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ABSTRACT 

This paper presents a computer 

analysis of the eddy current brake in 

electric machines. It presents a formula 

for the braking force when the actual 

width of the pole is considered. This 

formula is suitable for both thin and 

thick discs and may be employed for a 

wide range of working speed. For this 

purpose, a mathematical analysis of the 

problem is presented together with the 

formula achieved for the braking force. 

The brake is first represented by a 

mathematical model based on certain 

assumptions and then the braking force 

is obtained as a result of solving a field 

problem. The problem is simplified to a 

one-dimensional problem, where a 

solution for the magnetic vector 

potential is obtained, and by employing 

Lorentz force equation, a formula for 

the braking force of the nth harmonic 

order is obtained. 

KEYWORDS: Electric Machines, 

Eddy Currents, Braking Force, 

Electromagnetic Fields, Poisson’s 

equation. 

NOTATIONS 

Ag, Ap     Magnetic vector potential  

                of the air gap region and  

                 the plate. 

An     vector potential of the nth 

                harmonic 

Fbn Braking force of the nth 

harmonic 

2g    Air gap length 

J(x)    Current density 

J0    Amplitude of current density 

Jn    Current density of the nth   

             harmonic  

n  Harmonic order 

Pn, Qn, Rn, Sn, Constant obtained by 

            using appropriate boundary  

conditions 

t Time 

V Velocity of the plate 

x, y, z  Stationary coordinate system 

 Attenuation and phase shift 

constant 

2 Plate thickness 

 Permeability 

 Permeability of free space 
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 Electrical conductivity 

 Pole pitch 

* Denotes complex conjugate of  

           vector quality 

 

 

INTRODUCTION  

The idea 
[1]

 of eddy current stems 

from the fact that when a metal moves 

through a spatially varying magnetic 

field, or is located in a changing 

magnetic field, induced currents begin to 

circulate through the metal. These 

currents are called eddy currents because 

of their similarity to eddies in a flowing 

stream. In the case of the eddy current 

brake, a rotating disk has a magnetic 

field passing through it perpendicularly, 

but it is only strong in the area where the 

magnetic is .The currents in that area 

experience a side thrust, which opposes 

the rotation of the disk. This interaction 

of  field and current results in the 

"braking" of the disk, and thus the name 

"eddy current brake". The return currents 

close via parts of the disk where the field 

is weak, so there is a drag force only in 

the "generating" region.  

One early study into eddy current 

braking was performed by Davis and 

Reitz         
[2]

(1971) , who examined the 

forces induced on a magnet moving over 

the surface of both a semi-infinite and a 

finite conducting medium. Later, 

Schieber 
[3]

(1974) analytically predicted  

the braking torque on a finite rotating 

conductive sheet and performed 

experiments to identify the accuracy of 

the modeling techniques. Schieber 

continued his research in eddy current 

braking and published a paper 
[4]

(1975) 

that analytically found the optimal size 

of a rectangular electromagnet for eddy 

current braking. Venkatanatnam and 

Ramachandra 
[5]

(1977) obtained the field 

distribution when a thin conducting sheet 

moves with constant velocity between 

two rectangular and infinitely permeable 

pole pieces of an electromagnet. Nagaya 

et al. 
[6]

(1984) investigated the eddy 

current damping force induced on a 

conducting plate of arbitrary finite size 

moving with a velocity parallel to the 

face of a cylindrical magnet. Wiederick 

et al. 
[7]

(1987) proposed a simple theory 

for the magnetic braking force induced 

by eddy current in a thin rotating 

conductive disk passing  through the 

poles of an electromagnet. Cadwell 

[8]
(1996) investigated the braking force 

exerted on an aluminum plate as it 

passes between the poles of a horseshoe 

electromagnet 
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Lee and Park 
[9]

(1999) investigated 

the design of an eddy current brake 

controller. However, their system was 

not intended to maintain a fixed speed, 

but to minimize the stopping time. More 

recently, Lee and Park 
[10]

(2001a) and 

Lee, K. 
[11]

(2002) have developed a 

model for an eddy current braking 

system that allows for an analytical 

solution to the problem. In this paper, to 

investigate the harmonic order effecting 

on the braking force in electrical 

machine, a formula for the braking force 

has to be developed first. Calculations of 

the braking force in eddy current brakes 

has received by employing Lorentz force 

equation, a formula for the braking force 

of the nth harmonic order is obtained. 

Mathematical Model Assumptions 

     A complete 3-dimensional solution 

for the braking force is difficult to 

obtain. Instead, the configuration of a 

quasi one-dimensional model is used as 

shown in Fig.(1). This model is obtained 

under the following assumptions: - 

1. The plate and pole structure are 

considered to be infinitely wide in 

the y-direction, so that all variables 

become independent of y; hence 

0




y
  

      In the following analysis, the 

transverse edge effects are taken into 

account. 

2. All currents are y-directed.     

3. The excitation winding and the salient 

poles are replaced by infinitely thin 

current sheets backed by smooth iron 

boundaries. These linear current sheets 

are chosen in such away that they cover 

only a pole face only and give the same 

field in the air gap of the model having 

smooth structures as the original 

windings produced in the actual 

machine. 

4. The pole material has infinitely larger 

permeability ( ri ) and small 

electrical conductivity 0i . 

5. The plate and pole structures are 

assumed to be very long in 

the x direction. Hence, the longitudinal 

end effects are neglected. 

Formulation of Equation And 

Solution of The Problem 

     In the actual problem, the plate is 

moving while the pole structure is 

stationary. The current distribution for 

an observer on the structure takes a 

repeatable step distribution as shown in 

Figure (2). This distribution when 

expressed by Fourier series gives
 [5]

:                             
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Where jn is current density of nth 

harmonic, which is represented by:- 








 


2
sin

2
sin

4 



nn

n

jo
jn  

n:- harmonic order. 

If the plate is considered stationary and 

the field system moves in the (-ve) 

direction of x, then the current density 

function takes the form:- 

 





1

)( ]Re[),(
n

vtnxjp

n jejtxj                                                                   

----------- (2) 

Where  



p ,    v: the velocity of the 

plate. 

The differential equation for the vector 

potential in the plate is: 

t

Ap

Z

Ap

X

Ap
















2

2

2

2

  (Poisson’s 

formula)                               ----------- (3) 

For the air gap =0 , and Equation  3  

becomes: 

0
2

2

2

2











Z

Ap

X

Ap
            ---------- (4) 

The excitation and boundary conditions 

require a vector potential which depends 

on x &   t  as  
)( vtnxje 

  

Assuming this solution to be on the 

form: 







1

t)z,A(x,
n

nA          ---------- (5) 

Where 
vt)jp(nx

nn (z)eAA      ---- (6) 

Substituting 6 in 3 & 4 gives for the nth 

component of the vector potential. 

0)(
)( 2

2

2

 ZApg
dZ

ZApd
nn

n
 - (7) 

Where:   

2/1)1(
2n

nn
p

v
jpg


  

And    0)(
)( 2

2

2

 ZAgp
dZ

ZApd
nn

n
                                                            

                                         ---------- (8) 

Where pnpn *  

The general solution of Equations 7 & 8 

are: 

zg

n

zg

nn
nn eQepzAp


)( ---- (9) 

zp

n

zp

nn
nn eSeRzAg


)(   ------ (10) 

Where pn, Qn, Rn and Sn are arbitrary 

constants which can be found by 

applying the boundary conditions. 

 

The Boundary Conditions  

    A set of conditions, which are 

important in determining the 

96 



Tikrit Journal of Eng. Sciences/Vol.16/No.1/March 2009, (93-104) 

 

mathematical solution to many physical 

problems, specified for the behavior of 

the solution to a set of differential 

equations   at   the  boundary of its  

domain. 

1. At  z =0, the differential of vector 

potential of the plate for n harmonic with 

respect to.    z = 0 

     i.e        0




z

Apn . 

2. At z=  (plate thickness) 

    The vector potential of the air gap equal   

the vector potential of the plate.         

     i.e        A pn= A gn  

 3.     
Z

Ag

Z

Ap nn










0

11


. 

4. At z = g (air gap length)  

  The differential of vector  potential 

of the gap  for n harmonic with 

respect to z = kn 

    i.e
n

n k
Z

Ag






0

1


. 

From Condition 1 

nn

nnnn

QPei

gQgP





..

0
 

Hence     A Pn(z)=2pn cosh gnz   --- (11) 

From Condition 2 

nnnn p

n

p

n

g

n

g

n eSeReQeP
 

  

 nn p

n

p

nnn eSeRgP


cosh2 (12) 

From Condition 3 

)()( nnnn p

n

p

nn

g

n

g

nn eSeRPeQepg
 

  

nn p

n

p

nnnn eSeRgP
 

sinh2 - (13) 

Where nnn pg /  

From Condition 4 

 
n

ngp

n

gp

n
p

k
eSeR nn 0
    ---------- (14) 

Adding 12 &13 gives 

 np

nnnnn eggpR


 }sinh{cosh                                           

------------ (15) 

Subtracting 13 & 12 gives 

 np

nnnnn eggpS }sinh{cosh  .. (16) 

Now substituting 15 &16 in 14 gives 

nnnn gpgP   )(sinh[cosh  

n

n
nn

p

k
gPg

2
)](coshsinh 0   


nn

n
n

cp

k
p

2

0                     ----------- (17) 

Where cn = cosh gn sinh pn(g-) +  

  n  sinh gn cosh pn(g-) 

Substituting 17 in 15 &16 we get  




np

nnn

nn

n
n egg

Cp

k
R


 }sinh{cosh

2

0                            

                                       -------------- (18)        




np

nnn

nn

n
n egg

Cp

k
S }sinh{cosh

2

0                                  

                                       -------------- (19) 

97 



Tikrit Journal of Eng. Sciences/Vol.16/No.1/March 2009, (93-104) 

 

)()(),,( vtnxjp

nn ezAptzxAp 

)()(
* vtnxjp

nn
n ezApjp

x

Ap






Therefore equation 11 becomes:- 
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                                                ------ (21) 

The braking force of the nth harmonic is 

given by the following Equations: 

 Fbn= dxdz
x

Ap

t

Ap nn )Re(
*

2/

2/ 0








 









                                                          

 

 

i.e                                                                                                                 

 

 

After substituting Equation 23&24 in 22 

and integrating, the total solution of 

Equation 22 can be written as: - 














n

n

n

n

n

n

n
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Fb






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The fundamental component of braking 

force for n=1 is: 














1

1

1

1

2

1

2

01
2

1

2sin2sinh

4 







C

kV
Fb

                                     ---------------- (26) 

The appropriate solution of equation 25 

becomes: 









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DISCUSSION OF RESULTS 

The calculation of the braking force 

and the effect of the harmonic order at 

different speed are shown on Figure (3). 

The baking force Fb against the 

harmonic order n at speed N=100, 500, 

1000, 1500& 2000 r.p.m is shown. It is 

seen that the braking force increases as 

higher harmonics are employed, but it is 

observed that no appreciable increase in 

the braking force is obtained when the 

order of harmonic exceeds nine. 

Therefore it is decided to stop 

calculations up to the ninth harmonic 

order. 

Figure (4) shows the effect of speed 

on the braking force at order of harmonic 

nine. As the speed increases the braking 

force also increases, but not with the 

same magnitude, so the curve has a 

parabolic shape. The braking force will 

increases as the speed increases, because 

)()( vtnxjp

n

n ezApjpv
t

Ap 




------ (22) 

------ (23) 

------ (24) 
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the disc of the motor at high speed will 

cuts more number of magnetic lines so 

the induced emf will be more and the 

current will be more also, therefore the 

braking force will be more 
[12]

. 

CONCLUSIONS 

In this investigation, analysis of the 

problem of eddy current brake is 

presented which is applicable to brake 

either thin or thick discs. 

A new expression of the braking force 

is developed which considers the actual 

width of the pole. This expression is 

applicable to thin and thick discs 

covering wide range of working speed. 

The expression was obtained by solving 

the two-dimensional field problem of 

multi regions of different permeability. 

   A computer program is considered 

with the help of the flow-chart shown in 

Figure (5) to compute the braking force 

and to study the effect of the harmonic 

order at different speeds. It is found that 

the results converge rapidly with the 

harmonic order. No significant change in 

the results was achieved after the ninth 

harmonic. 
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I/P DATA 

SET FB = 0 

SET  THE UPPER 

LIMIT OF THE SPEED 

SET  THE UPPER LIMIT OF 

THE HARMONIC ORDER 

SET  THE INITIAL VALUE 

OF THE SPEED 

SET  THE INITIAL VALUE OF THE 

HARMONIC ORDER E.Q ONE. 

CALCULATE THE REAL AND 

IMAG. PART OF THE CONSTANT C. 

CALCULATE THE INCREMENT 

OF BRAKING FORCE DFB 

SET FB = FB + DFB 

PRINT SPEED HARMONIC 

ORDER DFB, FB 

IS THE HARMONIC 

ORDER REACHED 

INCREASE 

HARMONIC 

ORDER BY 2 

NO 

Yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Figure (5) flow chart  
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 تحميل رتبة التوافقية المؤثرة عمى قوة كبح التيار ألدوامي في المحركات الكهربائية

 

 عامر محمد قدو

 مدرس

الكلية التقنية/ الموصل  

   

 

 خلاصةال
                       

  ثددل  يهدد ا بحث ددى تحددل   بيددل  اددثل بح يددي  لحدد اب ا كددا بح   ادديد بحاه ثيويددو ثييدد   ب  بح ييددا   ابح ددا        
 اددام  نييددثو عندد  بيدد   ب   اب   حبةط .هددظا بحصددي و  ةيةدداعندد  بذ ددظ ثنلادد  بذع ثددي  عدد    صددي و حةدداك بحاددثل

يد ي  لا  ييدض ندد م  د ع ابيددس  دم بحيدد ر بح دا  د ا  ثهددي بح   اديد بحاه ثيويو.احهددظب بح د    دد    ندي    بيددل 
حاددثل لاذ ثن دداظا  يينددا يل  دد  عبددل عدد    ددم  يينددا حب يدديحو  ددس صددي و يدداك بحاددثل كددا مم اب دد  . تظ  دد    ثيددل ب

بحف نييد ث  بح صال عبل ياك بحاثل ان يجو ح ل  يديحو بح جديل  يدى  د   ثيديط بح يديحو بحدل  يديحو ب ي يدو بحثلد   
حةدداك اددثل بح يددي   n ابح صددال عبددل   جددد بحجهدد  بح  نيطييددا ا ددم ثدد  بح صددال عبددل   ثددو بح ابكةيددو ظبد بح   يدد  

  لي حو ياك حا ن س. لح اب ا ثيي   ب 
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