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ABSTRACT

In this research, Mindlin's thick plate theory is extended to include
orthotropic plates under the effects of externally distributed moments and
shearing forces at top and bottom faces of the plate. These shearing forces
produce in-plane forces in plates and the extensional effects of these in-plane
forces are considered. The transverse sections of the plates have five
degrees of freedom. These are the transverse deflection, the two
independent rotations of the normal to the middle plane and the two
mutually perpendicular membrane displacements. Thus, five expressions of
the governing equations for thick orthotropic plates are obtained with the
inclusion of the effects of externally distributed moments and applied
shearing forces.

As an application to the generation of distributed moments and
shearing forces, the problems of thick orthotropic plates resting on elastic
foundations with both compressional and frictional restraints are investigated.

The finite-difference method was used to solve the governing equations.
Besides, finite elements are formulated and used. Good agreements are found

in the results from both methods of solution.
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NOTATIONS
Symbol  Descriptions
c? Correction factor for transverse shear
Dy, Dy Flexural rigidities of orthotropic plates in x and y directions
Ex, Ey, E; Moduli of elasticity of orthotropic plates in X, y, and z-direction
Fx, Fy Horizontal friction forces in x and y-directions

Gyy, Gxz, Gy Shearing moduli for Xy, xz, and yz- plane respectively
h Plate thickness
Ky, Ky, K; Moduli of subgrade reactions in x, y, and z-directions

Nx, Ny, Nyy ~ Membrane forces

P(x,y) Soil reactions

Qx, Qy Transverse shearing force per unit width

q(x,y) Transverse load per unit area

u,v Displacement in x and y-directions

Uo, Vo Displacement of the middle plane of the plate in x and y-
directions.

w Displacement in z —direction

X, Y, Z Original axes

Ox, Oy Angles of friction of soil in x and y-direction

Ex, Ey, & Normal strain in X, y, and z-direction

Exy” Shearing deformation due to membrane forces
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Symbol Descriptions

Vij= - gjl€i Poisson's ratio of compressive strength in j-direction to the
tensile strain in i-direction when only tensile stress o; is acting
along the i-axis (for orthotropic materials)

Yy, Py Rotation of the transverse section in xz and yz directions

Yxyr Yyz Yz Engineering shearing strains in xy, yz, and xz-planes

Ty, Tyzs Txz Shearing stresses in xy, yz, and xz- planes

Ox, Oy, Oz Normal stresses in X, y, and z-directions

INTRODUCTION
An exact theory for analysis of plates should be derived from the three-
dimensional elasticity. Due to the complexity of the problem, the following
simplifying assumptions are made in the classical theories of thin plates!"
1. Plane transverse sections before bending will remain plane after
bending (linear strain distribution in a cross section).
2. Normal lines to the middle plane will remain straight and normal to the
deflected middle plane (no transverse shearing deformations).
3. Normal strains in the normal lines to the middle plane are neglected (no
change in thickness)
4. The deformations are small (linear theory of small deformations).
5. Linear stress - strain relationship is assumed for the material of the plate
(Hooke's laws)
According to these assumptions, the behavior of the plate under

transverse loads is characterized by one deformation function which is the
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deflection of the middle plane (the transverse section has one degree of
freedom which is the deflection w=w(x,y))

To develop better formulations, restraints from one or more
assumptions in the classical theory must be removed.

Reissner 2 and Mindlin B! derived the governing equations for bending
of thick plates by allowing the line normal to the middle plane to rotate
independent of the slopes of the middle plane. The transverse shearing
deformations are thus considered. The behavior of the plate under transverse
loads will be characterized by three independent functions which are the
transverse deflection of the middle plane w(x,y) and the two rotations (‘\Px(x,y)
and Wy(x,y)) of the normal to the middle plane in the planes of xz and yz
respectively.

In Reissner-Mindlin theory, the cross section is assumed to remain
plane after bending (no warping). To account for this incompatible
deformation, a shear correction factor (c?) is introduced in the main governing
equations which is a numerical factor representing the restraint of cross
section against warping, commonly assumed to be 5/6 for rectangular sections.

Schmidt ™ and Levinson B! removed the restrictions from the
second assumption in the classical theory by allowing the cross sections to
rotate and warp in such a fashion that they remain normal to the shear-free top
and bottom surfaces. The theory is extended further more to include the
capability of the plate to take external shearing forces and moments €1,

In this paper, the original Mindlin's thick plate theory is extended to
include thick orthotropic plates. The effects of applied shearing forces at top

and bottom faces of the plate are included in the plate. Thus, a cross section

(4-34)
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will have five degrees of freedom which are the lateral deflection w =
w(X,y), two rotations of the normal to the middle plane (‘Wx =¥x(X,y) and ¥y
=W¥,(x,y))and the membrane displacements in the two perpendicular directions

in the middle plane of the plate (U= U, (X,y) and vo= V, (X,Y)).

ORTHOTROPIC MATERIALS
Elastic materials under stresses are divided according to the types of

induced deformations [5-I;

1. Anisotropic Materials: They have different elastic properties in
different directions. There are (21) elastic constants to describe the linear
stress-strain relations (Hooke's law). The application of one type of stress
(either normal or shear stress) leads to two types of deformations (axial and
shear deformations) in the same time.

2. lsotropic Materials: They have the same elastic properties in all
directions and deform in one type of deformations (axial deformations with
axial stresses and shear deformations with shear stresses). Only two
independent elastic constants describe the linear relations between stresses
and strains.

3. Orthotropic Materials: They have three planes of symmetry which are
mutually perpendicular. Thus, they have different elastic properties in
orthogonal directions (or principal directions). The orthotropic materials
behave like isotropic materials if the loads are applied in principal directions
and as anisotropic materials otherwise. In principal directions, normal stresses
produce only normal strains and shearing stresses only shearing strains.

Nine independent elastic constants describe the stress-strain relations.



Tikrit Journal of Eng. Sciences/Vol.14/No.4/December 2007 (6-34)

ORTHOTROPIC PLATES

A plate may be considered orthotropic if it has different elastic properties
or different moments of inertia in orthogonal directions.

There are various types of orthopic plate
1. Plates made from naturally orthotropic materials.

2. Plates made from different materials such as concrete slabs reinforced
by different amounts of reinforcement in different directions.

3. Stiffened plates which can be transformed to equivalent orthotropic
plates, such as ribbed slabs.

FORMULATION

In the following analysis, a thick orthotropic plate of uniform thickness is

considered.

The coordinate plane xy coincides with the middle plane of the plate and
the z-axis is the upward normal to the middle plane. Thus, the upward
deflections are considered positive. A rectangular plate element of sides
(dx.dy) and thickness (h) is under transverse distributed loads q=q(x,y) and
shearing stresses on the top and bottom faces Tyeh2) and Tz @n ). Besides,
distributed moments pix = px(X,y) and py = py(X,y) (per unit area) may be acting on
the plate, Fig.(1).

The behavior of the plate under the applied loads is formulated according
to the following assumptions:

1. Plane cross sections will remain plane after bending (no warping).
2. The cross sections will have additional rotations due to the transverse
shearing forces. Warping of cross sections by these forces is considered

through a correction factor.



(7-34) Tikrit Journal of Eng. Sciences/Vol.14/No.4/December 2007

3. The normal line to the middle plane has constant length (e,=0).

KINEMATICS CONSIDERATIONS
A cross section in xz-plane before and after deformation is shown in

Fig. (2).

The normal line to the middle plane has five degrees of freedom
(deflection w, two rotations (\Vx and ‘P'y) and two in-plane displacements (u, and
Vo).

The displacement in x-direction (u) at a point at distance z above the
middle plane will be:

U=U,FZW, s (1)
where
Uo = Uo(X,Y) is the displacement at the middle plane
Y=Y (X,y) is the rotation of the normal line in clockwise direction). Also, the

transverse deflection w is:

w =w(X,y) (independentofz) ... (2)
Similarly, for yz-plane:
V =V, + z2¥x et e (3)
The mathematical expressions for strains are:
gxzé_u=8u0+28wngxo+zﬁl//x ...................................... (4)
oX  OX OX OX
syzﬂzav°+z%=syo+z% ....................................... (5)
ay o oy

From Eqgs. (4) and (5), it is noticed that &x and ¢y are linear in z (plane

Ccross section assumption). Also,

ow
8Z=E:0 ....................................... (6)
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The engineering shearing strains are:

_ou_ ov
Ty =y T ox
yxy:auo+avo+(a\vx+a\|’ly)z
oy OoX oy oX
dy, oy,
= X )z 7
Vs vxoy0+(ay+ax) (7)
ou ow ow
ov ow ow
—= e it ietieerateasiantanennrnnennns 9)

’szz’Yzy:E-'-ay \Ily+ay
Using the stress-strain relations for the orthotropic materials 1 and

substituting the above expressions of strains in the stress-strain relations, then:

o, Ey [au°+v av°}+ Ey [a\vx+v awy}z ....... (10)

=1—vxyvyx ox oy | l-vyv,| o&x oy
E
o, =m[sy +vxysx] ...... (11)
E E
o-yzl—vyv |:66V;+vxy a;;i|+1—vyv |:agvyy+vxyag:(i|z
Xy T yx Xy 7 yx

where Ex and E, are the elastic moduli in x and y-directions and vyx is Poisson's
ratio of compressive strain in x-direction to the tensile strain in y-direction
when only a tensile stress oy is acting along the y axis (for orthotropic
materials). Similarly v,y is defined.

Here, the normal stress o, in the z-direction is disregarded. Also,

the shearing stresses are:

(8-34)
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0
Ty = Tyx =Gy Vo 1 Ty =Gy, +ny(61//X +%JZ ............... (12)

TZX Z-XZ :GX27/XZ

T, :Gﬂ(wx+%j ......................... (13)
Ty =Ty = Gyzyyz

ow
T, = Gyz[\uy +Ej ........................... (14)

The stress resultants are the two bending moments My and My, the
twisting moments M,,=My, transverse shearing forces Qy and Qy (in yz and zx-
planes), and the in-plane forces Ny, Ny and Nyy (all per unit width). From Fig.

(3), the stress resultants are calculated as follows:

h/2
M, =_[_h/220X(1.dz) e, (15)

By substituting equation (10) in the above equation and integrating,

the obtained expression for the bending moment is given as

M, = Dx(al/lx +V,, 8WVJ ........................ (16)
OX oy
where
E.h3

D, = e T P 17
* lZ‘l—vxyvyxi (7
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Dy is the flexural rigidity in x-direction of the yz-section. By same

manner,
o »
My:Dy(Ey+vxyagIX] .......................... (18)
where
E h?

D, =—1—2— 19
g 12‘1—vxyvyxi (19)

Dy is the flexural rigidity in y-direction of the xz-section.

The twisting moment is,

My =[70,@d2) (20)

By substituting equation (12) in the above equation and integrating, then

MXy:DXy(aglyX+vxy a;)l(yj ............................. (21)

where

h3
ny :GXYE .................................. (22)

D,y Is the torsional rigidity of the xz or yz-section.
Transverse shearing forces in transverse sections are obtained by

integrating the shearing stresses over the transverse area per unit width
h/2
Q, = j_h/zrxz LAZ) e (23)

Substituting equation (13) in the above equation and integrating,
oW
=c’Gh o T T PR
Q, e, v, + 2 | (24)

where ¢? is a shear correction factor.

By the same manner, the expression for Qy is:

ow
=c’G h e 25
Q,-c'G,, [Way] (25)
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The shear correction factor c2 is a numerical factor representing the
restraint of the cross section against warping (commonly assumed to be
5/6 for rectangular sections). This correction factor considers the actually
variable shearing stress (tx; Or ty;) in a transverse section as uniformly
distributed.

The in-plane forces per unit width are

N, = fﬁ;ax(l.dz) (26)
By substituting Eq. (10) and after integrating,
N, = E.h (8u0 v, avoj (27)
1=V, vy \ OX oy
Also
E,h (ov ou
N = y 0 0
v, ( oy Y ox j (28)
h/2
Ny =Ny, =], 7 (L02) =G, Ar,.,
N, :Gth(é(;" %onj (29)

Static Considerations
An element (dx.dy.h) is considered. Bending and twisting

moments, transverse shearing and in-plane forces and the general external
loads on this element are shown in Fig. (4).

By equilibrium of forces in z-direction,
Q, RN,
IRx 7Y v q=0 30
& T T8 (30)
By equilibrium of moments in xz-plane and yz-plane,
oM, OM,,
+
OX OX
oM, oM

Y + 8ny —-Q, +n, =0 (32)

_Qx+ux =0 (31)

11
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Equilibrium of forces in x and y-directions give,

N, N,
E'FW)/'FTZX(WZ) _TZX(—h/Z) =0 s (33)
ON, ON

ayy + a—):y + sz(h/z) — sz(—h/2) =0 e e (34)

In the above equilibrium equations, (ux and L) are considered to be the
moments (per unit area) about the middle plane. If these moments are due
to the applied shearing forces on the top and bottom faces, they can be

calculated as:

h
ux =§(TZX(h/2)_TZX(_h/2)) P T T T T Y T Y Y Y Py (35)
h
My =§(sz(h/2)_‘tzy(—h/2)) .................................... (36)

The above five equilibrium equations (Egs. (30) to (34)) contain
eight unknowns (My, My, My, = My, Qx Qy, Nx, Ny and Ny, = Ny ). Thus, the
problem is statically indeterminate. Additional equations are needed from
compatibility of deformations (or stress resultant equations in terms of
displacements, Egs. (16), (18), (21), (24), (25), (27), (28) and (29)).

Governing Equations
The governing equations can be obtained by substituting the

expressions of the stress resultants in terms of the displacements (w , ‘P, ‘Py,
Uo and Vo) in the equilibrium equations. Substitution of equations (24) and

(25) into Eq. (30) gives the first governing equation,

2 a 2
chxzh(%+gX—Wj+chyzh( al/;y +(2y—\£vj+q =0 e (37)

2

Also, substitution of Eqgs. (16), (21) and (24) in Eq. (31) gives

the second governing equation,

2 02 2 0?
Dx a\ljzx +V, . \Vy +ny a“rlzx +V, . Wy _CZGﬂh(Wx+@j+MX:0 (38)
ox y OXoy oy y OXoy OX
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Substitution of Egs. (18), (21) and (25) in Eq. (32) gives the third
governing equation

82 2 2 52
Dy[ \ij +V 0 WXJ‘i'DXy{%_Fij_CZGyZh(WY+%]+Hy =0 (39)

oy> ¥ oxoy oyox  Ox®
Substitution of Egs. (27) and (29) in Eg. (33) gives fourth

governing equation

EXh azuo 82Vo azuo azvo
1-v. v [aXZ +Vyxaxay'j+6xyh[ 8y2 +ax—8yJ+’sz(h/2)—‘sz(_h/2):0 (40)

Xy " yXx
Finally, substitution of Egs. (28) and (29) in Eq. (34) gives the fifth

governing equation

E. h 2 2 2 2

Xy " yx
Boundary Conditions

Five natural conditions exist on a boundary edge of a plate in
bending and extension. The tangent and the normal to an edge are
written as (t) and (n).

1) Simply Supported Edge
(a)Roller Supported Edge
w=0
¥ =0
v,

Mn = O > - =
ou ou

no to

Nn =O % an _th+ @t

U, =0 (displacement tangent to the edge)
An alternative to %= 0is My= 0. In this case

ot on
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An alternative to Uy, = 0 1S Nyt = 0. In this case

O __ Oy
ot on
(b) Hinged Edge
w=0 o
\Pt =0

N

Uno =0 (displacement normal to the edge)
Uw =0 (displacement tangent to the edge)
An alternative to W; = 0 is My = 0. In this case

oy Oy
Y, Mt
ot on

i) Clamped Edge
w=0

Z_‘;" =0 (zero normal shape) N

‘Pt=0

Uno =0 (displacement normal to the edge)

U =0 (displacement tangent to the edge)

(14-34)

(43)

(44)

An alternative to éﬂnzois the mathematically easier condition ¥ = 0 (zero
rotation)
iii) Free Edge
ow _
Q=0 ——  y=—F

My=0—0«— %y _—1oy,

0 0
Mntzo% Wt — Wn

(45)
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_ auno auto
No =0 5 on Vi ot
ou ou
N,=0 _— —e ————art]"

Thick Plates on Elastic Foundations

Many models are used to represent the response of the elastic
foundation to the overlying structures 8. In this study, the soil
resistance is modeled as follows:

1. For compressional resistance, linear Winkler model is used:

p(x,y) = Kz w(x,y) e et et et e e e ee aee eee e (46)

where p(x,y) is the transverse reaction of the soil ( per unit area ) and
K. is termed the compressional foundation reaction.

2. For frictional resistance, the friction force (per unit area) can be
represented either by a linear Winkler model or Coulomb model.
When Winkler model is used, the frictional forces will be:

Fx (xY) = - KaU(XY) =ro Fy (XY) = - KW (XY) @) o, (47)
where Fx or Fy is the friction force per unit area in x or y direction, Ky
or Ky is the frictional foundation reaction in x or y direction with
units of stress per unit displacement and U z=tp) Or V (z=np) IS the
horizontal displacement in x or y direction (at the bottom face).

The bottom face frictional forces Fy or Fy will develop moments pi

or u; in Xz or yz-plane:

h h
=55 and b =5F,
Thus
_hg d ="k 48
My ) xU(X1Y)(z:-h/2) and p, = 2 yv(x1y)(z=—h/2) ---------- (48)

But

15



16

Tikrit Journal of Eng. Sciences/\VVol.14/No.4/December 2007

h h
U(enyz) = Uo =Wy > and Vet =Vo Wy 5
Then
F-——K Ny and F =—k h 49
Y = X(UO_WXE) an y = y(VO—\VyE) ............. ( )
and
h. h h, h
K, = _Kx (UO -y, E)— and },ly = _Ky(VO _Wy E)E ........... (50)

In the Coulomb friction model, the friction force (or sliding friction
between two surfaces in contact) is independent of the value of
horizontal displacement (or sliding) but is directly proportional to the
normal reaction. Accordingly, the friction forces Fy or F, could be
related to the transverse deflection w as follows:

Fx = K, w tan(dy) or Fy=K,wtan(dy e, (51)
where (K; w) is the normal reaction of Winkler model, and &or dy is
the angle of friction between the soil and the foundation in x or y-
direction,

The direction of the friction force depends on the direction but not
on the value of the horizontal displacement u =) Or V (z= h2) . SO, it is
mandatory to put a zero friction when there is no horizontal
displacement. Accordingly equation (51) could be written as:

Fx=K,wtan(dy) {¢} or Fy=K,wtan(dy) {e} ... (52)
where

-1 whenu,_, Orv .y, isnegative
{ef=40 whenu,_,, orv , ., iszero
+1 whenu (,_;, Orv ,_,) Ispositive

(16-34)
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It should noted that u =) Or V (z=-ns2) IS positive at the bottom face
when along the positive x or y-direction. According to Eq. (48), the

distributed moments are:

n, = (%}sztan(ésx el e (53)
Hy = (ngzwtanGy Y}

The Governing Equations for Thick Orthotropic Plates on
Elastic Foundations
To solve the problems of plates on elastic foundations, the usual

approach is based on the inclusion of the foundation reactions into the
corresponding differential equations of plates.

The governing equations of thick orthotropic plates on elastic
foundations characterized by Winkler model for both compressional and
frictional resistances could be obtained by substituting equations (46),
(49) and (50) into the equations (37) to (41). Thus, the governing

equations will be:

( 2 2
c’G,h %4_6 \/2v +C°G,,h 5\Vy ow +q-k,w=0 ceevreeeneeen... (B4)
 ox  ox oy oy

| ox®2 ™ oxoy oy?  oxoy

Py, Py, Oy, O ow
Dy{ ayzy +V,, 8X8yJ+D {Gyﬁx axy —c%G h(l//y 8yj+K (vy — Wyz)—zO (56)

E.h (0% 0%V, o’u, 0%, h
X S+ +G,h K,(Uy—w, =)+ =0
1_nyVyx [ aXZ yX axayj ( ay axayj x( 0 ~ Wy 2) sz(h/z) (57)

E.h (0%, o%u,
> TV +G,
1-vyvyu\ Oy oxoy

New governing equations for thick orthotropic plates on elastic

oy, Oy %y, Oy ow h.h
D +V ’ +ny —+—y _CZzeh V/x+& +Kx(u0_!r//x§)§:0 (55)

o%u, 0%V, h
h(axay-i_ axz j K ( Vo ’//y 2) zy(h/2) — =0 (58)

foundations characterized by Coulomb model for frictional resistance
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could be obtained by substituting equations (46), (52) and (53) into
equations (37) to (41). Thus, the governing equations will be:

cZGXZh(aWX o J +¢°G h(a\vy o ]+q kw=0 ... (59)
ox  ox? oy oy’

2 02 2 52 6W
" oxay o oy ) Tox 2

82 2 2 a
0,0, e, [ 20 T ) i, 2k e, ol <o
oy oxdy oyox X’ oy 2

2 2 2 2
E,h (a Yo . 0"V, J +G h(& 8 V°j+ sztan(SX){8}+rzx(h/2)=0 (62)
yx axay

E,h (8%, o°u o’u, 0°v,
v vyx[ayz + Xyaay) +G h(axay v J+K wtan( ){8}+sz(h/z)—0 (63)

The main concept and mathematical formulation of the behavior of
thick orthotropic plates under generalized loads resting on elastic
foundations are presented. The equations are complex and intractable for

direct solution. Therefore, numerical techniques are used.

Finite - Difference Method

In applying this method, the derivatives in the differential equations
are replaced by differences at selected points. These points are located
at the modes of a square or rectangular network (called finite-
difference mesh). Therefore, all the governing differential equations
are replaced by the equivalent difference equations. After this, the
assembly for these equations is solved for the five degrees of freedom
at each node. The stress resultants are obtained by back substitution of

the resulting degrees of freedom into the equations of stress resultants
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after writing these equations in difference form. Outside fictitious nodes

are needed to represent properly the boundary conditions, I,

FINITE - ELEMENT METHOD

The finite-element method is also a numerical method for
analysis of continuum structures. The basic philosophy of the finite
element method is that the continuum is divided into small elements of
various shapes, sizes and types which are then assembled together to
form and approximate mathematical structure.

Certain functions are assumed to approximate the variation of the
actual displacements over each finite element. The external loading is
transformed into equivalent concentrated loadings at the nodes.

Herein, isoparametric 4-node rectangular elements with five
independent degrees of freedom at each node are used!® In this type, the
same shape interpolation functions are used to describe the variation of
displacements within the element and to specify the relation between
the global (x,y) and the local (§,n) coordinate system. Also, each type
of displacement at any point in the element is related to all displacements
of same type at all nodes (no coupling or interaction as they are
independent degrees of freedom). The external loads and moments and
the foundation reactions are replaced by equivalent nodal forces by

using the consistent method.

Applications
A square plate of side length (5m) and thickness (h=2m) is simply

supported on the edges. The assumed elastic moduli are (Ex=25 kN/mm?
Ey=5 kN/mm? E,=15 kN/mm?) and the assumed Poisson's ratios are (v

= 0.75, vxz = 0.5 vy,= 0. 2). The plate is on an elastic foundation

19
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represented by Winkler model for compressional restraint with modulus
(K,=10000 kN/m?) and for frictional restraint by either Winkler model
with moduli (K«=Ky=20000 kN/m3) or Coulomb friction model with
angles of friction (6x= 8, =20 °). The loading was (q=25kN/m?).

In order to use Coulomb friction model the sign of the horizontal
displacements at the bottom face of the plate should be previously known
at any point at that face. The sign of horizontal displacements cannot be
estimated in case of complicated boundary conditions and complicated
loadings but can be estimated in simple cases of symmetry in loading
and boundary conditions. So, simple cases of loading and boundary
conditions are considered.

For the simply supported plate with Winkler friction, Fig. (5)
shows the deflection profiles along the center lines in the two
perpendicular directions for thickness (h=2m) by the finite-element and
the finite-difference methods. Fig. (6) shows the bending moment
diagrams along the center lines in the two perpendicular directions.
Fig. (7) shows the membrane force diagrams along the center lines in
the two perpendicular directions. Fig.(8) shows the variation of central
deflection with different thicknesses. The results show good agreements
by these two methods especially for large thicknesses as shown in
Fig.(8).

For the simply supported plate with the Coulomb model, same
previous sequence of the figures are used for the results (Fig. (9) to Fig.
(12)).

Effects of Elastic Foundations on the Plate Behavior

To show the effects of elastic foundations with both normal and

frictional restraints (and consequently, distributed moments and shearing

forces) in thick plates, the results of the central deflections in the simply

(20-34)
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supported plate with uniformly distributed loads are considered. The elastic
foundation is represented by Winkler model for both compressional and
frictional restraints.

In Figure (13), all the results of central deflections are related to that
from the classical theory of plates in order to make comparison more
general. Writing:

Cl = the central deflection from the classical theory of thin plates with
no springs.

C2 = the central deflection from the classical theory of thin plates with
transverse springs only.

C3 = the central deflection from thick plate theory with no springs.

C4 = the central deflection from thick plate theory with transverse
springs only.

C5 = the central deflection from thick plate theory with transverse and

horizontal springs.

Also writing:

_c2-C1

9, = C2
g, =C3-CL

7 C3
C4-C1

g; =

C4

_C5-C1

The results are plotted according to the above parameters. In Figure (13),
the variations of gi, g2, g3 and g4 with thickness are plotted. The following
points may be concluded from this figure:

1.Graph (gi) shows the effects of the elastic foundation on the

classical thin plate theory. This effect is considerable when the plate
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is very thin. The effect diminishes when the plate becomes stiffer
(when deflections are small).
2. Graph (g.) represents the difference between the classical thin plate
solution and
Mindlin's thick plate solution. The latter can be obtained by
elimination of the spring terms from the governing equations. The
thick plate theory gives higher deflections than the thin plate theory
due to the contribution of transverse shear deformation. The
difference becomes more considerable for higher thicknesses.
3.Graphs (gs) and (g4) show the effects of elastic foundations on the
thick plate behavior. Graph (gs) can be produced by eliminating
friction terms from the governing equations. The graphs (gs) and (ga)
are almost coinciding. This indicates that the effect of friction at soil-
plate interface on thick plate deflection is small and can be neglected.
The graphs g,, gs and g4 coincide when the plate becomes very stiff.
This indicates that the effect of the elastic foundation is small when the
plate is very stiff.

Since the compressional and the frictional restraints are related to the
transverse and longitudinal displacements, therefore the effects of these
restraints will diminish for very stiff plates (small transverse and
longitudinal displacements), although the friction induced moments are
proportional to the thickness (h) (Egs. (50)).

To study the effect of variation of thickness on the membrane forces
in plates, a simply supported plate with uniformly distributed load and
resting on Winkler compressional and frictional foundation is considered.
The results are presented in Fig. (14) which gives the membrane force
diagram along the center line in x-direction. Fig. (14) shows that the

membrane forces decrease with increasing of the thickness. The membrane
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forces are proportional to the bottom face shearing forces which in turn
proportional to the horizontal displacements at the bottom face of the plate
(Winkler model Eq. (47)) and to the vertical deflection (Coulomb model
Eqg.(51)). When the thickness increases, the stiffness will increase causing a
decrease in the horizontal and vertical displacements and accordingly a
decrease in the membrane forces. Although the friction forces at plate-soil
interface are proportional to thickness (h) (Eq.(49)), the horizontal and
vertical displacements are the dominant parameters.
Effect of Type and Magnitude of Loading and Boundary Conditions on the
Plate Behavior

To show the effect of type and magnitude of loading and boundary
conditions on the contribution of shearing deformation (the percentage of
the difference in central deflections between thick and thin plate solutions),
plates with simply supported, fixed and free edges are considered. The
simply-supported and fixed-edge plates are loaded by a uniformly
distributed load (q=25 kN/m?) or by a concentrated central load (P= 100
KN). The free-edge plate is loaded by a concentrated central load (P=100
KN). The results are shown in Fig.(15). From this figure, the following
remarks can be deduced:

1. The percentage of error introduced by neglecting the transverse
shearing

deformations increases with increasing of depth (thickness to span
ratio).

2. The fixed edge plates are shear deformable more than the simply
supported plates. The effect of shearing deformations on free-edge
plates is less than the other two types. This indicates that more restraints
on the plate make the plate more affected by transverse shearing

deformations.

23
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3. In cases of concentrated loads, the influence of transverse shearing
deformation is found to be greater than the influence in cases of
uniformly distributed loads. Concentrated loads give high transverse
shearing forces over large portions of the plate.

4. When the values of the uniformly distributed and concentrated loads
are varied, the same five curves are obtained exactly. This indicates
that the percentage of difference in central deflections between thick
and thin plate solutions is independent on the value of loading for same
properties of plates and elastic foundations in each case of loading.
Also, the same five curves are obtained exactly when the span and

thickness are varied but for constant thickness to span ratio.

CONCLUSIONS

1.Good agreements are obtained between the finite-difference and finite-
element methods. The results show that the two methods are almost
identical especially for large thicknesses. Obvious differences are
noticed in small thicknesses (probably due to shear and membrane
locking).

2. The effect of shearing forces at the plate-foundation interface and
accordingly, the effect of distributed moments are small on transverse
deflections of plates and on stress resultants.

3. The influence of transverse shearing deformation is greater for
concentrated loads than for distributed loads and greater in fixed-edge
plates than in simply supported plates. The free-edge plates are
influenced by transverse shearing deformations by a magnitude less
than in fixed-edge or simply supported plates.
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