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ABSTRACT

The role of soil-structure interaction on seismic behavior of
reinforced concrete structures is investigated in this paper. Finite
element approach has been adopted to model the interaction
system, that consists of a reinforced concrete plane frame, soil
deposit, and interface which represents the frictional surface
between the foundation of the structure and subsoil. The analysis
is based on the nonlinear characteristics of the materials and the
elasto-plastic behavior of the frame members (beams and
columns) is governed by a yield surface which is defined by
ultimate strength of the axial force-bending moment interaction,
while the cap model is adopted to govern the elasto-plastic
behavior of the soil material. Results deduced from the dynamic
analysis indicate that soil-structure interaction can have
beneficial effects on structural behavior and this behavior is
dependent on the characteristics of the soil and the interface

conditions.
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INTRODUCTION

The dynamic soil-structure interaction has long been a topic
of interest in engineering practice. This problem has a
considerable influence on the response of massive structures such
as dams, bridges and multi-story frames. For these reasons, the
development of appropriate methods for the analysis is
increasingly demanded to ensure the integrity of structural
design.

In general, the structure including its foundation will
interact with the soil, and analyzing the structure isolated from
the soil will cause deviating solution. The seismic excitation of
the structure and the subsoil may be considered as one of the
most severe loading case. The researches in this subject have not
yet provided a full understanding of how the soil-structure
interaction affects the response of the structure subjected to
dynamic loads. Thus a comprehensive study is required to
investigate the response of a structure under seismic loading and
its sensitivity to various parameters.

Chen and Krauthammer [ used a combined finite element-
finite difference method with substructuring approach to solve
the soil-structure interaction problems subjected to seismic

loading. The study concentrated on the importance of the
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mathematical modeling of the interaction system. Phan et. al. 2!
compared the elastic response of 6-story building subjected to an
earthquake loading using two different boundary conditions, in
the first, the frame is assumed to be fixed at supports, and in the
second case the interaction between the structure and the subsoil
is considered. The study clarified the effect of considering the
soil-structure interaction on the structural response. The soil
medium was represented by simple elastic springs. Dunand
et al.l¥! estimated the modal frequencies and damping ratios of 26
reinforced concrete buildings from ambient vibration records.
The estimated data were used in the analysis of these buildings
taken into consideration the soil-structure interaction. The main
emphasis was to determine the damping resulting from the soil
layer itself during the interaction analysis and its contribution in
absorbing vibrational energy of the structure. Todar et al. ™ used
a vast amount of earthquake response records of a reinforced
concrete multistory frame, constructed over a soil with pre-
specified parameters. The study aimed to investigate various
aspects that affect the dynamic behavior of the soil-structure
system. The main objectives of the present work are to evaluate
the sensitivity of plane frame structures to different variables
related to soil and interface conditions when the structure is

subjected to an earthquake excitation.
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MATHEMATICAL FORMULATIONS

Finite element approach has been adopted in the present
work to model the interaction system, which consists of three
main parts, in particular the structural frame members, soil
layers, and the interface between the foundation of the structure
and the subsoil. Details of these elements are presented as

follows.

Two-Node Beam-Column Element

The members of a reinforced concrete plane frame are
idealized by two-node beam-column elements, each node has
three degrees of freedom (u,v,0) and the stress resultants
corresponding to these degrees of freedom are axial force, shear
force, and bending moment. The elastic stiffness and mass
matrices for any two-dimensional beam-column element are
derived using the bending theory for small transverse
displacements and it is well described in many textbooks of

structural mechanics I,
Four-Node Isoparametric Plane Strain Element

The soil layer, which is considered as an integrated part of
the interaction system, is idealized by four-node plane strain
elements with two degrees of freedom at each node (u,v). The
stress-strain relation developed in the element can be written in

the following form [
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Oy &y
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where o,,0, are the normal stresses, z, is the shear stress,

Xy
e.¢,, and y are the corresponding strains, and [D]is the

X1y

elasticity matrix for plane strain condition.

Based on the energy minimization, the elastic stiffness and
mass matrices can be determined from the relations:

[K]=][B'[D] [B] dv o (2)

Y

[M]=m][ [N] [N]av . (3)

where [B] is the strain-displacement matrix, [N] is the shape
function matrix of the element, m is the distributed mass on the
element area, and v is the volume of element .The numerical
integration of the above equations is carried out using 2x2 Gauss
quadrature [,
Interface Element

The present interface element is formulated to model the
interface between the foundation of the structure and the soil
elements. The element is assumed to have a unit thickness and
degrees of freedom compatible with other two elements. The

interface element shown in Figure (1) has two nodes at each end,

lower and upper nodes, having the same coordinates. The upper
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node adjacent to a frame element has three degrees of freedom

(u,v,0), while the lower one, adjacent to the soil (plane strain)
element, has two degrees of freedom (u,v). The stress-strain

relation of this element can be written in the following form [7 8l

N e (@

852

where rz,,0,,and Mare the shear stress, normal stress, and
bending moment at the interface, respectively, ¢ ,s,,ande, are

the corresponding strains, and [C] is the constitutive matrix of the

interface which can be written as:
., 0 0
C, 0

[c]=| 0 .. (5)
0 0 C

S2

in whichC,,C,, and C,are uncoupled normal, shear, and

rotational stiffnesses of the interface, respectively. For the
isoparametric interface element, the displacements and rotation at
any point on the element are interpolated from nodal values as

follows:
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where N, is the shape function which is defined for node i of one

dimensional element by using natural coordinates r, which

varies from (—1) for node 1 to (+1) for node 2 as:
N, =@Q+rr)/2 ...(N)

where r, is the natural coordinate of node i.

The strain vector in global coordinates at any point of the
element can be expressed in terms of the nodal values of the

relative displacements at the nodes as:

&s1 1 2 Ni 0 Aui
gn 1= 2,10 Nj 0 [ddy ....(8)
Eg2 tia 0 0 N;j| |46
or
1 2
el=1 S lel b -0

i=1

where t is the thickness of the element which is taken equal to

unity, and (4u;,4v;,and 46;) are the relative displacements

between the upper and lower nodes which are equal to:
(47T ={ul o vE - b 0t ub —ub vt —vh 0t ...(10)

where superscripts t and b correspond to the top and bottom
nodes, respectively. The elastic stiffness matrix of this element

can be derived by the following formula:
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[K]=[[B[ [c][B] av .. (1D)

where [B], represents the strain-displacement matrix, and v is the

volume of element.

MATERIAL MODELING

Reinforced Concrete Material
The material model adopted for reinforced concrete frame

members is represented by the interaction diagram between the

ultimate axial load p,and the bending moment m,, where this

interaction diagram represents the vyield surface for two-
dimensional analysis of the reinforced concrete sections.

The development of axial load-bending moment
interaction curve for any reinforced concrete section (beam or
column) requires (i) stress-strain relations for plain concrete and
reinforcing steel, and (ii) dimensions of the section and the
amount and locations of reinforcement. The uniaxial stress-strain
relation as proposed by Medland and Taylor ! shown in Figure
(2a) has been adopted to model the behavior of concrete in
compression. While Figure (2b) shows the idealized stress-strain
relation used to model the reinforcing steel behavior.

To determine the axial load-bending moment interaction
curve for a rectangular reinforced concrete section shown in
Figure (3), the section is assumed to be subjected to a normalized

axial load P and moment M. The non-dimensional equilibrium
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equations of force and moment (about neutral axis) at any stage

of loading are:

1 6 SI
p:ﬂ f_ 21 3 bdf., ....(12a)
_1 Asi Osi _
n- ch' Zbd ;, - (¢ o.s)d ... (12b)

where ¢ is a curvature at the section, f{ is compressive strength

of concrete, and the other remaining symbols in Equation (12)
are defined in Figure (3). Applying the adopted stress-strain
relations of the plain concrete and the reinforcing steel shown in
Figure (2) will simplify the equilibrium Equation (12) for the

next calculations.

Assuming ¢ equal to the ultimate concrete strain in
compression ¢,, and substituting different values of curvature ¢
(by varying the neutral axis depth), a set of points (p,,m,) is

obtained by using Equation (12). A third degree polynomial is
then fitted to the calculated set of points (p,,m,) by using the

least squares method. This polynomial may be expressed as:

m
mZ:al+a2[Eﬂ+a{zﬂ +a{gj . (13)

where m, is the ultimate bending moment of the section in the

absence of axial load, p,is the ultimate axial load of the section
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in the absence of bending moment, and (a,,a,,a;,anda,) are

constants of the polynomial. Equation (13) can be used in
calculating the interaction diagram for any reinforced concrete
section during the analysis. Then the yield function of any

section can be defined as:

=10 ....(14)

in which m is the current normalized bending moment applied on
the section.
Soil Material

The nonlinear elasto-plastic constitutive relationship of soil
material that is based on the cap model, originally proposed by
DiMaggio 1% is adopted in the present study. The cap model
shown in Figure (4) consists of two parts: an ultimate failure
envelope which limits the maximum shear stresses attainable by
the material and elliptically shaped strain-hardening yield surface
that produces plastic volumetric and shear strains as it expands.
The failure envelope portion is described by Drucker-Prager

yield surface for loading and failure [*:
h(ll,\/J_z)z\/J_z—all—z—ﬂexp(—y 1,)=0 .. (15)

where 1, is the first invariant of the stress tensor, J, is the second

invariant of the deviatoric stress tensor, g and y are material
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constants which are calculated from the laboratory tests, and «

and z are equal to:
a = 2sing /[\/3(3—sing)] ....(16)
z =6¢'cosg/[\/3(3—sing)] ...(17)

in which ¢, and ¢’ are the angle of friction and cohesion of the
soil, respectively.
The strain-hardening surface (Elliptical Cap) can be described

mathematically by the following Equation [XI:
1 2 s
(32 )=3; == X 0)- LKF - [1, - L f .. (18)

where R is the ratio of the major to the minor axis of the elliptic
cap, X(k) and L(k) depend on the hardening parameter k.
X (k) can be calculated from the relation:

X(k):—% In(l—Vl\</) ....(19)

where D is a material constant which is calculated from the
laboratory tests, and W defines the maximum plastic volumetric
compaction that the material can experience under hydrostatic
loading. Finally, the loading function fcan be expressed as

follows:

‘_ h(l,,4[3,)  if 1, <L(Kk) .... (20)
CIHL 3,k 0 1L > LK)

11
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Interface for Dynamic Soil-Structure Interaction

The response of a soil-structure system subjected to dynamic
loading such as those resulting from earthquake and blasts can be
influenced by the characteristics of joints (interfaces) between
the structure and the soil. Assuming perfect bond at the interface
during all stages of loading usually simplifies the analysis
procedure significantly. Under dynamic loading, several modes
such as sliding, separation or debonding can occur at the
interface during vibration of the structure. The interface element
is treated essentially like any other solid (soil, or structural)
element, but its constitutive relations are defined differently. The
constitutive relation matrix [C] of this element, given in Equation
(5), consists of normal, shear, and bending stiffness.

High values are assigned for the normal and bending
stiffness to avoid interpenetration of neighboring solid elements.
Selection of these high values is based on the characteristics of
the surrounding materials (structural and geological materials).
Therefore, the adopted relation to express the normal and

bending stiffness can be written in the following form 22 -
., ]=[c.]=alc.) + 2.[c.], + 4lc, ], ... (21)

The subscripts (t), (g) and (st) are corresponding to the

interface, geological, and structural materials, respectively, and

(4,4,,and 4,) are the participation factors which may vary from

(0) to (1) and can be obtained from appropriate laboratory tests.
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The normal stiffness of the interface [C,], is estimated from the
following 231

_ E@-v)
[Cn]t - (1+U)(1—20) (22)

where E is the elastic modulus, and v is Poisson’s ratio.

The shear part [C,] of the interface is equal to the shear
modulus G, that is obtained from the results of direct shear tests
of interface shown in Figure (5). The shear modulus G, is

derived from the shear stress of the interface through the

following expression:

or '
G; = .t
i 20, ....(23)

where 7 is the shear stress at interface, U, is the relative shear

displacement between the top and bottom nodes, and t is the
thickness of interface element.
Using the direct shear test results indicated in Figure (5). It

Is possible to obtain a polynomial fit of the form:
r=a,+a,(u,)+a,u, ¥ ... (24)

in which «,,a,, anda,are the interface parameters, that can be

expressed as:-

a =pf +ﬂ2-(0-n)+163-(0n)2 +ﬂ4-(N)+ﬁ5-(N)2 ... (25)

13
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where o, is normal stress, and N is number of cycles in direct
shear test. The coefficients o, and B, associated with the shear

behavior of the interface element can be determined from the
results of appropriate laboratory tests 3,

The shear stress in Figure (5) is steadily increasing for
increasing number of cycles, but there is an ultimate shear stress,
the level of this stress is determined by a slip function, and can

be written in the following expression:
F, =|z|-(c, + o, tand) ... (26)

In which c,is the activated adhesion, and & is the

activated friction angle. Slip occurs at the interface when:

o,+Ac,<0 (Compressive stresses) and F.>0 ....(27)

S

in this case Newton-Raphson iterations are used to adjust the
shear stresses (making Fs approaching zero value), and the
plastic displacement (slip) at the interface resulting from this

adjustment, is determined.

The element goes into separation or debonding mode if:

o,+Ac, >0 (Tensile stresses) ....(28)

In this case neither normal nor shear traction can be transmitted

through the interface and these stress components are set to zero.

(14-33)



(15-33)

Tikrit Journal of Eng. Sciences/Vol.13/N0.3/October 2006

Rebonding between the adjacent elements is returned if the

normal stresses at the interface become:

o, +Ac, <0 (Compressive stresses) ....(29)

INELASTIC ANALYSIS

Inelastic Analysis of the Frame Members
In general, the yield condition of the frame members can be

expressed as:
f=f(p,)=10 ... (30)

where p, represents the nodal forces or stress resultants; f <1
implies an elastic state; f =1.0 represents yielding and f >1.0

represents non-admissible state. In classical theory of plasticity,
the flow rule states that the plastic deformation rates are linearly
related to their corresponding force (or stress) rates [*4. The

associated flow rule can be written as:
{du, f=2.{g} ...(31

in which {du, | is plastic components vector of the incremental

nodal displacements, 4 is flow constant, and {g} is the gradient
vector of the yield surface.
In the elastic-perfectly plastic material, there is no

secondary plastic work, this implies that the increment of the

15
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nodal forces dp corresponding to a plastic deformation of a

particular cross-section must be tangent to the yield surface.
duy.dp=0 ... (32)

By using the above equations, the flow constant can be derived
assuming that the incremental nodal displacements of the element

are decomposed into elastic and plastic components.
du =due +dup ....(33)

The elastic components of displacements will create incremental

nodal forces dp:
dp =k, . du, ... (34)
or dp=k,.(du—du,) ... (3%)

where k, is the elastic stiffness matrix of the element. By
substituting the value of du, from Equation (31), the resulting

equation is:
dp=k,.du—k,.g. 4 ... (36)

By multiplying the two sides of Equation (36) by g™ and using
the flow rule and the normality condition referred in Equations
(31) and (32) respectively, then:

g'.dp=g".k,.du—g".k,.g.1=0 ....(37)
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Solving for 4, then:

{/I}z[gT.ke. g]_lgT.ke.du ....(38)

A>0 implies loading condition, and 2 <0 implies elastic

unloading condition.

Inelastic Analysis of the Sail

As mentioned in the previous sections, the loading function
Is assumed to be isotropic and to consist of two parts as specified
in Equation (20). The plastic loading criteria for the function f is
given by:

» 0 Loading

daija— =0 Neutralloading ....(39)
i |¢ 0 Unloading

In which o is the stress tensor.
The first step to determine the possible path of the stresses
is made by computing the elastic trial stresses o;" and checking

the stress path resulting from the strain increment as shown in
Figure (6).

NUMERICAL APPLICATION AND DISCUSSION

Description of the Problem
The soil-structure interaction system, shown in Figure (7), is

considered for investigating the structural response predicted by

the nonlinear dynamic analysis using the developed computer

17
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program of the present study. Details of the cross sections of
beams, columns, and foundation of the superstructure are shown
in Figure (8). The system is subjected to an earthquake signal
shown in Figure (9) at node 61 near the rigid base. In the present
study the predicted structural response is presented in terms of
horizontal displacement of node 1 (at top of the structure) and the
slip between two opposite nodes at the interface (nodes 13 and
18). The properties of the materials used in the analysis are
summarized as follows:

¢ Structural properties

Concrete material

Young’s modulus, E, =20700 N/mm?
Poisson’s ratio, v, =0.167

Density, p, =2240  kg/m?
Compressive strength, f; =20 N/mm?

Reinforcing steel
Young’s modulus, E,  =200000 N/mm?
Yielding strength, f, =400 N/mm?
¢ Soil properties (Ottawa sand) %

Young’s modulus, E, =26 N/mm?
Poisson’s ratio, v, =0.370

Density, p, = 1700 kg/m?

¢ Parameters for the cap model [*2]
B =020 N/mm?, zZ =020 N/mm? , w =0.00267 |,
R=25, D=120 1/(N/mm?), » =203 1/(N/mm?,
a=04

(18-33)
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¢ Properties of the interface

Young’s modulus, E, =26 N/mm?
Poisson’s ratio, v, =0.37
Friction angle, tan & =0.576

The numerical integration is performed using time step
(0.0005 sec), and the damping ratio of the overall system is

assumed to be 5% (Rayleigh damping) 21,

Dynamic Analysis
The dynamic analysis has been carried out by using the
Predictor-Corrector Newmark’s algorithm [ to study the
structural response to an idealized earthquake signal applied at
node 61. Figure (10) shows the response of the structure in terms
of horizontal displacement at node 1, the figure shows also
comparison between the results predicted from the present
analysis with that predicted, for the same system shown in Figure
(7), by Haggblad and Nordgren 21, They used the plain concrete
as a structural material of the frame members assuming elastic
behavior of concrete and elasto-plastic behavior of soil material
throughout the analysis. Considerably higher response is
obtained for the horizontal displacement of node 1 when the
acceleration of the input signal climbs over a certain level.
Figure (11) shows the horizontal response at nodes 13 and
18 at the interface adjacent to the soil surface (at bottom of the
foundation of the structure). The difference between the

horizontal displacements of these nodes gives an indication about

19
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the amount of slip at the interface near the corner of the
foundation.

Figure (12) shows comparison between the structural
response at node 1 when slip is permitted at the interface with
that for perfect bond between the structure and the soil. This
difference in displacement justifies the importance of imploying
the slip model at the interface points.

Figure (13) shows the significant difference in the
response at node 1 for two different models of the soil behavior,
in particular elasto-plastic behavior represented by the cap model
and linear elastic behavior. The figure shows the dependency of
the response of the entire structure on the material model of the
soil medium especially during the analysis to earthquake
transmitted through this medium.

Figure (14) describes the relative horizontal movement
between the interface nodes 13 and 18. The slip is relatively
small at the first 2 seconds from the time of excitation, after this
time the rate of slip is steadily increased till it reachs a value of

6.5 mm at the time of 3 second.

CONCLUSIONS

A simple interface element that allows for deformation
modes, such as no slip, slip, separation, and debonding, is used
for simulating the interface behavior between the structure and
subsoil elements during the interaction analysis. The study

assures the importance of dependency of the structure on the
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behavior of soil material, especially in the analysis of the

interaction system subjected to an earthquake excitation

transmitted through the soil media. Incorporation of slip model in

the interface elements significantly affects the behavior of the

structure. The experiences from the numerical analysis indicate

that the chosen material models, for the soil and for the structure,

which are robust for classical engineering work, are sufficiently

stable and gave reliable results.
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Figure (1) Geometry of 2-node isoparametric interface element
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Figure (2) Stress-strain relations of concrete and
reinforcing steel
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Hint: a and Z are related to Drucker-Erager Lllje
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Figure (4) Cap model
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Figure (5) Direct shear test
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(a) Elastic Path (b) Elastic Perfectly
Plastic Path

(d) Elastic Perfectly
Plastic with a Corner

{c) Elastic Work
Hardening Path.

Figure (6) Possible stress paths resulting from a strain
increment
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Figure (7) Soil-structure interaction model
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Figure (8) Cross sections of beams, columns, and foundation of the
superstructure
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Figure (9) Input signal (prescribed displacement at the base
in x-direction)
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—8— Present Study
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Figure (10) Displacement-time history at node 1 in
X-direction.
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Figure (11) Slip at the interface in X- direction
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Figure (12) Displacement-time history at node 1 in X- direction
different models of the interface
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Figure (13) Displacement-time history at node 1 in X- direction
different behaviors of soil material
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Figure (14) Amount of slip between 18 & 13
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