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ABSTRACT 

    The role of soil-structure interaction on seismic behavior of 

reinforced concrete structures is investigated in this paper. Finite 

element approach has been adopted to model the interaction 

system, that consists of a reinforced concrete plane frame, soil 

deposit, and interface which represents the frictional surface 

between the foundation of the structure and subsoil. The analysis 

is based on the nonlinear characteristics of the materials and the 

elasto-plastic behavior of the frame members (beams and 

columns) is governed by a yield surface which is defined by 

ultimate strength of the axial force-bending moment interaction, 

while the cap model is adopted to govern the elasto-plastic 

behavior of the soil material. Results deduced from the dynamic 

analysis indicate that soil-structure interaction can have 

beneficial effects on structural behavior and this behavior is 

dependent on the characteristics of the soil and the interface 

conditions.  
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INTRODUCTION      

 The dynamic soil-structure interaction has long been a topic 

of interest in engineering practice. This problem has a 

considerable influence on the response of massive structures such 

as dams, bridges and multi-story frames. For these reasons, the 

development of appropriate methods for the analysis is 

increasingly demanded to ensure the integrity of structural 

design. 

     In general, the structure including its foundation will 

interact with the soil, and analyzing the structure isolated from 

the soil will cause deviating solution. The seismic excitation of 

the structure and the subsoil may be considered as one of the 

most severe loading case. The researches in this subject have not 

yet provided a full understanding of how the soil-structure 

interaction affects the response of the structure subjected to 

dynamic loads. Thus a comprehensive study is required to 

investigate the response of a structure under seismic loading and 

its sensitivity to various parameters.  

    Chen and Krauthammer [1] used a combined finite element-

finite difference method with substructuring approach to solve 

the soil-structure interaction problems subjected to seismic 

loading. The study concentrated on the importance of the 
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mathematical modeling of the interaction system. Phan et. al. [2] 

compared the elastic response of 6-story building subjected to an 

earthquake loading using two different boundary conditions, in 

the first, the frame is assumed to be fixed at supports, and in the 

second case the interaction between the structure and the subsoil 

is considered. The study clarified the effect of considering the 

soil-structure interaction on the structural response. The soil 

medium was represented by simple elastic springs. Dunand        

et al.[3] estimated the modal frequencies and damping ratios of 26 

reinforced concrete buildings from ambient vibration records. 

The estimated data were used in the analysis of these buildings 

taken into consideration the soil-structure interaction. The main 

emphasis was to determine the damping resulting from the soil 

layer itself during the interaction analysis and its contribution in 

absorbing vibrational energy of the structure. Todar et al. [4] used 

a vast amount of earthquake response records of a reinforced 

concrete multistory frame, constructed over a soil with pre-

specified parameters. The study aimed to investigate various 

aspects that affect the dynamic behavior of the soil-structure 

system. The main objectives of the present work are to evaluate 

the sensitivity of plane frame structures to different variables 

related to soil and interface conditions when the structure is 

subjected to an earthquake excitation.  
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MATHEMATICAL FORMULATIONS 

           Finite element approach has been adopted in the present 

work to model the interaction system, which consists of three 

main parts, in particular the structural frame members, soil 

layers, and the interface between the foundation of the structure 

and the subsoil. Details of these elements are presented as 

follows. 
  

Two-Node Beam-Column Element 

          The members of a reinforced concrete plane frame are 

idealized by two-node beam-column elements, each node has 

three degrees of freedom ( ,,vu ) and the stress resultants 

corresponding to these degrees of freedom are axial force, shear 

force, and bending moment. The elastic stiffness and mass 

matrices for any two-dimensional beam-column element are 

derived using the bending theory for small transverse 

displacements and it is well described in many textbooks of 

structural mechanics [5]. 

Four-Node Isoparametric Plane Strain Element 

           The soil layer, which is considered as an integrated part of 

the interaction system, is idealized by four-node plane strain 

elements with two degrees of freedom at each node ( vu, ). The 

stress-strain relation developed in the element can be written in 

the following form [6]: 
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where yx  ,  are the normal stresses, xy  is the shear stress, 

  ,, yx  and xy are the corresponding strains, and  D is the 

elasticity matrix for plane strain condition. 

 Based on the energy minimization, the elastic stiffness and 

mass matrices can be determined from the relations:  

        dvBDBK
v

T

=                                                                …. (2) 

      dvNNmM
v

T

=                                                                 …. (3)   

where  B  is the strain-displacement matrix,  N  is the shape 

function matrix of the element, m  is the distributed mass on the 

element area, and v  is the volume of element .The numerical 

integration of the above equations is carried out using 22 Gauss 

quadrature [6].  

Interface Element 

The present interface element is formulated to model the 

interface between the foundation of the structure and the soil 

elements. The element is assumed to have a unit thickness and 

degrees of freedom compatible with other two elements. The 

interface element shown in Figure (1) has two nodes at each end, 

lower and upper nodes, having the same coordinates. The upper 
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node adjacent to a frame element has three degrees of freedom 

( ,,vu ), while the lower one, adjacent to the soil (plane strain) 

element, has two degrees of freedom ( vu, ). The stress-strain 

relation of this element can be written in the following form [7,8]: 
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where   ,, ns  and M are the shear stress, normal stress, and 

bending moment at the interface, respectively,   and ,,
21 sns  are 

the corresponding strains, and  C  is the constitutive matrix of the 

interface which can be written as:  
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in which 21,, ssn CandCC are uncoupled normal, shear, and 

rotational stiffnesses of the interface, respectively. For the 

isoparametric interface element, the displacements and rotation at 

any point on the element are interpolated from nodal values as 

follows: 


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2
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where iN  is the shape function which is defined for node i  of one 

dimensional element by using natural coordinates r , which 

varies from (–1) for node 1 to (+1) for node 2 as: 

2/)1( ii rrN +=                                                                         …. (7) 

where ir  is the natural coordinate of node i . 

           The strain vector in global coordinates at any point of the 

element can be expressed in terms of the nodal values of the 

relative displacements at the nodes as: 
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or 

      
=

=
2

1
'

1

i
iB

t
                                                                   …. (9)                                           

where 't  is the thickness of the element which is taken equal to 

unity, and ( iii andu  ,, ) are the relative displacements 

between the upper and lower nodes which are equal to:  

   tbtbttbtbtT
i uuuu

2222211111
,,,,,  −−−−=                          …. (10)        

where superscripts t  and b  correspond to the top and bottom 

nodes, respectively. The elastic stiffness matrix of this element 

can be derived by the following formula:  
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          dvBCBK
v

i

T

i=                                                            …. (11) 

where  iB  represents the strain-displacement matrix, and v  is the 

volume of element. 
 

MATERIAL MODELING  

Reinforced Concrete Material 

    The material model adopted for reinforced concrete frame 

members is represented by the interaction diagram between the 

ultimate axial load up and the bending moment um , where this 

interaction diagram represents the yield surface for two-

dimensional analysis of the reinforced concrete sections. 

           The development of axial load-bending moment 

interaction curve for any reinforced concrete section (beam or 

column) requires (i) stress-strain relations for plain concrete and 

reinforcing steel, and (ii) dimensions of the section and the 

amount and locations of reinforcement. The uniaxial stress-strain 

relation as proposed by Medland and Taylor [9] shown in Figure 

(2a) has been adopted to model the behavior of concrete in 

compression. While Figure (2b) shows the idealized stress-strain 

relation used to model the reinforcing steel behavior. 

          To determine the axial load-bending moment interaction 

curve for a rectangular reinforced concrete section shown in 

Figure (3), the section is assumed to be subjected to a normalized 

axial load p  and moment m . The non-dimensional equilibrium 
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equations of force and moment (about neutral axis) at any stage 

of loading are:  
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where   is a curvature at the section, cf   is compressive strength 

of concrete, and the other remaining symbols in Equation (12) 

are defined in Figure (3). Applying the adopted stress-strain 

relations of the plain concrete and the reinforcing steel shown in 

Figure (2) will simplify the equilibrium Equation (12) for the 

next calculations.  

  

           Assuming t  equal to the ultimate concrete strain in 

compression u , and substituting different values of curvature   

(by varying the neutral axis depth), a set of points ( uu mp , ) is 

obtained by using Equation (12). A third degree polynomial is 

then fitted to the calculated set of points ( uu mp , ) by using the 

least squares method. This polynomial may be expressed as: 
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where om  is the ultimate bending moment of the section in the 

absence of axial load, op is the ultimate axial load of the section 
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in the absence of bending moment, and ( 4321 ,,, aandaaa ) are 

constants of the polynomial. Equation (13) can be used in 

calculating the interaction diagram for any reinforced concrete 

section during the analysis. Then the yield function of any 

section can be defined as: 

0.1=
um

m                                                                …. (14) 

in which m  is the current normalized bending moment applied on 

the section. 

Soil Material  

      The nonlinear elasto-plastic constitutive relationship of soil 

material that is based on the cap model, originally proposed by 

DiMaggio [10], is adopted in the present study. The cap model 

shown in Figure (4) consists of two parts: an ultimate failure 

envelope which limits the maximum shear stresses attainable by 

the material and elliptically shaped strain-hardening yield surface 

that produces plastic volumetric and shear strains as it expands. 

The failure envelope portion is described by Drucker-Prager 

yield surface for loading and failure [11]: 

( ) 0)exp(, 11221 =−−−−= IzIJJIh                                 …. (15) 

where 1I  is the first invariant of the stress tensor, 2J  is the second 

invariant of the deviatoric stress tensor,   and   are material 
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constants which are calculated from the laboratory tests, and   

and z  are equal to:   

( )]sin33/[sin2  −=                                                               …. (16) 

( )]sin33/[cos6  −= cz                                                                 …. (17)  

 in which cand ,  are the angle of friction and cohesion of the 

soil, respectively. 

The strain-hardening surface (Elliptical Cap) can be described 

mathematically by the following Equation [1]:  

( ) ( ) ( )  ( )  2

1
2

1
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,, kLIkLkX

R
JkJIH −−−−=                       …. (18) 

where R  is the ratio of the major to the minor axis of the elliptic 

cap, )(kX  and )(kL  depend on the hardening parameter k . 

)(kX can be calculated from the relation:  

( ) )1(ln
1

W

k

D
kX −−=                                                    …. (19)  

where D  is a material constant which is calculated from the 

laboratory tests, and W defines the maximum plastic volumetric 

compaction that the material can experience under hydrostatic 

loading. Finally, the loading function f can be expressed as 

follows: 
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Interface for Dynamic Soil-Structure Interaction 

  The response of a soil-structure system subjected to dynamic 

loading such as those resulting from earthquake and blasts can be 

influenced by the characteristics of joints (interfaces) between 

the structure and the soil. Assuming perfect bond at the interface 

during all stages of loading usually simplifies the analysis 

procedure significantly. Under dynamic loading, several modes 

such as sliding, separation or debonding can occur at the 

interface during vibration of the structure. The interface element 

is treated essentially like any other solid (soil, or structural) 

element, but its constitutive relations are defined differently. The 

constitutive relation matrix  C  of this element, given in Equation 

(5), consists of normal, shear, and bending stiffness. 

    High values are assigned for the normal and bending 

stiffness to avoid interpenetration of neighboring solid elements. 

Selection of these high values is based on the characteristics of 

the surrounding materials (structural and geological materials). 

Therefore, the adopted relation to express the normal and 

bending stiffness can be written in the following form [12]: -  

         
stngntnns CCCCC 3212

 ++==                             …. (21) 

The subscripts ( t ), ( g ) and ( st ) are corresponding to the 

interface, geological, and structural materials, respectively, and 

( 321 ,,  and ) are the participation factors which may vary from 

(0) to (1) and can be obtained from appropriate laboratory tests. 
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The normal stiffness of the interface  
tnC  is estimated from the 

following [13]: 

 
)21)(1(
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where E  is the elastic modulus, and   is Poisson’s ratio. 

          The shear part  sC  of the interface is equal to the shear 

modulus iG that is obtained from the results of direct shear tests 

of interface shown in Figure (5). The shear modulus iG  is 

derived from the shear stress of the interface through the 

following expression: 
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                                                                      …. (23) 

where   is the shear stress at interface, rU  is the relative shear 

displacement between the top and bottom nodes, and 't  is the 

thickness of interface element. 

          Using the direct shear test results indicated in Figure (5). It 

is possible to obtain a polynomial fit of the form: 

( ) ( )2

321 rr uu  ++=                                            …. (24) 

in which 21, , and 3 are the interface parameters, that can be 

expressed as:-  

2

54

2

321 )(.)(.)(.)(. NNnni  ++++=                      …. (25) 

(13-33) 13 



Tikrit Journal of Eng. Sciences/Vol.13/No.3/October  2006 

 

where n  is normal stress, and N  is number of cycles in direct 

shear test. The coefficients i  and i  associated with the shear 

behavior of the interface element can be determined from the 

results of appropriate laboratory tests [13]. 

           The shear stress in Figure (5) is steadily increasing for 

increasing number of cycles, but there is an ultimate shear stress, 

the level of this stress is determined by a slip function, and can 

be written in the following expression:  

( ) tannas cF +−=                                                   …. (26) 

 In which ac is the activated adhesion, and   is the 

activated friction angle. Slip occurs at the interface when: 

nn  + < 0      (Compressive stresses)    and     sF >0        …. (27) 

in this case Newton-Raphson iterations are used to adjust the 

shear stresses (making Fs  approaching zero value), and the 

plastic displacement (slip) at the interface resulting  from this 

adjustment, is determined.    

           The element goes into separation or debonding mode if: 

0+ nn                     (Tensile stresses)                          …. (28)  

In this case neither normal nor shear traction can be transmitted 

through the interface and these stress components are set to zero. 
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Rebonding between the adjacent elements is returned if the 

normal stresses at the interface become: 

0+ nn              (Compressive stresses)                         …. (29) 

INELASTIC ANALYSIS 

Inelastic Analysis of the Frame Members 

         In general, the yield condition of the frame members can be 

expressed as: 

( ) 0.1== kpff                                  …. (30) 

where kp  represents the nodal forces or stress resultants; f <1 

implies an elastic state; f =1.0 represents yielding and f >1.0 

represents non-admissible state. In classical theory of plasticity, 

the flow rule states that the plastic deformation rates are linearly 

related to their corresponding force (or stress) rates [14]. The 

associated flow rule can be written as: 

   gdup .=                             …. (31) 

 in which  pdu  is plastic components vector of the incremental 

nodal displacements,  is flow constant, and  g  is the gradient 

vector of the yield surface. 

           In the elastic-perfectly plastic material, there is no 

secondary plastic work, this implies that the increment of the 
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nodal forces dp  corresponding to a plastic deformation of a 

particular cross-section must be tangent to the yield surface. 

0. =dpduT

p                                                                         …. (32)  

By using the above equations, the flow constant can be derived 

assuming that the incremental nodal displacements of the element 

are decomposed into elastic and plastic components.  

pe dududu +=                                                    …. (33) 

The elastic components of displacements will create incremental 

nodal forces dp : 

ee dukdp .=                                                      …. (34) 

or   ( )pe dudukdp −= .                                         …. (35) 

where ek  is the elastic stiffness matrix of the element. By 

substituting the value of pdu  from Equation (31), the resulting 

equation is:  

... gkdukdp ee −=                                           …. (36)  

By multiplying the two sides of Equation (36) by Tg and using 

the flow rule and the normality condition referred in Equations 

(31) and (32) respectively, then: 

 0...... =−= gkgdukgdpg e

T

e

TT                                     …. (37) 
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Solving for  , then: 

    dukggkg e

T

e

T ....
1−

=                                                      …. (38) 

0  implies loading condition, and 0  implies elastic 

unloading condition. 

 

Inelastic Analysis of the Soil  

    As mentioned in the previous sections, the loading function 

is assumed to be isotropic and to consist of two parts as specified 

in Equation (20). The plastic loading criteria for the function f  is 

given by: 











=







Unloading

loadingNeutral

Loading
f

d
ij

ij

0

0

0


                                  …. (39) 

In which ij  is the stress tensor. 

         The first step to determine the possible path of the stresses 

is made by computing the elastic trial stresses e

ij  and checking 

the stress path resulting from the strain increment as shown in 

Figure (6). 

 

NUMERICAL APPLICATION AND DISCUSSION  

Description of the Problem 

        The soil-structure interaction system, shown in Figure (7), is 

considered for investigating the structural response predicted by 

the nonlinear dynamic analysis using the developed computer 
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program of the present study. Details of the cross sections of 

beams, columns, and foundation of the superstructure are shown 

in Figure (8). The system is subjected to an earthquake signal 

shown in Figure (9) at node 61 near the rigid base. In the present 

study the predicted structural response is presented in terms of 

horizontal displacement of node 1 (at top of the structure) and the 

slip between two opposite nodes at the interface (nodes 13 and 

18). The properties of the materials used in the analysis are 

summarized as follows: 

 Structural properties 

                Concrete material 

     Young’s modulus, cE         = 20700     N/mm2 

      Poisson’s ratio, c             = 0.167 

      Density, c                        = 2240       kg/m3  

      Compressive strength, cf     = 20           N/mm2  

                 Reinforcing steel 

      Young’s modulus, stE        = 200000   N/mm2 

      Yielding strength, yf          = 400         N/mm2  

 Soil properties (Ottawa sand) [12] 

      Young’s modulus, sE         = 26           N/mm2 

      Poisson’s ratio, s             = 0.370 

      Density, c                        = 1700        kg/m3  

 Parameters for the cap model [12] 

       = 0.20     N/mm2  ,   Z  = 0.20  N/mm2   ,    W  = 0.00267    ,     

     R  = 2.5   ,    D  = 1.20    1/(N/mm2) ,     = 2.03    1/(N/mm2) ,    

       = 0.4 
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 Properties of the interface  

Young’s modulus, iE          = 26           N/mm2 

Poisson’s ratio, i              = 0.37 

     Friction angle, tan            = 0.576 

           The numerical integration is performed using time step 

(0.0005 sec), and the damping ratio of the overall system is 

assumed to be 5% (Rayleigh damping) [15].  

 

Dynamic Analysis 

        The dynamic analysis has been carried out by using the 

Predictor-Corrector Newmark’s algorithm [16], to study the 

structural response to an idealized earthquake signal applied at 

node 61. Figure (10) shows the response of the structure in terms 

of horizontal displacement at node 1, the figure shows also 

comparison between the results predicted from the present 

analysis with that predicted, for the same system shown in Figure 

(7), by Haggblad and Nordgren [17]. They used the plain concrete 

as a structural material of the frame members assuming elastic 

behavior of concrete and elasto-plastic behavior of soil material 

throughout the analysis. Considerably higher response is 

obtained for the horizontal displacement of node 1 when the 

acceleration of the input signal climbs over a certain level.      

          Figure (11) shows the horizontal response at nodes 13 and 

18 at the interface adjacent to the soil surface (at bottom of the 

foundation of the structure). The difference between the 

horizontal displacements of these nodes gives an indication about 
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the amount of slip at the interface near the corner of the 

foundation.   

 Figure (12) shows comparison between the structural 

response at node 1 when slip is permitted at the interface with 

that for perfect bond between the structure and the soil. This 

difference in displacement justifies the importance of imploying 

the slip model at the interface points.  

             Figure (13) shows the significant difference in the 

response at node 1 for two different models of the soil behavior, 

in particular elasto-plastic behavior represented by the cap model 

and linear elastic behavior. The figure shows the dependency of 

the response of the entire structure on the material model of the 

soil medium especially during the analysis to earthquake 

transmitted through this medium.   

          Figure (14) describes the relative horizontal movement 

between the interface nodes 13 and 18. The slip is relatively 

small at the first 2 seconds from the time of excitation, after this 

time the rate of slip is steadily increased till it reachs a value of 

6.5 mm at the time of 3 second. 

 

CONCLUSIONS 

        A simple interface element that allows for deformation 

modes, such as no slip, slip, separation, and debonding, is used 

for simulating the interface behavior between the structure and 

subsoil elements during the interaction analysis. The study 

assures the importance of dependency of the structure on the 

(20-33) 20 



Tikrit Journal of Eng. Sciences/Vol.13/No.3/October  2006 

 

behavior of soil material, especially in the analysis of the 

interaction system subjected to an earthquake excitation 

transmitted through the soil media. Incorporation of slip model in 

the interface elements significantly affects the behavior of the 

structure. The experiences from the numerical analysis indicate 

that the chosen material models, for the soil and for the structure, 

which are robust for classical engineering work, are sufficiently 

stable and gave reliable results. 
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Figure (1) Geometry of 2-node isoparametric interface element 
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Figure (10): Possible Stress Paths Resulting From a Strain Increment.
 Figure (6) Possible stress paths resulting from a strain 

increment 

           Figure (7) Soil-structure interaction model 
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Figure (9) Input signal (prescribed displacement at the base 

in x-direction) 
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Figure (10): Displacement-time history at node 1 in 

X-direction.
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Figure (10) Displacement-time history at node 1 in 

X-direction. 

Figure (11) Slip at the interface in X- direction 
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Figure ( 12): Displacement-time history at node 1 in 

X- direction (different models of the interface)
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Figure (12): Displacement-time history at node 1 in X- 

direction (different models of the interface) 
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Figure (12) Displacement-time history at node 1 in X- direction 

different models of the interface 
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Figure ( 14): Amount of slip between nodes 18 & 13
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Figure (14) Amount of slip between 18 & 13  
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 التحليل اللاخطي الديناميكي للهياكل الإنشائية الكونكريتية المسلحة مع
 المنشأ-احتواء تأثيرات تداخل التربة

 

 سفيان يونس احمد                                         محمود محمد نجم  د.

 جامعة الموصل-قسم الهندسة المدنية
 

 الخلاصة
يهدف هذا البحث إلى دراسة تأثير تداخل المنشأ مع التربة على التصرف 

 طريقة العناصر المحددة أختيرت لتمثيل منظومة .الزلزالي للمنشأ الخرساني المسلح 
التداخل والتي تتكون من الهيكل الخرساني المسلح المستوي )ذات البعدين(, طبقات 
التربة, وسطح التداخل الذي يمثل السطح الاحتكاكي بين أساس المنشأ  والتربة. 

اللدن لعناصر الهيكل -التحليل يعتمد على الخواص اللاخطية للمواد والتصرف المرن 
وع المعرف بعلاقة التداخل بين القوة المحورية )الأعمدة والجسور( تحكم بسطح الخض

القصوى وعزم الانحناء الأقصى للمقطع الخرساني المسلح, بينما موديل الغطاء يتم 
اللدن لمادة التربة.النتائج المستحصلة للتحليل الحركي -اختياره ليحكم التصرف المرن 

تصرف المنشأ وهذا تدل على ان تداخل المنشأ مع التربة يمتلك تأثيرات مفيدة على 
 التصرف معتمد على خواص مادة التربة وسطح التداخل بين الأساس وسطح التربة  

 

 

 الكلمات الدالة
العزم, التلامس, الخرسانة المسلحة, تداخل -الهزة الأرضية, مخطط التداخل للقوة 

 التربة -المنشأ
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