4,500
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Fig. 4. The testing results evaluated using ANN for (a)
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Fig. 5. The relative error for training and testing data
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ately £6.59% for testing and +13.87% for training, with the
MEr at 4.50% and 5.57%, respectively.
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Fig. 6. Comparison of numerical with ANN results
against Reynolds number of the training data for (a)
overall Nusselt numbers, (b) j-factor and (c) f factor.

In general, a small relative error was found in the
testing data for overall Nusselt number, j-factor, and
friction factor. The determined ANN predictions were
close to the CFD data with minimal deviations for each
point of overall Nusselt number. These results indicate that
the ANN model is appropriate in predicting the heat
transfer coefficient. The numerically calculated data
compared with the predicted ANN results for the training
data when P. = 3.0 and Py = 2.5 relative to Reynolds
number are presented in Fig. 6. The used base value (CFD)
are shown in Table 3 with numbers 7 to 10, as well as

predicted ANN data for overall Nusselt number, j-factor,
and friction factor. As expected, Nu increases with the rise
of the Reynolds number as shown in Fig. 6(a). In contrast,
j- and friction factors decrease with increasing Reynolds
number, as demonstrated in Fig. 6(b) and (c). The
maximum relative error is found at approximately £2.79%,
+4.03%, and +7.78% for overall Nusselt number, j-factor,
and friction factor, respectively. These trends are
extremely similar to the existing CFD results, such that, the
initial conditions provided in the ANN model can predict
the output variable without implementing any simulation
run.

5. CONCLUSIONS

The developed ANN model is applied to estimate the
thermal-hydraulic characteristics of in-line flat tubes bank.
For all heat transfer and flow parameters, the MEr of the
ANN approach range from 1.43% to 5.57% for the training
data and from 0.39% to 4.5% for the testing data. The
RMSE ranged from 3.67 x 10 to 0.219 for the training
data and from 8.88 x 103to 3.27 x 102 for the testing data.
The correlation coefficient for all heat and flow parameters
are extremely close to match the lowest value, R?=
99.505%. Predicting the thermal-fluids characteristics
using ANN approach resulted in a good agreement with the
simulation data. Thus, this method is proposed as it offers
fast, reliable, and accurate results, as well as initial
estimates for an engineer to address complex heat transfer
and fluid flow problems.
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