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Abstract 

        This investigation is to develop a numerical model suitable for nonlinear analysis of 

reinforced concrete shells. A nine-node Lagrangian element Figure (1) with enhanced shear 

interpolation will be used in this study. Table (1) describes shape functions and their 

derivatives of this element. 

An assumed transverse shear strain is used in the formulation of this element to 

overcome shear locking. Degenerated quadratic thick plate elements employing a layered 

discrelization through the thickness will be adopted. Different numbers of layers for 

different thickness can be used per element. A number of layers between (6 and 10) have 

proved to be appropriate to represent the nonlinear material behavior in structures. In this 

research 8 layers will be adequate. 

 Material nonlinearities due to cracking of concrete, plastic flow or crushing of 

concrete in compression and yield condition of reinforcing steel are considered. The 

maximum tensile strength is used as a criterion for crack initiation. Attention is given to the 

tension stiffening phenomenon and the degrading effect of cracking on the compressive and 

shear strength of concrete. Perfect bond between concrete and steel is assumed. Attention is 

given also to geometric nonlinearities. An example have been chosen in order to 

demonstrate the suitability of the models by comparing the predicted behaviour with the 

experimental results for shell exhibiting various modes of failure. 
Keywords: Finite elements, Nonlinear analysis, Assumed strain, Reinforced concrete shells. 

 التحميل اللاخطي باستخدام العناصر المحددة لمقشريات الكونكريتية المسمحة
لخلاصةا  

اجريت هذه الدراسة لغرض الحصول عمى حل عددي ملائم لمقشريات الكونكريتية المسمحة باستخدام التحميل  
 راء الحل العددي.اللاخطي حيث استخدمت عناصر لاكرانج ذات تسعة عقد والتي لها القابمية عمى تشوه القص لإج

اعتمد انفعال القص المفروض في المعادلات لتجنب حالة القفل بالقص. كذلك استخدمت العناصر  
الصفائحية المتلاشية رباعية الشكل والسميكة والمرتبة في ثمان طبقات خلال السمك. درس ايضا" التصرف اللاخطي 

الة السحق لمخرسانة عند الانضغاط وحالة الخضوع لحديد لممادة اعتمادا" عمى تشقق الكونكريت والجريان المدن وح
 التسميح. اعمى قيمة لمقاومة الشد اعتمدت كمؤشر لبداية التشقق في الكونكريت.

المتشققة واخذت ايضا" بنظر الاعتبار مقاومة  ةاعطي الاهتمام ايضا" لحالة مقاومة تصمد الشد لمخرسان  
باط التام بين الكونكريت وحديد التسميح . كذلك تمت دراسة التصرف الانضغاط والقص بعد التشقق. فرض الارت

العممية كذلك تمت دراسة توافق جيد مع النتائج ذات  أظهر نتائجمثال عددي تم حل   اللاخطي لمشكل الهندسي.
                      .                                             تأثير انخفاض مقاومة الشد لمكونكريت

 عناصر محددة ، تحميل لاخطي ، إنفعال مفروض ، قشريات كونكريتية مسمحةالكممات الدالة:
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Notation 

Ae Element area 

B Strain-displacement matrix. 

D Elasticity matrix. 

di Displacement. 

E Young’s modulus. 

Ec Initial modulus of elasticity of  

            concrete 

Es Modulus of elasticity of steel 

Es’ Second modulus of elasticity of 

            steel. 

fc’ Uniaxial compressive strength of 

            concrete. 

fc’max Maximum compressive strength 

            in the direction parallel to the  

            crack direction. 

ft ’ Uniaxial tensile strength of 

            concrete. 

Gc Fracture energy of concrete. 

I1 , J2 Normal and shear stress  

            invariants. 

J Jacobian matrix. 

| J | Determinant of the Jacobian 

            matrix. 

K Stiffness matrix. 

Mx , My , Mxy Generalized stress  

            components (moments). 

N Shape function. 

yx QQ ,
 Generalized stress  

            components (shear forces). 

Ri Shape function. 

Si Shape function. 

u,v,w Displacement components. 

x  Strain in x-direction. 

y  Strain in y-direction. 

b  Bending strain tensor. 

s  Transverse shear strain tensor. 

  Compressive strain at peak stress  

           of concrete. 

u  Crushing strain. 

 

 

Introduction 

Shells are one of the most 

important members of structures, while a 

shell can take loads normal and tangent 

to the surface, the load on the shell is 

resisted by transverse shearing forces and 

by plane stresses. Thus the shell is a 

combined structure of plate in bending 

and plate in plane stress.   

Hand et al.
[1]

 are the first to use 

the layered finite element model for 

determining the load-deflection history 

up to failure of reinforced concrete plates 

and shells with the incremental-variable 

elasticity technique. 

Figueiras and Hinton and Owen 
[2,3]

 

used the finite element method for the 

nonlinear analysis of reinforced concrete 

plates and shells. Both an elastic-

perfectly plastic and strain hardening 

plasticity approach are used to model the 

compressive behavior of the concrete. 

Bathe et al.
[4]

 presented a solution 

capabilities for two and three 

dimensional nonlinear finite element 

analysis of concrete structures.  

Hu and Schnobrich
[5]

 used a 

constitutive model based on a smeared 

crack representation coupled with the 

rotating crack approach, to predict the 

post-cracking behavior of reinforced 

concrete elements subjected to inplane 

shear and normal stresses. 

Hu and Schnobrich
[6]

 used the 

plane stress constitutive models under 

monotonic loading for the nonlinear 
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finite element analysis of reinforced 

concrete structures. 

Abbasi et al.
[7] 

used the nonlinear 

finite element modeling to show the 

various failure modes of a reinforced 

concrete slab in terms of damage 

accumulation either by tension cracking 

in concrete, plastic yielding in steel or by 

concrete crushing. 

      Sathurappan et al.
[8] 

used the 

finite element method in its incremental 

form to analyze the nonlinear problem 

where both material and geometric 

nonlinearities are used. 

Polak and Vecchio
[9]

 developed a 

heterosis-type degenerate isoparametric 

quadrilateral element by using a layered-

element formulation for the analysis of 

reinforced concrete shell structures. They 

used selective integration to avoid shear 

locking and zero energy problems. 

Abdullah
[10]

 studied the influence 

of tension stiffening models on geometric 

and material nonlinear analysis of 

reinforced concrete shells. A nine-node 

Lagrangian degenerate element has been 

employed. 

The present study will use the 

finite element method for analyzing the 

nonlinear behavior of reinforced concrete 

shells comparing the effect of varies 

failure criterions for concrete.  
 

Basic Theory 

Using the degenerated shell 

element, the global displacements at any 

point (  ,, ) in the element field can be 

expressed in terms of the nodal 

displacements as 

 










































































n

i

i

i

i

i

i

i

i

ii

i

ii

i

i

ii

i

ii

i

i

ii

i

ii

w

v

u

n
h

Nn
h

NN

m
h

Nm
h

NN

l
h

Nl
h

NN

w

v

u

1

21

21

21

22
00

22
00

22
00










    
………………………………………..(1) 

or simply 
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Strains at any Gauss point along the 

thickness ( = constant) are defined in the 

local Cartesian coordinate system (X', Y', 

Z') by  
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where u
'
 ,v

'
 and w

'
 are the displacement 

components in the local system, and their 

derivatives with respect to the local axes 

are computed from the global derivatives 

of the displacement u, v and w in the 

global coordinate system as: 
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where    is the transformation matrix. 
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The derivatives of the global 

displacements with respect to the global 

coordinates may be expressed in the usual 

manner as: 
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where  J  is the Jacobian matrix 
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The five stress components in the 

local coordinates system are: 
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where 
 0  may represent any initial 

strains such as the expansion due to 

thermal load. 

The stiffness matrix is computed 

by summing up the contribution of each 

layer stresses at the Gauss points 
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The internal force vector (or 

equivalent nodal forces) at the end of 

each iteration are defined by 
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Assumed Transverse Shear Strain 

Fields 

A new shear strain field is to be 

interpolated from the strain values at the 

sampling points for the elimination of 

shear locking. This displacement field is 

used to evaluate (  )  and (  ) 

which are the transverse shear strains as: 
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where  ( '
 ) and (  '

 ) are the 

transverse shear strain at certain 

sampling points (i) while (
iR ) and (

iS ) 

are the appropriate shape functions. 

Thus the shear strain can be expressed 
[11]

 

as:                                                               
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and (h) is the thickness and (J) is the 

Jacobian matrix. It is possible to write the 

same thing, for : 
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while 
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Using the full integration a shear 

locking problem will appear. Therefore, 

reduced integration could be used but 

there will appear another problem which 

is zero energy modes. These problems can 

be solved by using assumed strain 

elements where (  ' ) is linear in (   ) 

direction to overcome shear locking and 

quadratic in (  ) direction to overcome 

zero energy modes and (  ' ) is linear in 

( ) direction and quadratic in (   ) dire 

The strain displacement  matrix B  

, in the finite element method, which 

relates the strain components to the nodal 

displacements is given in : 

equation can be written in partitioned 

form as: 
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where )( b is the bending strain, 

)( '

s is assumed transverse shear strain, 

)( '

sB is the shear strain displacement 

matrix. 

      The moment-curvature and shear 

force–shear strain relations can be 

written as:    
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T
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 ,xQ yQ ] T = '
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Considering )( '

ijK as the stiffness matrix 

coefficients at node (i) and (j) which 

represent bending and transverse shear 

strain energy and by using full integration 

rule in )(   direction then the function 

for bending: 
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where )( eA is the element area 
 

Material Modeling 

Failure Criteria for Concrete 

The strength of concrete under 

multiaxial stress is a function of the state 

of stress and cannot be predicted by 

limitation of simple tensile, compressive 

or shearing stress independently of each 

other. The general shape of failure surface 

is defined by the stress invariants I1 , J2 

and J3 , where  I1  is the first stress 

invariant and  J2 and J3 are the second and 

the third invariant of the deviatoric stress 

tensor.    

In the present work, three criteria 

will be described and used to model the 

concrete in compression. Comparison 

between these criterions is discussed 

through analyzing reinforced concrete 

members and comparing with the 

published experimental results. 

 

Generalized Willam Criterion 

Menerterey and Willam refined the 

three-parameter Willam criterion by 
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adjusting the compression and tension 

meridians
[12]

. These meridians are no 

longer straight lines. The adjustment also 

is made to the deviatoric plane which 

depends on the eccentricity (e). 
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      The eccentricity value e is obtained 

from a figure which depends on the 

relation between the axial and biaxial 

compressive strength 
'

'

.

c

bc

f

f
 and also on the 

relation of uniaxial compressive strength 
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'

'

c

t

f

f
  

[13]
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'
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give good agreement when compared with 

the experimental results of Kupfer et al. 
[13]

, Figure (4) in the deviatoric plan. The 

comparison of this criterion in the 

meridian plan for compression and 

extension meridian gives good agreement 

with triaxial test data by Chinn and 

Zemmerman 
[14]

 and Mill and Zemmerman 
[15] 

Figure(3). 

 

Ottosen Criterion 

Ottosen suggested a four-parameter 

criterion
[16]

. The failure surface has curved 

meridians and noncircular cross sections. 

The failure curves on the deviatoric plan 

change from nearly triangular to the nearly 

circular with increasing hydrostatic 

pressure and this criterion can be 

represented by: 
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 







   3cos(cos

3

1
cos 2

1

1 kkf               

for        03cos           ………...……(30) 

1I : is the first stress invariant tensor 

 
zyxvvvI   3211  

2J : is the second invariant of stress 

deviatoric tensor. 

bakk ,,, 21  are material parameters. 

      The four parameters in the failure 

criterion are determined on the basis of 

two typical uniaxial concrete tests ( '

cf  

and '

tf ) and two typical biaxial and triaxial 

concrete data. 

      In the present study, the four-

parameter criterion which agrees well with 

experimental results
[17]

 are adopted as     

      a = 0.9218, b = 2.5969, k1 = 9.9110, 

and k2 = 0.9647. 

      Figure (5) illustrates the agreement 

between the Ottosen criterion and the 

experimental data referred to the 

compressive and tensile meridians. The 
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( ) 

ability of this criterion to represent the 

experimental biaxial data of Kupfer et. al 
[13]

 is shown in Figure (6). 
 

Compressive Behavior of Concrete 

Based on the flow theory of 

plasticity, the nonlinear compressive 

behavior of concrete is modeled. 

Adopting Kupfer's results
[13]

, the yield 

condition for the slab can be written in 

term of the stress components as 
[3]

: 

 

 222 (3)(355.1)( xyyxyxf  

  oyxoyzxz  
5.022 )(355.0)   

..…………………………………....(31) 

 

where   is the equivalent effective 

stress taken as the compressive strength 

( f c

'

) which is obtained from uniaxial test.                                                                                          

Both perfectly plastic and strain 

hardening models are represented in one-

dimensional form in Figure (2).   

The crushing of concrete is a 

strain control phenomenon. A simple 

way of incorporation in the model is to 

convert the yield criterion of stresses 

directly into the strains, and the crushing 

condition can be expressed in terms of 

the total strain components as: 

 222 (75.0)(355.1 xyyxyx  

  25.022 )(355.0) oyxoyzxz    

…………………………………......(32) 

 

The concrete is assumed to lose 

all its characteristics of strength and 

rigidity when ( ) u  reaches the specified 

ultimate strain. 

The response of concrete in tension 

is assumed to be as Tension stiffening, 

illustrates that the cracked reinforced 

concrete as a result of bond mechanisms 

carries, between cracks, a certain amount 

of tensile stress normal to the cracked 

plane. The concrete between cracks 

adheres to the reinforcing bars and 

contributes to the overall stiffening of the 

structure. The strain softening or 

descending branch of the stress strain 

curve of concrete in tension, in one form 

or another, may be used to simulate this 

”tension stiffening” effect. After cracking, 

the tension carried by the concrete is 

calculated as the net area of concrete times 

the average tensile stress in the concrete 

between the cracks. 

  

Tension Stiffening (Parabolic Model) 

When the finite element is used in 

the analysis of reinforced concrete 

structures, it has been found that the 

overall stiffness and predicted ultimate 

load decrease with the reduction of 

element number
[8]

. The cracking model 

exhibits greater softening when the 

number of elements increase. Fracture 

energy )( cG is applied to overcome this 

difficulty and to relate the constitutive 

model to objective measures.  

This fracture energy is defined as 

the amount of energy required to create a 

crack of one unit of area, sometimes )( cG  

called the critical strain energy release rate 

or toughness. 

The relationship between stress 

and strain after cracking is given in 

Figure(7)
[11]

 : 

 

21© )(
mt

m
tf









 ..……..…………(33) 

 

where )( ©

tf is the tensile strength and 

)( t is tensile strain at maximum tensile 

stress. In the analysis of the two 

7 



Tikrit Journal of Eng. Sciences/Vol.16/No.3/September 2009, (1-18) 

 

( )G

dimensional problems, a parabolic curve is 

used to simulate the relationship between 

stress and strain after cracking (based on 

fracture energy value) see Figure (7).  

The fracture energy corresponding 

to an opening crack can be evaluated 

as
[11]

: 
 







dhG cc

m

t

 ……..…………...….(34)  

Solving the integration gives: 

 

3

)(©

tmtc
c

fh
G

 
 ...…..……..….(35) 

 

The maximum tensile strain 

( ) m can be evaluated from equation (35) 

as: 

 

t

tc

c
m

fh

G
 

©

3
.………………..…(36) 

 

where )( cG is the fracture energy of 

concrete. The value for normal aggregate 

concrete seems to be (60-100)N/m 
[3]

 has 

stated that for normal concrete, typical 

values for )( cG lie in the range 

)/200( 2©

ct Ef  to )/400( 2©

ct Ef .  In the 

present study )( cG  is taken equal to      

100 N /m. 

)( ch  is the characteristic length of the 

Gauss point, and is equal to: 

)(dAhc ……...……………………(37) 

where )(dA is the area represented by 

the Gauss point. 

 

Cracked Shear Modulus  

 The crack width, aggregate size, 

reinforcement ratio and bar size, are the 

primary variables in the shear transfer 

mechanism as indicated in experimental 

work. The amount of shear stress can be 

transferred across the rough surfaces of a 

cracked concrete, and the dowel action of 

steel is contributing to the shear stiffness 

across the cracks
[18]

. An appropriate 

value of the cracked shear modulus can 

be estimated in a smeared cracking 

model
[19,20]

. In the present study, the 

cracked shear modulus is assumed to be a 

function of the current tensile strain. In 

this approach a value of ( )'G  linearly 

decreasing with the current tensile strain 

is adopted by Cedolin and Deipoli
[18]

 and 

used by many investigators
[3]

  . 

 For concrete cracked in direction 1. 

 

G G12 10 25 1 0 004' . ( / . )  
                     

for  1 0 004 .                                     

G12 0'                                                         

for  1 0 004 .                                           

G G13 12

' '                                                                                                                          

  
G G23

5

6

' 
       ……………....(38) 

  

where  is the uncracked shear 

modulus and ( ) 1 is the tensile strain in 

direction 1. For concrete cracked in both 

directions: 

G G13 10 25 1 0 004' . ( / . )                             

for  1 0 004 .   

G13 0'                                                           

for  1 0 004 .    

G G23 20 25 1 0 004' . ( / . )  
                         

for  2 0 004 .                        

G23 0'                                                           

for  2 0 004 .  
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G G12 2305' '.                                                   

for G G23 13

' '  

…………….……….…..……………(39) 

When solving nonlinear problems, 

the linearization makes it necessary to 

perform iterative correction to d . A 

Newton-Raphson type scheme is used in 

this work 
[3]

.  

Nonlinear Solution 

The fundamental approach of the 

solution for a simple linear elastic problem 

is generally done by solving a set of 

equilibrium equations for the unknown 

displacements  a  of the following form: 

Ka = P   or         pak   ………….(40) 

A direct solution is not possible in 

nonlinear problems since the stiffness 

matrix K depends on the displacement 

level K = K (a), therefore, it cannot be 

exactly computed before the determination 

of the unknown displacement vector a . 

Either an incremental method, an iterative 

method or a combination of them is usually 

used for the solution of nonlinear problems. 

An incremental solution procedure 

with an iterative method has been used to 

trace out the entire structural response of 

reinforced concrete structures which 

dissipate residual forces. The stiffness 

matrix is computed at stages with a load 

increment when the change of material 

characteristics implies a local change of 

stiffness. During the first spread of cracks 

and near the ultimate load the stiffness has to 

be repeatedly calculated. 

Geometric Nonlinear Analysis 

The causes of structural nonlinearities 

may be broadly classified in two groups; 

those from material and geometrical 

nonlinearities. The material nonlinear 

behavior has been dealt with before. The 

following formula are describe the 

geometrical nonlinearity by the 

degenerated elements using the tangential 

stiffness matrix method to obtain the 

geometric stiffness matrix which can be 

written as: 

 

      
V

T
dvGGK  ….………….(41) 

 

in which the term  G  is a geometric 

matrix with two rows and a number of 

columns equal to the total number of 

element nodal variables. The first row 

contains the contribution of each nodal 

variable to the local derivative 
'

'

x

w




 

(corresponding shape function derivatives) 

and the second row contains the 

contributions for 
'

'

y

w




 and    is the 

components of the stress vector defined 

previously from Equation (7). 

 

Numerical Examples 

Example 1 

The parabolic  cylindrical shell tested 

by Hedgren existing in 
[4]

 is analyzed. This 

is supported on end diaphragms and has 

free longitudinal edges with variable 

thickness. The shell is subjected to 

uniformly distributed pressure with 

ultimate value of (0.01435) MPa. The 

shell geometry is shown in Fig. (8-a) and 

(8-b) finite elements are used to model one 

quarter of the shell, each of which is 

divided into (8) equal concrete layers. 

Concrete properties and reinforcement 

characteristics are given in Tables (2) and 

(3).The resulting load- deflection curves at 

the crown of the mid-span section  show 

the following:  
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Figure (9) shows the comparison 

between tension stiffening model with the 

experimental results. It is found that this 

model gives a little difference when 

compared with the experimental results. 

Figure (10) shows the effect of 

different yield criteria. It is found that a 

little difference exist between the second 

stress invariant model and the other 

models. 

Figure (11) shows the difference 

between linear and nonlinear geometry 

models.  

Example 2 

This example is same as previous 

example but with reducing the uniaxial 

tensile strength of concrete from (4.8) 

MPa to (4.4) MPa and then to (4.0) MPa. 

Figure(12) shows the comparison between 

these values with observed reduction in 

shells resistance . 

 

Conclusions 

     Based on the theoretical study 

presented here, the following specific 

conclusions can be drawn. 

1. The computational models adopted in 

this study are useful for studying 

reinforced concrete plates and shells with 

assumed strain elements based on 

numerical results obtained in this 

investigation. 

2. The effect of using different yield 

criteria is studied. It can be concluded that 

all yield criterion are efficient. The results 

by using Ottosen and Generalized Willam 

are similar.  

3. Nine-noded element with assumed 

strain elements to avoid shear locking and 

tension stiffening models to represent 

cracked concrete gives good results for the 

nonlinear analysis of reinforced concrete 

shell problems. 

4. Reduction in uniaxial tensile strength of 

concrete effects to overall strength  of 

reinforced concrete shells. 
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Table (1) Shape Functions and Their Derivatives for the Nine-Node Lagrangian 

Element. 
Fun- 

-ction 

Corner nodes (1,3,5,7) Edge nodes (2,6) Edge nodes (4,8) Center node (9) 
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Table (2) Material Properties for Shell. 

cE  

MPa 

'

cf  

MPa 

cv  '

tf  

MPa 

u  a  
m  '

sE  

MPa 

sE  

MPa 

20690 30.2 0.145 4.8 0.0035 0.6 0.002 0.0 200000 

 
Table (3) Reinforcement Characteristics [N,mm] for Shell. 

Designation Diameter 

mm 

Area 

mm
2 

Yield Strength 

MPa 

Ult. Strength 

MPa 

No.    3 1.22 1.17 225.3 364.2 

No.    4 1.57 1.95 221.9 344.5 

No.    9 3.43 9.2 307.0 420.0 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) A Nine-Node Lagrangian Element. 

9 ( 0 , 0 

) 
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Work-hardening 

Tension stiffening 
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Cracking 

Figure (2) One-dimensional representation of the concrete 

                             constitutive model
[23]

. 

 

'

cf  

'3.0 cf  

'

tf  
cu  

cE  

tension meridian  

compression meridian  

Chinn and Zimmerman 

Mill and Zimmerman 

Figure (3) A Comparison of Three-Parameter Concrete Criterion With Triaxial     

                  Test Data by Chinn and Zimmerman
[15]

 and Mills and Zimmerman
[16]

. 
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Figure (5)Correlation Between Ottosen Criterion and Experimental Data
[17]

. 

 

Envelope of Experimental Results 
Concrete failure Criterion 

Figure (4) A Comparison of Three-Parameter Concrete Criterion With 

Biaxial Test Data by Kupfer et al. 
[14]

. 
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Figure(7) Tension Softening (Parabolic Model). 

fc

1  

fc

2  

 

MPafc 4.59'   

08.0'' ct ff  

Kupfer et al (1969,1973) 

Failure criterion 

Figure (6) Biaxial Representation for Ottosen Criterion
[17]. 
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                        Figure (8-a) Plan of Hedgren Cylindrical Shell
[4]

. 

 

 

                       Figure (8-b) Section A-A of Hedgren Cylindrical Shell
[4]
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Figure(9) Load-Deflection Curves for Tension Stiffening . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (10) Load-Deflection Curves With Different Yield Criterion. 
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Figure (11) Load-Deflection Curves for Geometric Linear and Geometric 

Nonlinear. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (12) The Effect of Uniaxial Tensile Strength of Concrete 
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