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ABSTRACT

This paper presents a computer
analysis of the eddy current brake in
electric machines. It presents a formula
for the braking force when the actual
width of the pole is considered. This
formula is suitable for both thin and
thick discs and may be employed for a
wide range of working speed. For this
purpose, a mathematical analysis of the
problem is presented together with the
formula achieved for the braking force.
The brake is first represented by a
mathematical model based on certain
NOTATIONS

Ag, Ap Magnetic vector potential
of the air gap region and

the plate.
A, vector potential of the nth
harmonic
Fbn Braking force of the nth
harmonic

29 Air gap length

J(X) Current density

Jo Amplitude of current density

Jn Current density of the nth
harmonic

assumptions and then the braking force
is obtained as a result of solving a field
problem. The problem is simplified to a
one-dimensional problem, where a

solution for the magnetic vector
potential is obtained, and by employing
Lorentz force equation, a formula for
the braking force of the nth harmonic
order is obtained.

KEYWORDS: Electric Machines,
Eddy Currents, Braking Force,
Electromagnetic Fields, Poisson’s

equation.

n Harmonic order
Pn, Qn, Rn, Sn, Constant obtained by

using appropriate boundary
conditions

t Time
\ Velocity of the plate
X, Yy, Z Stationary coordinate system

a, Attenuation and phase shift
constant

20 Plate thickness
u Permeability

no Permeability of free space
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c Electrical conductivity
T Pole pitch
* Denotes complex conjugate of

INTRODUCTION

The idea ™ of eddy current stems
from the fact that when a metal moves
through a spatially varying magnetic
field, or is located in a changing
magnetic field, induced currents begin to
circulate through the metal. These
currents are called eddy currents because
of their similarity to eddies in a flowing
stream. In the case of the eddy current
brake, a rotating disk has a magnetic

field passing through it perpendicularly,

but it is only strong in the area where the

magnetic is .The currents in that area
experience a side thrust, which opposes
the rotation of the disk. This interaction
of field and current results in the
"braking" of the disk, and thus the name
"eddy current brake". The return currents
close via parts of the disk where the field
is weak, so there is a drag force only in
the "generating” region.

One early study into eddy current
braking was performed by Davis and
Reitz [2(1971) , who examined the
forces induced on a magnet moving over
the surface of both a semi-infinite and a

finite  conducting medium. Later,

vector quality

Schieber #1(1974) analytically predicted
the braking torque on a finite rotating
conductive  sheet and performed
experiments to identify the accuracy of
Schieber
continued his research in eddy current
braking and published a paper [“(1975)

that analytically found the optimal size

the modeling techniques.

of a rectangular electromagnet for eddy
current braking. Venkatanatnam and
Ramachandra *!(1977) obtained the field
distribution when a thin conducting sheet
moves with constant velocity between
two rectangular and infinitely permeable
pole pieces of an electromagnet. Nagaya
et al. ®(1984) investigated the eddy
current damping force induced on a
conducting plate of arbitrary finite size
moving with a velocity parallel to the
face of a cylindrical magnet. Wiederick
et al. [/(1987) proposed a simple theory
for the magnetic braking force induced
by eddy current in a thin rotating
conductive disk passing through the
poles of an electromagnet. Cadwell
81(1996) investigated the braking force
exerted on an aluminum plate as it
passes between the poles of a horseshoe

electromagnet
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Lee and Park !(1999) investigated
the design of an eddy current brake
controller. However, their system was
not intended to maintain a fixed speed,
but to minimize the stopping time. More
recently, Lee and Park %(2001a) and
Lee, K. 1(2002) have developed a
model for an eddy current braking
system that allows for an analytical
solution to the problem. In this paper, to
investigate the harmonic order effecting
on the braking force in electrical
machine, a formula for the braking force
has to be developed first. Calculations of
the braking force in eddy current brakes
has received by employing Lorentz force
equation, a formula for the braking force
of the nth harmonic order is obtained.

Mathematical Model Assumptions

A complete 3-dimensional solution
for the braking force is difficult to
obtain. Instead, the configuration of a
quasi one-dimensional model is used as
shown in Fig.(1). This model is obtained

under the following assumptions: -

1. The plate and pole structure are
considered to be infinitely wide in
the y-direction, so that all variables

become independent of y; hence

2 -0
oy

In the following analysis, the
transverse edge effects are taken into
account.

2. All currents are y-directed.

3. The excitation winding and the salient
poles are replaced by infinitely thin
current sheets backed by smooth iron
boundaries. These linear current sheets
are chosen in such away that they cover
only a pole face only and give the same

field in the air gap of the model having

smooth structures as the original
windings produced in the actual
machine.

4. The pole material has infinitely larger

permeability (x,; > ) and small

electrical conductivity (ci — 0).

5. The plate and pole structures are
assumed to be very long in
the + x direction. Hence, the longitudinal
end effects are neglected.

Formulation of Equation And

Solution of The Problem

In the actual problem, the plate is
moving while the pole structure is
stationary. The current distribution for
an observer on the structure takes a
repeatable step distribution as shown in
Figure (2).

expressed by Fourier series gives !:

This distribution when
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j(x):iljn sinnxzzi:jn Re[— jej”nx}
n=1 T n—1 T
----------- (1)
Where j, is current density of nth
harmonic, which is represented by:-

n:- harmonic order.

If the plate is considered stationary and
the field system moves in the (-ve)
direction of x, then the current density

function takes the form:-
j(X,t) — Z jn Re[— je ip(nx+vt)]
n=1

T

Where p=—, v: the velocity of the

T
plate.

The differential equation for the vector
potential in the plate is:

O°Ap O°A OA

8X2p + 27 2p =uU Ep (Poisson’s

formula)

For the air gap o=0 , and Equation 3

becomes:

2 2
0 Af+8 Azp:0
oX oz

The excitation and boundary conditions
require a vector potential which depends

onx& t as ej(nXWt)

Assuming this solution to be on the

form:

AR z.)=3 A

Where A = A_(2)eP™  ____(6)

Substituting 6 in 3 & 4 gives for the nth

component of the vector potential.

dzApn (Z) 2

de n Apn (Z):O '(7)
Where:

. oV
gn = pn(1+ J—ﬂ)llz

d*Ap,(2)

dzg _pr? Agn(z):()

And

Where p, =n*p

The general solution of Equations 7 & 8

are:
Ap, (2) = pe™* +Q.e ™ - (9)
Ag,(z)=Re™ +S e " (10)

Where pn, Qn, R, and S, are arbitrary
constants which can be found by

applying the boundary conditions.

The Boundary Conditions

A set of conditions, which are

important in determining the
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mathematical solution to many physical

problems, specified for the behavior of

the solution to a set of differential

equations at the boundary of its

domain.

1. At z =0, the differential of vector
potential of the plate for n harmonic with

respectto. z=0

e PP _
0z

2. At Z= 3 (plate thickness)

The vector potential of the air gap equal
the vector potential of the plate.
i.e  Apn=Ag,
1080, 1089,

u 0Z oy, 0

4. Atz = g (air gap length)

The differential of vector potential
of the gap for n harmonic with

respect to z = kn

i.e ié‘Agn =k

My OZ "

From Condition 1

Pngn _Qngn =0

ie. P =Q,
Hence A P.(2)=2p,coshgnz --- (11)

From Condition 2

‘Sgn _é‘gn_ ‘spn _é‘pn
Pe™™ +Q.e * =R e* +S e

2P, coshdy, =R e™ +S e ™ (12)

From Condition 3
9. (P ~Qe ™) =P, (R.e™ ~S,e™™)

2Py, sinh  go=Re™-Se™-(13)
Where y, =g,/p,

From Condition 4

_ k
R,eM? —S e ™ = Lot

Adding 12 &13 gives

Rn = pn{COSh @n —7n Sinh@n}eipné‘

Subtracting 13 & 12 gives
S, = p,{cosh &, —y,sinh&y, Je™ .. (16)
Now substituting 15 &16 in 14 gives

Plcosh &, sinhp,(9-9)+y,

sinh &g, cosh P, (g —9)] = %

n

_ knluo

RARPTYS

Where ¢, = cosh &g, sinh pn(g-0) +
o sinh &n cosh pa(g-9)

Substituting 17 in 15 &16 we get

R, = I(“A{Cos,h &, +7,sinh 5gn}e'p”5
2p,C,

n=n
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Therefore equation 11 becomes:-

Apn(Z):Mcosh 9,2

n=n

Ag.(Z) = knﬂ[cosh &, coshp,(Z-0)+

n=n

v,sinh &g, sinh p, (Z - 96)]

The braking force of the nth harmonic is

given by the following Equations:

/2 § aA .
Fbn= IjRe(—a%~i)dx z
-7/20 at 8X ------ (22)

ejp(nx+vt)

Ap,(x,2,1) = Ap, (2)

OAp,

i jp(nx+vt)
e o = PV AR (e P (23)
aApn* . —jp(nx+vt)
o - P AR (e (24)

After substituting Equation 23&24 in 22
and integrating, the total solution of

Equation 22 can be written as: -

Fb,

anc,|’ a, B,

Where

C, =coshdg,sinh p (g-9)+

Vn sinh &n cosh pn (g _5)

a, = n2 pz

By = poVP

The fundamental component of braking

force for n=1 is:

VK {sinh 20,5 _sin 2ﬁn5}°rder of

Fb, =~ oV ak’iyg | sinh2a,5 sin 2@‘}

4|C1|2 o, B

The appropriate solution of equation 25
becomes:

_ 2 0 2 - -
ey -~V - K, (s.nhzan5+5|nh2ﬂn5

4 n=1 n|Cn|2L a, ﬂn
Where: K, = ﬁ{sin N7 jn N }
nr 2 2

DISCUSSION OF RESULTS

The calculation of the braking force
and the effect of the harmonic order at
different speed are shown on Figure (3).
The baking force Fb against the
harmonic order n at speed N=100, 500,
1000, 1500& 2000 r.p.m is shown. It is
seen that the braking force increases as
higher harmonics are employed, but it is
observed that no appreciable increase in
the braking force is obtained when the
harmonic exceeds nine.
Therefore it is decided to stop
calculations up to the ninth harmonic

order.

Figure (4) shows the effect of speed
on the braking force at order of harmonic
nine. As the speed increases the braking
force also increases, but not with the
same magnitude, so the curve has a
parabolic shape. The braking force will

increases as the speed increases, because
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the disc of the motor at high speed will
cuts more number of magnetic lines so
the induced emf will be more and the
current will be more also, therefore the

braking force will be more 21,

CONCLUSIONS

In this investigation, analysis of the
problem of eddy current brake is
presented which is applicable to brake

either thin or thick discs.

A new expression of the braking force
is developed which considers the actual
width of the pole. This expression is
applicable to thin and thick discs
covering wide range of working speed.
The expression was obtained by solving
the two-dimensional field problem of

multi regions of different permeability.

A computer program is considered
with the help of the flow-chart shown in
Figure (5) to compute the braking force
and to study the effect of the harmonic
order at different speeds. It is found that
the results converge rapidly with the
harmonic order. No significant change in
the results was achieved after the ninth

harmonic.
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Current

Fig. (1): One dimensional quasi — static brake model
used for analvsis

A
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A
v

Fig.(2): Repeatable step current
distribution
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Fig.(3) Effect of harmonic order on the braking force at different speed
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speed (r.p.m)

Fig (4) Effect of speed on the braking force at harmonic order nine
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( START )

A 4

I/P DATA

\ 4
| seTes

0|

A 4

SET THE UPPER LIMIT OF
THE HARMONIC ORDER

A 4

SET THE UPPER
LIMIT OF THE SPEED

A 4

SET THE INITIAL VALUE
OF THE SPEED

SET THE INITIAL VALUE OF THE
HARMONIC ORDER E.Q ONE.

P
<«

CALCULATE THE REAL AND
IMAG. PART OF THE CONSTANT C.

CALCULATE THE INCREMENT
OF BRAKING FORCE DFB

v
SETFB =FB + DFB

A 4

PRINT SPEED HARMONIC
ORDER DFB, FB

INCREASE
HARMONIC
ORDER BY 2

IS THE HARMONIC
ORDER REACHED

Figure (5) flow chart
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