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ABSTRACT 
 

In this research, Mindlin's thick plate theory is extended to include 

orthotropic plates under the effects of externally distributed moments and 

shearing forces at top and bottom faces of the plate. These shearing forces 

produce in-plane forces in plates and the extensional effects of these in-plane 

forces are considered. The transverse sections of the plates have five 

degrees of freedom. These are the transverse deflection, the two 

independent rotations of the normal to the middle plane and the two 

mutually perpendicular membrane displacements. Thus, five expressions of 

the governing equations for thick orthotropic plates are obtained with the 

inclusion of the effects of externally distributed moments and applied 

shearing forces. 

As an application to the generation of distributed moments and 

shearing forces, the problems of thick orthotropic plates resting on elastic 

foundations with both compressional and frictional restraints are investigated. 

The finite-difference method was used to solve the governing equations. 

Besides, finite elements are formulated and used. Good agreements are found 

in the results from both methods of solution. 
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NOTATIONS 

      Symbol Descriptions 

c2 Correction factor for transverse shear 

Dx , Dy   Flexural rigidities of orthotropic plates in x and y directions 

Ex, Ey, Ez   Moduli of elasticity of orthotropic plates in x, y, and z-direction 

Fx, Fy Horizontal friction forces in x and y-directions 

Gxy, Gxz, Gyz Shearing moduli for xy, xz, and yz- plane respectively 

h Plate thickness 

Kx, Ky, Kz   Moduli of subgrade reactions in x, y, and z-directions 

Nx, Ny, Nxy Membrane forces 

P(x,y) Soil reactions 

Qx, Qy Transverse shearing force per unit width 

q(x,y) Transverse load per unit area 

u, v   Displacement in x and y-directions 

uo, vo Displacement of the middle plane of the plate in x and y- 

directions. 

w Displacement in z –direction 

x, y, z Original axes 

x, y Angles of friction of soil in x and y-direction 

x, y, z Normal strain in x, y, and z-direction 

xy Shearing deformation due to membrane forces 
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Symbol Descriptions 

ij= - j/i Poisson's ratio of compressive strength in j-direction to the 

tensile strain in i-direction when only tensile stress i  is acting 

along the i-axis (for orthotropic materials) 

x, y Rotation of the transverse section in xz and yz directions 

xy, yz, xz Engineering shearing strains in xy, yz, and xz-planes 

xy, yz, xz Shearing stresses in xy, yz, and xz- planes 

x, y, z Normal stresses in x, y, and z-directions 

                   

                       

INTRODUCTION 

An exact theory for analysis of plates should be derived from the three-

dimensional elasticity. Due to the complexity of the problem, the following 

simplifying assumptions are made in the classical theories of thin plates[l] 

1. Plane transverse sections before bending will remain plane after 

bending (linear strain distribution in a cross section). 

2. Normal lines to the middle plane will remain straight and normal to the 

deflected middle plane (no transverse shearing deformations). 

3.   Normal strains in the normal lines to the middle plane are neglected (no 

change in thickness) 

4. The deformations are small (linear theory of small deformations). 

5.  Linear stress - strain relationship is assumed for the material of the plate 

(Hooke's laws) 

According to these assumptions, the behavior of the plate under 

transverse loads is characterized by one deformation function which is the 

3 (3-34) 
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deflection of the middle plane (the transverse section has one degree of 

freedom which is the deflection w=w(x,y)) 

To develop better formulations, restraints from one or more 

assumptions in the classical theory must be removed. 

Reissner [2] and Mindlin [3] derived the governing equations for bending 

of thick plates by allowing the line normal to the middle plane to rotate 

independent of the slopes of the middle plane. The transverse shearing 

deformations are thus considered. The behavior of the plate under transverse 

loads will be characterized by three independent functions which are the 

transverse deflection of the middle plane w(x,y) and the two rotations (x(x,y) 

and y(x,y)) of the normal to the middle plane in the planes of xz and yz 

respectively. 

In Reissner-Mindlin theory, the cross section is assumed to remain 

plane after bending (no warping). To account for this incompatible 

deformation, a shear correction factor (c2) is introduced in the main governing 

equations which is a numerical factor representing the restraint of cross 

section against warping, commonly assumed to be 5/6 for rectangular sections. 

Schmidt [4] and Levinson [5] removed the restrictions from the 

second assumption in the classical theory by allowing the cross sections to 

rotate and warp in such a fashion that they remain normal to the shear-free top 

and bottom surfaces. The theory is extended further more to include the 

capability of the plate to take external shearing forces and moments [6]. 

In this paper, the original Mindlin's thick plate theory is extended to 

include thick orthotropic plates. The effects of applied shearing forces at top 

and bottom faces of the plate are included in the plate. Thus, a cross section 
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will have five degrees of freedom which are the lateral deflection w = 

w(x,y), two rotations of the normal to the middle plane (x =x(x,y) and y 

=y(x,y))and the membrane displacements in the two perpendicular directions 

in the middle plane of the plate (uo= uo (x,y) and vo= vo (x,y)). 

 

ORTHOTROPIC MATERIALS 

Elastic materials under stresses are divided according to the types of 

induced deformations [5-6]: 

1. Anisotropic Materials: They have different elastic properties in 

different directions. There are (21) elastic constants to describe the linear 

stress-strain relations (Hooke's law). The application of one type of stress 

(either normal or shear stress) leads to two types of deformations (axial and 

shear deformations) in the same time. 

2. Isotropic Materials: They have the same elastic properties in all 

directions and deform in one type of deformations (axial deformations with 

axial stresses and shear deformations with shear stresses). Only two 

independent elastic constants describe the linear relations between stresses 

and strains. 

3. Orthotropic Materials: They have three planes of symmetry which are 

mutually perpendicular. Thus, they have different elastic properties in 

orthogonal directions (or principal directions). The orthotropic materials 

behave like isotropic materials if the loads are applied in principal directions 

and as anisotropic materials otherwise. In principal directions, normal stresses 

produce only normal strains and shearing stresses only shearing strains. 

Nine independent elastic constants describe the stress-strain relations. 
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ORTHOTROPIC PLATES 

A plate may be considered orthotropic if it has different elastic properties 

or different moments of inertia in orthogonal directions. 

There are various types of orthopic plate 

1. Plates made from naturally orthotropic materials. 

2. Plates made from different materials such as concrete slabs reinforced 

by different amounts of reinforcement in different directions. 

3. Stiffened plates which can be transformed to equivalent orthotropic 

plates, such as ribbed slabs. 

FORMULATION 

In the following analysis, a thick orthotropic plate of uniform thickness is 

considered. 

The coordinate plane xy coincides with the middle plane of the plate and 

the z-axis is the upward normal to the middle plane. Thus, the upward 

deflections are considered positive. A rectangular plate element of sides 

(dx.dy) and thickness (h) is under transverse distributed loads q=q(x,y) and 

shearing stresses on the top and bottom faces ZX(h/2) and zy (h /2). Besides, 

distributed moments x = x(x,y) and y = y(x,y) (per unit area) may be acting on 

the plate, Fig.(1). 

The behavior of the plate under the applied loads is formulated according 

to the following assumptions: 

1. Plane cross sections will remain plane after bending (no warping). 

2. The cross sections will have additional rotations due to the transverse 

shearing forces. Warping of cross sections by these forces is considered 

through a correction factor. 
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3. The normal line to the middle plane has constant length (z=0). 

KINEMATICS CONSIDERATIONS  

A cross section in xz-plane before and after deformation is shown in 

Fig. (2). 

The normal line to the middle plane has five degrees of freedom 

(deflection w, two rotations (x and y) and two in-plane displacements (uo and 

vo)). 

The displacement in x-direction (u) at a point at distance z above the 

middle plane will be: 

  
xo

zuu +=                          …………………………………….(1) 

where 

uo = uo(x,y) is the displacement at the middle plane 

x =  (x,y) is the rotation of the normal line in clockwise direction). Also, the 

transverse deflection w is: 

w   = w (x,y)     (independent of z)         …………………………………….(2) 

Similarly, for yz-plane: 

v = vo + zx                                       …... ……….……………............. (3) 

The mathematical expressions for strains are: 
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From Eqs. (4) and (5), it is noticed that x and y are linear in z (plane 

cross section assumption). Also, 
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The engineering shearing strains are: 
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Using the stress-strain relations for the orthotropic materials [7] and 

substituting the above expressions of strains in the stress-strain relations, then: 
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where Ex and Ey are the elastic moduli in x and y-directions and vyx is Poisson's 

ratio of compressive strain in x-direction to the tensile strain in y-direction 

when only a tensile stress y is acting along the y axis (for orthotropic 

materials). Similarly vxy is defined. 

Here,   the normal stress z in the z-direction is disregarded. Also, 

the shearing stresses are: 
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The stress resultants are the two bending moments Mx and My, the 

twisting moments Mxy=Myx transverse shearing forces Qx and Qy (in yz and zx-

planes), and the in-plane forces Nx, Ny and Nxy (all per unit width). From Fig. 

(3), the stress resultants are calculated as follows: 

                          ( )− =
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2h
xx dz.1zM                            ………………........ (15) 

By substituting equation (10) in the above equation and integrating, 
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Dx is the flexural rigidity in x-direction of the yz-section. By same 

manner, 
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Dy is the flexural rigidity in y-direction of the xz-section.  

The twisting moment is, 
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By substituting equation (12) in the above equation and  integrating, then 
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Dxy is the torsional rigidity of the xz or yz-section. 

Transverse shearing forces in transverse sections are obtained by 

integrating the shearing stresses over the transverse area per unit width 
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Substituting equation (13) in the above equation and integrating, 
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where c2  is a shear correction factor. 

By the same manner, the expression for Qy is: 
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The shear correction factor c2 is a numerical factor representing the 

restraint of the cross section against warping (commonly assumed to be 

5/6 for rectangular sections). This correction factor considers the actually 

variable shearing stress (xz or yz) in a transverse section as uniformly 

distributed. 

The in-plane forces per unit width are 
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By substituting Eq. (10) and after integrating, 
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Static Considerations  

An element (dx.dy.h) is considered. Bending and twisting 

moments, transverse shearing and in-plane forces and the general external 

loads on this element are shown in Fig. (4). 

By equilibrium of forces in z-direction, 
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 Equilibrium of forces in x and y-directions give, 
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In the above equilibrium equations, (µx and µy) are considered to be the 

moments (per unit area) about the middle plane. If these moments are due 

to the applied shearing forces on the top and bottom faces, they can be 

calculated as: 
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The above five equilibrium equations (Eqs. (30) to (34)) contain 

eight unknowns (Mx , My, Mxy = Myx, Qx, Qy , Nx , Ny and Nxy = Nyx ). Thus, the 

problem is statically indeterminate. Additional equations are needed from 

compatibility of deformations (or stress resultant equations in terms of 
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Governing Equations 

The governing equations can be obtained by substituting the 
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Also, substitution of Eqs. (16), (21) and (24) in Eq. (31) gives 

the second governing equation, 
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 Substitution of Eqs. (18), (21) and (25) in Eq. (32) gives the third 

governing equation 
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Substitution of Eqs. (27) and (29) in Eq. (33) gives fourth 

governing equation 
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Finally, substitution of Eqs. (28) and (29) in Eq. (34) gives the fifth 

governing equation 
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Boundary Conditions 

 

Five natural conditions exist on a boundary edge of a plate in 

bending and extension. The tangent and the normal to an edge are 

written as (t) and (n). 

i) Simply Supported Edge 

(a)Roller Supported Edge 
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uto =0  (displacement tangent to the edge) 

An alternative to t= 0 is Mnt= 0. In this case 

0
nt

tn =



+




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An alternative to uto 
= 0 is Nnt = 0. In this case  

n

u

t

u tono




−=




 

(b) Hinged Edge 

w = 0 

t = 0 

Mn = 0                             0
n

n =



  

uno =0  (displacement normal to the edge) 

uto =0  (displacement tangent to the edge) 

An alternative to t = 0 is Mnt = 0. In this case  

0
n

t
ψ

t

n
ψ

=



+




 

ii) Clamped Edge 

w = 0 

0=




n

w
 (zero normal shape) 

t = 0 

uno =0  (displacement normal to the edge) 

uto =0  (displacement tangent to the edge) 

An alternative to 0=




n

w
is the mathematically easier condition t = 0 (zero 

rotation) 

iii) Free Edge 

Qn = 0                             
n

w
n




−=   

Mn = 0                              
nt

n

tn

t



−
=



 



 1
 

Mnt = 0                             
tn

nt




−=



 
  

(43) 

(44) 

(45) 

14 (14-34) 



Tikrit Journal of Eng. Sciences/Vol.14/No.4/December 2007 

 

 

Nn = 0                              
t

u

n

u oo t
tn

n




+−=




  

Nn = 0                              
n

u

t

u tono




−=




 

 

Thick Plates on Elastic Foundations 

 

Many   models   are used to represent the response of the elastic 

foundation to the overlying structures [8]. In this study, the soil 

resistance is modeled as follows: 

1. For compressional resistance, linear Winkler model is used: 

p(x,y) = Kz w(x,y)               ………………………………………  (46) 

where p(x,y) is the transverse reaction of the soil ( per unit area ) and 

Kz is termed the compressional foundation reaction. 

2. For frictional resistance, the friction force (per unit area) can be 

represented either by a linear Winkler model or Coulomb model. 

When Winkler model is used, the frictional forces will be: 

Fx (x,y) = - Kx u(x,y) (z=-h/2) Fy (x,y) = - Kyv (x,y) (z=h/2)     ...................(47) 

where Fx or FY is the friction force per unit area   in x or y direction, Kx 

or Ky is the frictional   foundation   reaction in x or y direction with 

units of stress per unit displacement  and u (Z=-h/2) or v (Z=-h/2) is the 

horizontal displacement in x or y direction (at the bottom face). 

The bottom face frictional forces Fx or Fy will develop moments x 

or z in xz or yz-plane: 

xx F
2

h
=                                  and                yy F

2

h
=  

Thus 

)2hz(xx )y,x(uK
2

h
−==    and   )2hz(yy )y,x(K

2

h
−==      ……….  (48) 

But 
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( )
2

h
uu xo2hz −=−=         and              ( )

2

h
yo2hz −= −=       

Then 

)
2

h
u(KF x0xx −−=     and   )

2

h
(KF y0yy −−=     ………….   (49) 

and  

2

h
).

2

h
u(K x0xx −−=  and   

2

h
).

2

h
(K y0yy −−=    ………..(50) 

In the Coulomb friction model, the friction force (or sliding friction 

between two surfaces in contact) is independent of the value of 

horizontal displacement (or sliding) but is directly proportional to the 

normal reaction. Accordingly, the friction forces Fx or Fy could be 

related to the transverse deflection w as follows: 

Fx = Kz w tan(x) or Fy = Kz w tan(y             ......................(51) 

where (Kz w) is the normal reaction of Winkler model, and xor y is 

the angle of friction between the soil and the foundation in x or y- 

direction. 

The direction of the friction force depends on the direction but not 

on the value of the horizontal displacement u (z=-h/2) or v (Z=_h/2) . So, it is 

mandatory to put a zero friction when there is no horizontal 

displacement. Accordingly equation (51) could be written as: 

Fx = Kz w tan(x)    or              Fy = Kz w tan(y)       .........(52) 

where 

 
( )

( )

( ) ( )
















+





=

==

==

==

positive is  or  u    when 1  

zero is  or   u    when 0 

negative is  or  u   when 1-

2h-z2h-z

-h/2)(Z2h-z

-h/2)(Z2h-z
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It should noted that u (z=-h/2) or v (z=-h/2) is positive at the bottom face 

when along the positive x or y-direction. According to Eq. (48), the 

distributed moments are: 

( ) 







= xzx tanwK

2

h
     ……………….      

( )  yzy wK
h

tan
2








=  

The Governing Equations for Thick Orthotropic Plates on 

Elastic Foundations 

To solve the problems of plates on elastic foundations, the usual 

approach is based on the inclusion of the foundation reactions into the 

corresponding differential equations of plates. 

The governing equations of thick orthotropic plates on elastic 

foundations characterized by Winkler model for both compressional and 

frictional resistances could be obtained by substituting equations (46), 

(49) and (50) into the equations (37) to (41). Thus, the governing 

equations will be: 

0wkq
y

w

y
hGc

x

w

x
hGc z2

2
y

yz

2

2

2

x
xz

2 =−+











+




+












+




            ........……… (54) 
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New governing equations for thick orthotropic plates on elastic 

foundations characterized by Coulomb model for frictional resistance 

(53) 

(55) 

(56) 

(57) 

(58) 
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could be obtained by substituting equations (46), (52) and (53) into 

equations (37) to (41). Thus, the governing equations will be:  

0wkq
y
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y
hGc

x

w

x
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y
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2

x
xz
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The main concept and mathematical formulation of the behavior of 

thick orthotropic plates under generalized loads resting on elastic 

foundations are presented. The equations are complex and intractable for 

direct solution. Therefore, numerical techniques are used.  

 

Finite - Difference Method 

In applying this method, the derivatives in the differential equations 

are replaced by differences at selected points. These points are located 

at the modes of a square or rectangular network (called finite-

difference mesh). Therefore, all the governing differential equations 

are replaced by the equivalent difference equations. After this, the 

assembly for these equations is solved for the five degrees of freedom 

at each node. The stress resultants are obtained by back substitution of 

the resulting degrees of freedom into the equations of stress resultants 

(62) 

(63) 
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after writing these equations in difference form. Outside fictitious nodes 

are needed to represent properly the boundary conditions, [8]. 

 

FINITE - ELEMENT METHOD 

The finite-element method is also a numerical method for 

analysis of continuum structures. The basic philosophy of the finite 

element method is that the continuum is divided into small elements of 

various shapes, sizes and types which are then assembled together to 

form and approximate mathematical structure. 

Certain functions are assumed to approximate the variation of the 

actual displacements over each finite element. The external loading is 

transformed into equivalent concentrated loadings at the nodes. 

Herein, isoparametric 4-node rectangular elements with five 

independent degrees of freedom at each node are used[8] In this type, the 

same shape interpolation functions are used to describe the variation of 

displacements within the element and to specify the relation between 

the global (x,y) and the local (,) coordinate system. Also, each type 

of displacement at any point in the element is related to all displacements 

of same type at all nodes (no coupling or interaction as they are 

independent degrees of freedom). The external loads and moments and 

the foundation reactions are replaced by equivalent nodal forces by 

using the consistent method. 

 

Applications 

A square plate of side length (5m) and thickness (h=2m) is simply 

supported on the edges. The assumed elastic moduli are (Ex=25 kN/mm2 

Ey=5 kN/mm2 Ez=15 kN/mm2) and the assumed Poisson's ratios are (xy 

= 0.75, xz = 0.5 yz= 0. 2). The plate is on an elastic foundation 
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represented by Winkler model for compressional restraint with modulus 

(Kz=10000 kN/m3) and for frictional restraint by either Winkler model 

with moduli (Kx=Ky=20000 kN/m3) or Coulomb friction model with 

angles of friction (X= y =20 °). The loading was (q=25kN/m2). 

In order to use Coulomb friction model the sign of the horizontal 

displacements at the bottom face of the plate should be previously known 

at any point at that face. The sign of horizontal displacements cannot be 

estimated in case of complicated boundary conditions and complicated 

loadings but can be estimated in simple cases of symmetry in loading 

and boundary conditions. So, simple cases of loading and boundary 

conditions are considered. 

For the simply supported plate with Winkler friction, Fig. (5) 

shows the deflection profiles along the center lines in the two 

perpendicular directions for thickness (h=2m) by the finite-element and 

the finite-difference methods. Fig. (6) shows the bending moment 

diagrams along the center lines in the two perpendicular directions. 

Fig. (7) shows the membrane force diagrams along the center lines in 

the two perpendicular directions. Fig.(8) shows the variation of central 

deflection with different thicknesses. The results show good agreements 

by these two methods especially for large thicknesses as shown in 

Fig.(8). 

For the simply supported plate with the Coulomb model, same 

previous sequence of the figures are used for the results (Fig. (9) to Fig. 

(12)). 

Effects of Elastic Foundations on the Plate Behavior  

To show the effects of elastic foundations with both normal and 

frictional restraints (and consequently, distributed moments and shearing 

forces) in thick plates, the results of the central deflections in the simply 
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supported plate with uniformly distributed loads are considered. The elastic 

foundation is represented by Winkler model for both compressional and 

frictional restraints. 

In Figure (13), all the results of central deflections are related to that 

from the classical theory of plates in order to make comparison more 

general. Writing: 

Cl = the central deflection from the classical theory of thin plates with 

no springs. 

C2 = the central deflection from the classical theory of thin plates with 

transverse springs only. 

C3 = the central deflection from thick plate theory with no springs.  

C4 = the central deflection from thick plate theory with transverse 

springs only.  

C5 = the central deflection from thick plate theory with transverse and 

horizontal springs. 

Also writing: 

2C

1C2C
g1

−
=  

3C

1C3C
g2

−
=  

4C

1C4C
g3

−
=  

5C

1C5C
g4

−
=  

The results are plotted according to the above parameters. In Figure (13), 

the variations of g1, g2, g3 and g4 with thickness are plotted. The following 

points may be concluded from this figure: 

1. Graph (g1) shows the effects of the elastic foundation on the 

classical thin plate theory. This effect is considerable when the plate 
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is very thin. The effect diminishes when the plate becomes stiffer 

(when deflections are small). 

2. Graph (g2) represents the difference between the classical thin plate 

solution and 

Mindlin's thick plate solution. The latter can be obtained by 

elimination of the spring terms from the governing equations. The 

thick plate theory gives higher deflections than the thin plate theory 

due to the contribution of transverse shear deformation. The 

difference becomes more considerable for higher thicknesses. 

3. Graphs (g3) and (g4) show the effects of elastic foundations on the 

thick plate behavior. Graph (g3) can be produced by eliminating 

friction terms from the governing equations. The graphs (g3) and (g4) 

are almost coinciding. This indicates that the effect of friction at soil-

plate interface on thick plate deflection is small and can be neglected. 

The graphs g2, g3 and g4 coincide when the plate becomes very stiff. 

This indicates that the effect of the elastic foundation is small when the 

plate is very stiff. 

Since the compressional and the frictional restraints are related to the 

transverse and longitudinal displacements, therefore the effects of these 

restraints will diminish for very stiff plates (small transverse and 

longitudinal displacements), although the friction induced moments are 

proportional to the thickness (h) (Eqs. (50)). 

To study the effect of variation of thickness on the membrane forces 

in plates, a simply supported plate with uniformly distributed load and 

resting on Winkler compressional and frictional foundation is considered. 

The results are presented in Fig. (14) which gives the membrane force 

diagram along the center line in x-direction. Fig. (14) shows that the 

membrane forces decrease with increasing of the thickness. The membrane 
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forces are proportional to the bottom face shearing forces which in turn 

proportional to the horizontal displacements at the bottom face of the plate 

(Winkler model Eq. (47)) and to the vertical deflection (Coulomb model 

Eq.(51)). When the thickness increases, the stiffness will increase causing a 

decrease in the horizontal and vertical displacements and accordingly a 

decrease in the membrane forces. Although the friction forces at plate-soil 

interface are proportional to thickness (h) (Eq.(49)), the horizontal and 

vertical displacements are the dominant parameters. 

Effect of Type and Magnitude of Loading and Boundary Conditions on the 

Plate Behavior 

To show the effect of type and magnitude of loading and boundary 

conditions on the contribution of shearing deformation (the percentage of 

the difference in central deflections between thick and thin plate solutions), 

plates with simply supported, fixed and free edges are considered. The 

simply-supported and fixed-edge plates are loaded by a uniformly 

distributed load (q=25 kN/m2) or by a concentrated central load (P= l00 

kN). The free-edge plate is loaded by a concentrated central load (P=100 

kN). The results are shown in Fig.(15). From this figure, the following 

remarks can be deduced: 

1. The percentage of error introduced by neglecting the transverse 

shearing 

deformations increases with increasing of depth (thickness to span 

ratio). 

2. The fixed edge plates are shear deformable more than the simply 

supported plates. The effect of shearing deformations on free-edge 

plates is less than the other two types. This indicates that more restraints 

on the plate make the plate more affected by transverse shearing 

deformations. 
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3. In cases of concentrated loads, the influence of transverse shearing 

deformation is found to be greater than the influence in cases of 

uniformly distributed loads. Concentrated loads give high transverse 

shearing forces over large portions of the plate. 

4. When the values of the uniformly distributed and concentrated loads 

are varied, the same five curves are obtained exactly. This indicates 

that the percentage of difference in central deflections between thick 

and thin plate solutions is independent on the value of loading for same 

properties of plates and elastic foundations in each case of loading. 

Also, the same five curves are obtained exactly when the span and 

thickness are varied but for constant thickness to span ratio. 

 

CONCLUSIONS  

1.Good agreements are obtained between the finite-difference and finite-

element methods. The results show that the two methods are almost 

identical especially for large thicknesses. Obvious differences are 

noticed in small thicknesses (probably due to shear and membrane 

locking). 

2. The effect of shearing forces at the plate-foundation interface and 

accordingly, the effect of distributed moments are small on transverse 

deflections of plates and on stress resultants. 

3. The influence of transverse shearing deformation is greater for 

concentrated loads than for distributed loads and greater in fixed-edge 

plates than in simply supported plates. The free-edge plates are 

influenced by transverse shearing deformations by a magnitude less 

than in fixed-edge or simply supported plates. 
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Fig. (1) Thick plate element under generalized loading 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2) Deformation of thick plate section 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3) 
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Fig. (4) Applied and resulting moments and forces 
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Fig. (5) Deflection profiles in two perpendicular directions for a 

simply supported thick plate [Winkler friction model] 

 

 

Fig. (6) B.M Diagrams in two perpendicular directions for a simply 

supported thick plate [Winkler friction model] 
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Fig. (7) Membrane force diagram in two perpendicular directions for 

a simply supported thick plate [Winkler friction model] 
 

 

Fig. (8) Central deflection simply supported plate of various thickness 

[Winkler friction model] 
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Fig. (9) Deflection profiles in two perpendicular directions for a 

simply supported thick plate [Coulomb friction model] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10) B.M. diagrams in two perpendicular directions for a 

simply supported thick plate [Coulomb friction model] 
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Fig. (11) Membrane force diagrams in two perpendicular 

directions for a simply supported thick plate [Coulomb 

friction model] 

 

Fig. (12) Central deflection of a simply supported plate of 

various thicknesses [Coulomb friction model] 
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Fig. (13) Effect of compressional and frictional Winkler 

foundation on central deflection of thick plate 

 

Fig. (14) Effect of thickness on membrane forces in a thick plate 

on elastic foundation with Winkler friction model 
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Fig. (15) Effect of type and magnitude of loading and boundary 

conditions on the percentage of the difference in the central deflection 

between thick and thin plate solutions 
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البلاطات السميكة المستطيلة المختلفة الخواص بالاتجاهين المستندة على اسس 
 مرنة
 

 عبد الامير النداوي        د. أحمد عبد الحميد العبيدي        د.حسين محمد حسين 
 مهندس      استاذ                          مدرس                            

 جامعة النهرين-قسم الهندسة المدنية جامعة تكريت           -ية قسم الهندسة المدن         
 

 الخلاصة 
( للبلاطات السميكة لاستخدامها في  Mindlinفي هذا البحث تم تطوير نظرية مندلين ) 
( المعرضة لتأثير العزوم و قوى  orthotropicالبلاطات السميكة المختلفة الخواص بالاتجاهين ) 

على الوجه الاعلى و الاسفل للبلاطة. قوى القص هذه تنتج قوى مستوية  القص الموزعة خارجيا
سطحية )غشائية ( في البلاطات حيث تم اخذ التأثيرات التمددية لهذه القوى في التحليل. خمس 
درجات من الحرية اخذت عند تحليل المقاطع المستعرضة للبلاطة ، تضمنت درجة للهطول 

ستقلة من الوضع الطبيعي الى منتصف البلاطة و كذلك درجتان المستعرض و درجتان للدوران الم
لبلاطة السميكة لتمثيل اللازاحتان الغشائيتين العموديتين المتبادلتين. خمس معادلات استخدمت 

المختلفة الخواص متضمنة تأثير العزوم الخارجية و قوى القص المسلطة و الموزعة عليها مع 
 لانظغاطية و الاحتكاك الاخذ بنظر الاعتبار المقيدات ا

و لغرض التطبيق فقد تم اختيار تحليل بلاطة سميكة مختلفة الخواص بالاتجاهين مستندة على 
 ( و تحت تأثير عزوم  و قوى قص. elastic foundationاساس مرن )

استخدمت طريقة  الفروق المحددة لحل المعادلات اضافة الى طريقة العناصر المحددة و حيث 
 نتائج متقاربة و بشكل جيد و لكلا الطريقتينوجد بان ال

 
  الكلمات الدالة

الاسس المرنة ، الفروق المحددة ، العناصر المحددة، البلاطات المختلفة الخواص بالاتجاهين،   
 البلاطات السميكة 
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