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ABSTRACT 

This paper deals with the linear elastic behavior of thick 

orthotropic square plates on Winkler type elastic foundations 

with both compressional and tangential resistances. The finite 

element method with different isoparametric thick plate and brick 

elements are used to solve problems, which were previously 

solved by the finite difference method. Good agreement is found 

between the different methods with percentage difference about 

1%.. 
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NOTATIONS 

Symbols Description 

A Cross-sectional area of the plate. 

[B] Strain-displacement matrix. 

c2 Correction factor for transverse shear. 

Dx,Dy Flexural rigidities of orthotropic plates in x and y 

directions. 

Dxy Torsional rigidity of orthotropic plates in x and y 

directions.  

Ex,Ey,Ez Moduli of elasticity of orthotropic plates in x,y and 

z directions. 

Gxy,Gxz,Gyz Shearing modulus for xy, xz and yz planes. 

h Plate thickness. 

I Moment of inertia for plate section per unit width. 

[J] Jacobian matrix. 

[Kp] Stiffness matrix for the plate. 

Kx,Ky,Kz Moduli of subgrade reactions in x,y and z directions. 

Mx,My Bending moments in xz and yz planes (per unit 

width). 

Mxy Twisting moments (per unit width  ( in x and y 

direction. 

[N] Matrix containing the interpolation shape functions 

N1,N2… Shape functions. 

P Applied concentrated load.  

P(x,y) Soil reaction in Cartesian coordinates. 

Qx, Qy Transverse shearing force per unit width in x and y 

direction. 
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continued-NOTATIONS 

Symbols Description 

q(x,y) Transverse load per unit area in z direction 

x,y,z Cartesian coordinates. 

u,v Displacements in x and y directions 

w Displacement in z-direction. 

{δ} Total displacements in the system. 

εx,εy,εz Normal strains in x, y and z directions. 

ξ,ή,ζ Local coordinates system. 

ψx,ψy Rotations of the transverse sections in xz or yz- 

planes. 

γxy,γyz,γxz Engineering shearing strains in xy, yz and xz-

planes.  

τxy,τyz,τxz Shearing stresses in xy, yz and xz planes. 

σx,σy,σz Normal stresses in x, y and z directions. 

 

INTRODUCTION 

Plates are plane structures of constant or variable thickness 

and bounded by two surfaces which are the top and bottom faces 

of the plate and by straight or curved transverse edges.  

These are some reviews of early studies on thick plates. 

Hinton et al. (1975) [1] used plate bending isoparametric 

finite elements with curved boundaries and variable thickness, 

allowing for the effect of transverse shearing deformations. The 

given examples show applications to thin, thick cellular and 

sandwich plates. 
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Rajapakse and Selvadurai (1986) [2] used the finite element 

analysis for the flexural interaction between an elastic thick plate 

and elastic half-space. It is found that the heterosis plate element 

is capable of modeling the plate-elastic medium interaction very 

efficiently. A square plate on elastic half space was considered. 

Al-Jubori (1992) [3] solved the problem of isotropic thick 

rectangular plates on elastic foundations with both normal and 

frictional resistances by finite differences and finite elements. A 

four- node element was used. Results showed good agreements 

with the solution by finite differences especially for plate with 

large thicknesses and under distributed loadings. 

 Al-Mahdi (1994)[4] solved the problem of thick orthotropic 

rectangular plates on elastic foundations with both normal and 

frictional resistances by finite differences and finite elements. 

Results showed good agreement with the solution by finite 

differences especially for plates with large thickness and under 

distributed loadings.  

Mishra and Chakrabarti (1996) [5] studied the behavior of 

flexible rectangular plates resting on tensionless elastic 

foundation. They analyzed the problem using the finite element 

method. Nine-node Mindlin elements has been adopted for 

modeling the plate to account for transverse shear effects with 

realistic design parameters being studied. 
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Buczkowski and Torbacki (2001) [6] analyzed rectangular 

and circular plates resting on two-parameter elastic foundation by 

using finite elements. The plate subjected to combined loading 

and permitting various types of boundary conditions. The 

formulation of the problem takes into account the shear 

deformation of the plate and the surrounding interaction effect 

outside the plate.  

  Liu and Riggs (2002) [7] derived a general formulation for 

a family of N-node, higher-order, displacement-compatible, 

triangular, Reissner/Mindlin shear-deformable plate elements. 

Many problems of isotropic and orthotropic thick rectangular and 

circular plates were solved using the finite element method with 

3-nodes and 6- nodes triangular quadratic element  

In this paper, Mindlin’s thick plate theory is used to 

analyze thick orthotropic square plates on elastic foundations 

subjected to generalized loadings which are externally distributed 

shearing forces at top and bottom faces of the plate and 

distributed moments, in addition to the usually applied transverse 

loads. The transverse section has three degrees of freedom (the 

deflection w and the two rotations of the normal line to the 

middle plane, ψ x and ψ y, in case of plate bending element) or 

(the deflection w and the displacements u and v in case of brick 

element). The elastic foundation is represented by a Winkler 

model, which is assumed that the foundation is consisting of 
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closely spaced independent linear springs normal and tangential 

to the plate as shown in figure (1). 

 

FINITE ELEMENT MODEL 

The finite element method is used to solve thick square 

plates by using 9 plate elements over a quarter of the plate. 8-

node isoparametric plate bending elements are used. Also, 20-

node isoparametric brick elements (two layers in thickness with 4 

elements in each layer) are used. Different numbers of finite 

element mesh of brick element are used. The eight-element mesh 

gives accurate results. The mesh of the finite element is shown in 

figure (2).  

The two-dimensional isoparametric thick plate element in 

local coordinates  and  has n nodes.  Each node i has three 

degrees of freedom. They are (wi, xi, yi) in Cartesian 

coordinates. Thus, the element degrees of freedom may be listed 

in the vector (or column matrix). 

 

{ e} = [w1, x1, y1,……….. wn, xn, yn]    

  

The degrees of freedom in Cartesian coordinate (w, x and 

y)  can be defined in terms of shape function: 
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The Jacobian matrix [J] in Cartesian coordinates is 

obtained from the following expression: 
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The strains are defined in terms of the nodal displacements 

and shape function derivatives, the expression in Cartesian 

coordinates is given: 
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 The generalized stress-strain relationship for a plate of 

orthotropic elastic materials in Cartesian coordinates is written 

as: 
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or 

   }{ε[D]}{σ e

oc

e =                                                          (6) 

 

where [D]oc is the matrix of elastic constant for the orthotropic 

elastic thick plate in Cartesian coordinates. 

The element stiffness matrix for thick orthotropic plate in 

Cartesian coordinates is given as: 
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The three-dimensional element in local coordinates 

ζ)η,ξ,(  at node i with nodal displacements at (x,y,z)  are ui, vi 

and wi respectively. Thus, the element displacement may be 

listed in the vector (or column matrix). 

 

]
n

 v,
n

u,
n

w,....,1v,1u,1[w}e{δ =        
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The isoparametric definition of the brick element is: 
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where Ni ),,(   represents the shape functions for the global 

coordinates x ),,(   ,y ),,(  , z ),,(    at node i.  

The shape function Ni is a function of the local 

coordinates, while the derivatives of shape function should be 

expressed in terms of the global Cartesian coordinates: 
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The strains are defined in terms of the nodal displacement 

and shape function derivatives in Cartesian coordinates by the 

expression:  
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For the stress-strain relations: 
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where,  

 

=1-xyyx-yzzy-zxxz-2xyyzzx 
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For certain orthotropic materials, an approximate relation 

exists for the shear modulus [8]: 
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 Similar expressions exist for Gxz and Gyz. These relations 

are used in the present study. 

The stiffness matrix for orthotropic elastic brick element in 

Cartesian coordinates is given as: 
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APPLICATIONS 

Two cases of thick orthotropic square plates on elastic 

foundations are considered. The cases are a simply supported and 

a fixed edge plate under uniformly distributed load as shown in 

figure (3).  

1. For the simply supported edge plate, figures (4) and (5) 

show the deflection profile and bending moment diagram 

in x-direction by both the finite differences [Al-Mahdi 

(1994)[4]] and the present study. The results show good 

agreement by these two methods. The difference in central 

deflection is 3.8% and in central moment it is 2.8 % in 

case of using plate bending elements and the difference in 

central deflection is 1.9% and in central moment 1.4 % in 
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case of using brick elements. Table (1) shows the result of 

central deflection by different methods.  

2. For the clamped edge plate, figures (6) and (7), show the 

deflection profile and bending moment diagram in x-

direction by both the finite differences [Al-Mahdi (1994) 

[4]] and the present study. The difference in central 

deflection is 3.6% and in central moment 8.4 % in case of 

using plate bending elements and the difference in central 

deflection is 1.8% and in central moment  3.7 % in case of  

using brick elements. 

 

PARAMETRIC STUDY 

To study the effects of elastic foundations and thickness on 

the behavior of thick orthotropic square plates, a simply 

supported thick plate shown in figure (8) (Kx=Ky =20000 kN/m3) 

is considered. The loading was taken to be uniformly distributed 

load (q=25 kN/m2). The effects of variation of vertical and 

horizontal subgrade reactions on the results of central deflection 

and bending moments of the thick orthotropic plate are 

considered. The following points are concluded from the study of 

the variation of vertical and horizontal subgrade reactions. 

• To show the effect of variation of the vertical subgrade 

reaction on the results, an orthotropic square plate with simply 

supported edges and resting on vertical subgrade reaction with 

various values (neglecting the effect of frictional restraints) 

are studied. Figures (9) and (10) show the variation of vertical 
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subgrade reaction on the central deflection and bending 

moments. From these figures, the central deflections and 

moments will decrease as the vertical subgrade reaction is 

increased because of increasing resistance from the 

foundation. It was found that by increasing the vertical 

subgrade reaction from (0.0 to 30000 kN/m3), the central 

deflection is decreased by 0.45% and the central moment by 

0.50% [9]. 

• To show the effect of variation of horizontal subgrade 

reaction, a simply supported thick plate with vertical subgrade 

reaction (Kz=10000 kN/m3) and horizontal subgrade reactions 

of various values of (Kx and Ky) are considered. Figures (11) 

and (12) show the variation of horizontal subgrade reaction 

(Kx and Ky) with central deflections and bending moments. 

From these figures, small reduction on central deflections and 

bending moments occurs as the horizontal subgrade reactions 

are increased because of slightly increasing of foundation 

resistances. It was found that by increasing the horizontal 

subgrade reaction from (0.0 to 30000 kN/m3), the central 

deflection is decreased by 0.04% and the central moment is 

decreased by 0.08% [9]. 

• To study the effect of thickness (or stiffness) of plate on the 

results of central deflection and moments, simply supported 

plates with various thicknesses are considered. Figures (13) 

and (14) show the effect of variation of thickness of plate on 

(13-25) 
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central deflection and bending moments of thick orthotropic 

square plate. From these figures, the central deflection will 

decrease as the thickness of plate is increased because of 

increasing plate stiffness. But, the central moment will 

increase as thickness of plate is increased. It was found that 

by increasing the thickness of the thick plate from (0.15 to 0.3 

m), the central deflection is decreased by 82.90% and the 

central resisting moment is increased by 1.0% [9]. 

 

CONCLUSIONS 

1. The results from the finite element method are plotted with 

the results of examples previously solved by using finite 

differences to check the accuracy of this explicitly different 

method. Good agreements are obtained between these 

methods with percentage difference about 1.0%. 

2. The central deflection will decrease as the thickness of plate is 

increased because of increasing plate stiffness. But, the 

central moment will increase as thickness of plate is 

increased. It was found that by increasing the thickness of the 

thick plate from (0.15 to 0.3 m), the central deflection is 

decreased by 82.90% and the central resisting moment is 

increased by 1.0% 

3. The central deflections and moments will decrease as the 

vertical subgrade reaction is increased because of increasing 

resistance from the foundation. It was found that by 

increasing the vertical subgrade reaction from (0.0 to 30000 

14 (14-25) 
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kN/m3), the central deflection is decreased by 0.45% and the 

central moment by 0.50% 

4. Small reduction on central deflections and bending moments 

occurs as the horizontal subgrade reactions are increased 

because of slightly increasing of foundation resistances. It was 

found that by increasing the horizontal subgrade reaction from 

(0.0 to 30000 kN/m3), the central deflection is decreased by 

0.04% and the central moment is decreased by 0.08% 
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Table (1): Central Deflection of Orthotropic Square Plate. 

Boundary 

condition 

Deflection (m) 

Al-Mahdi 

(1994)[3] 

(Finite 

difference) 

Plate 

element 

(Present 

study) 

Brick 

element 

(Present 

study) 

Exact 

solutions 

(Timoshen

ko and 

Woinosky - 

Krieger, S.           

( 1959) [10]) 

Simply 

supported plate 

12.4 x10-4 11.987x10-4 

 

12.256x10-6 

 

12.657 x10-6 

Clamped edge 

plate 

7.764 x10-4 7.557 x10-6 7.732 x10-6 7.785x10-6 

 

 
Figure (1) Winkler Compression and Friction Model. 
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Figure (2) Finite Element Mesh. 

 

 

 

 

 

 

 

5 m 
2.5 m 

2.5 m 

2.5 m 

2.5 m 

h=2m 

(a) 8 brick elements in two 

layers. 

(b) 9 plate bending elements 

L 

L=5

m 

2.5 m 

(18-25) 18 



Tikrit Journal of Eng. Sciences / Vol. .13 /No. .2/ June 2006 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3) Orthotropic Square Plate Geometry and Loading. 
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Figure (4) Deflection Profile in x-Direction for Simply 

Supported Thick Orthotropic Square Plate. 
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Figure (6) Deflection Profile in x- Direction for Clamped 

Thick Orthotropic Square Plate. 
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Figure (8) Orthotropic Square Plate Geometry and Loading. 
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Figure (9) Effect of Vertical Subgrade Reactions on Central Deflection for 

Simply Supported Orthotropic Square Plate.   
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Figure (10) Effects of Vertical Subgrade Reactions on Central Moment for 

Simply Supported Orthotropic Square Plate.   
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Figure (11) Effect of Horizontal Subgrade Reactions on Central Deflection for 

Simply Supported Orthotropic Square Plate.  
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Figure (12) Effect of Horizontal Subgrade Reactions on Central Moment for 

Simply Supported Orthotropic Square plate.  
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Figure (13) Effect of Thickness of Plate on Central Deflection of Simply 

Supported Orthotropic Square Plate. 

Figure (14) Effect of Thickness of Plate on Central Moment of Simply 

Supported Orthotropic Square Plate. 
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السميكة المربعة ذات خواص مختلفة  للألواحالتحليل بالعناصر المحددة 
 مرنة  أسسبالاتجاهات المتعامدة ومسنودة علي 

 مصطفى حميد العلاف     العزاوي  الأمير د. عادل عبد    د. رياض جواد عزيز  

 باحث                         مدرس                      مساعد أستاذ    

 جامعة النهرين -لهندسة المدنية قسم ا
 

 

  ةالخلاص
المربعة ذات  السميكة للألواحالبحث يتناول دراسة التصرف الخطي المرن 

بنظر  الأخذمرنه من نوع ونكلر مع  أسسعلى  والمسندةمختلفة  المتعامدةالخواص 
تخدام طريقة والصفائح. تم اس التربةالاعتبار مقاومات الانضغاط والاحتكاك بين 

السميكة و العنصر الطابوقي( لحل مجموعة  ةصر الصفيحنلعناصر المحددة ) عا
مدى التوافق بين  لإيجادالمحددة  تالفرو قامن المسائل التي سبق وان حلت بطريقة 

و  هنالك توافق جيد مما يدل على كفاءة الطريقة المستخدمة إنهذه الطرق وقد وجد 
 %.1بنسبة اختلاف حوالي 

 
 ةالكلمات الدال

  .لوح سميك مربع، أساس ونكلر مواد ذات خواص متعامدة، العناصر المحددة، 
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