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Abstract

The tendons arrangement effects on the response of reinforced concrete frame
experiencing blast loads is investigated in this paper. The structure is modeled using
nonlinear finite elements employing a bilinear hysteretic model. So that elements are
used so that yielding of the structures could be accurately modeled and captured. The
frame is analyzed using a non-linear, elastic-plastic finite element program written in
code MATLAB. Six tendon architectures were investigated. A single tendon was placed
between different floors and its effects investigated. From the obtained results, the ideal
case which causes a reduction in the maximum displacement and the amount of
permanent deflection without increase in the maximum structural shear forces greatly is
obtained.
Keywords: Tendon arrangement, Reinforced concrete, Blast loading, finite elements.
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Notations A{i}  Incremental acceleration
[C]  Damping matrix A{u}  Incremental velocity

E Modulus of elasticity .

[F]  Flexibility matrix A{u}  Incremental displacement
{F} Incremental applied force vector o Stress

I Moment of Inertia € Strain

[K] Stiffness matrices

[KL] Linear stiffness matrices

[Kg] Geometric stiffness matrices

[M]  Mass matrix

m Mass Introduction
[T]  Transformation matrix
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In the modern world, the risk of
structures experiencing blast loads has
increased with a rise in terrorist activities
around the world, as well as military
actions and the chances of accidental
explosions ™. Numerous blast load
hazards present themselves in the form
of car bombs, accidental blasting of
stored ordnances and numerous other
forms of ground shocks . As such, it
is desirable that modern structures are
able to withstand a Dblast load,
particularly relatively distant blasts
where the specific structure is not the
primary target, but may still suffer
extensive damage from the loading.

Blast loads differ from seismic loads
in that they excite higher frequency
modes, rather than only lower or
fundamental frequency modes . As
such, damage from blast loads can occur
in two stages. First, the initial impact of
the blast produces large shear stresses
within the structure, which may (if near
enough) cause a structure to collapse.
Second, after the initial impact of the
blast there is a free vibration response,
which can produce large non-linear
displacements due to the large initial
blast induced displacement. Structures
can be damaged and/or fail due to
excessive non-linear free vibration
displacement in this latter stage. Thus,
structures that survive the initial blast
loading impact can still fail during the
free vibration response " as both
portions of the response are non-linear.
Reducing both the initial shear stress and
the amount of displacement in the free
vibration stage are thus required to best
reduce the likelihood of failure.

The response to an impulse load,
therefore, has two general phases. The
first phase, the forced vibration phase,
occurs during the very short application
of the impulse. The structure does not
reach its maximum displacement in this

Phase, as there is not enough time. The
second phase, the free vibration phase,
occurs after the impulse has been
applied. Generally, this phase contains
small accelerations and large
displacements.

Structural Model

To investigate the effectiveness of
tendon arrangement on  structures
experiencing blast loads, a basic
structural analysis computer model was
developed as a foundation for these
studies. The model accounts for the
effects of yielding, plasticity, hysteresis,
damping and the excitation of higher
frequency local modes. A non-linear
finite element model of structure was
developed. Due to the nature of blast
loads, the modeling technique differs
slightly from traditional finite element
models of such structures. Blast loads
tend to excite the higher frequency
modes of the structure on which they
act P It is therefore important that the
model is able to capture these higher
frequencies that are excited by the initial
short pulse of the blast load, particularly
where they represent local structural
modes of columns or beams. This initial
pulse also results in initial damage,
facilitating failure in the later free
vibration response 2.

Giberson One-Component Model

The elements used in the model are
based on the Giberson one-component
model, as shown in Figure (1) . This
model has rigid-plastic rotational springs
at each member end. It is assumed that
all inelastic deformation occurs at the
member ends with the central part of the
beam remaining elastic. The incremental
flexure rotations at the member ends are
obtained from Equation (1), using the
Giberson one component model defined
in those element equations.
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Where

0 Hinge is elastic
Kq = 0 Hinge is plastic
El[ N | Hingeis inelastic
I, \1-r,

Where I, is the plastic hinge length and r;
is the ratio of the inelastic to the elastic
stiffness, and all other terms are defined
in Figure (2). From Equation (1), the 2
by 2 flexibility matrix, f, for each
member can be found, the inverse of
which will give the stiffness matrix, K.

[K ]2><2 = [f Ez

The 2 by 2 stiffness matrix becomes
a 3 by 3 stiffness matrix when the axial
stiffness of the member is considered,
denoted by the decoupled AE/L term in
Equation (3).

|ZE o
[K]3><3 —{ I6 [K]ij

(3)

Rigid End Blocks

When members connect into large
structural joints, rigid end block effects
should be considered. The assumption of
rigid end blocks has a significant effect
on the stiffness of a frame, its response

to dynamical excitation and its natural
frequencies of free vibration. For an
elastic member with length L. the
variation of the moment along the rigid
end block is assumed to be linear, as
given in the following relations.

uz; | _ Lo |2 1])s;
us| 6EI|1 2|s¢

=[f_]}s.} e (4)
Where:
hJ:LCF 1 Is the flexibility of
6EI|1 2

an elastic member that may be replaced
by the flexibility of any inelastic model,
such as the Giberson one-component
model? The model and parameter
definitions with end blocks are shown in
Figure (3).

From Figure3, the relationship
between the forces at the member end
and those of the rigid end blocks can be
derived:

x __ L
Y oy e (3)
y L, RTURT ()

y+s,-s; L,+L,

Equations (5 & 6) can be rearranged to
give:

S| | x+s;
S3) -y+s;

1+ L L c
_ L. L. |/S;
— i 1+ ﬁ {S;}
LC LC
—blsc} (7)
Equation (7) can be solved for S€as:
eh=bsy (8)

Now, from the principle of virtual work;
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Substituting Equation (8) into Equation

(9) results in the following expression
for the end rotations:

NERN

Substituting Equations (4) and (8) into
Equation (10) the yields:

{i}:le“Jthz}=“K§.an

Where [f] is the flexibility of the rigid
end-blocks, and thus, the stiffness of the
member with rigid end-blocks can be
determined by inverting the flexibility
matrix [f].

Coordinate Transformations

Once the flexibility matrix is inverted
to find the member stiffness matrix,
[K]axs, the stiffness matrix can be
transformed using the transformation
matrix, [a], into the stiffness matrix
[K]exs in the local coordinate system as
shown in Figure (4). Then, using the
transformation matrix [T] the stiffness
matrix can be transformed from local
coordinates to global coordinates.

_ (u
u!

ul -1 o 0 10 u?
uyt=| 0 oo Lol
) L L uy
370 Lo o 2y
L L

Ug

.......... (12)

Note that the transformation matrix [a] is
a function of the member length only,
shown in Equation (13).

1 0 0 1 0 O
a=|o =X _10 L of a3
L L
o 1 o0 o011
L L

The local coordinates of the member
may differ from those of the global
system. This point is illustrated in Figure
(5) with an angle & between the two
systems.

u) [cosd sind 0 0 0 O0lfu
uy| |-sin@ cos@ 0 0 0 0flu.
uj 0 0 1 o0 0 0flus
ul | o 0 0 cosd singd Oflus
uy 0 0 0 -sin@ cos@ O|us
uj | 0 0 0 O0 0 1]lus

This generic transformation matrix [T] is
a function of the angle & only, as shown
in Equation (15).

[ cos® singd 0 0 0
—sin@ cosd@ 0 0 0

0
0
0 0 1 0 0 0
0
0

[T]= .
0 0 0 cos@ sind
0 0 0 -sin@ cosé
| 0 0 O 0 0 1]
................... (15)

Both transformation matrices, [T] and
[a], are used to convert element matrices
into a full system model coordinate
system for assembly.

Lumped Mass Model

The four conditions that a mass matrix
must satisfy are matrix symmetry,
physical symmetries, conservation and
positivity. Matrix symmetry means (M°)
T = M® for each element. Physical
symmetry means the element symmetries
must be reflected in the assembled global
mass matrix. Conservation means that
the total element mass must be preserved
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in the system model. Higher order
conditions, such as conservation of
angular momentum, are not critical nor
always desirable for this type of
structural analysis, but should be
checked. The final condition of positivity
demands that the mass matrix must be
nonnegative, which  for structures
implies positive definite.

It is assumed that the entire mass of
each floor is concentrated at the beam-
column joints, with the beam-columns
mass being evenly distributed over the
six points along the beam column. The
masses for the translational degrees of
freedom are lumped at the nodes,
defined by:

11
m:—_[mfx)dx
20

The mass is uniform across the beam
length, so Equation (16) is simplified to:

To be numerically stable, the mass
matrix is preferably rank-sufficient and
because of the positivity requirement,
positive definite. As such, the rotational
degrees of freedom are also assigned a
rotational inertia. This form of consistent
diagonal mass matrix for a uniform
member with six degrees of freedom is
defined:

mTL O 0 0 0 0
o ™ 9 o 0o o
2

m]=| © O 3m® 0 0 0
o o o M 0

2 _
o o o o M

2

|0 0 0 0 0 3mms]

Rayleigh Damping Model

Damping plays an obviously
important role in the dynamic analysis of
structures. The most effective method of
calculating the damping present in a
modal analysis form is to treat it as being
partly proportional to the relative
velocities of the differing degrees of

freedom. The equivalent Rayleigh
damping is in the form:
[Cl=a[M]+8K] ... (19)

Where [C] is the assembled damping
matrix of the full physical structural
system, [M] is the assembled mass
matrix of the system, [K] is the
assembled stiffness matrix of the system,
and « and g are predefined constants.

Equations of Motion

The incremental equation of motion
for the assembled non-linear system can
be written:

[M Jiaf+[Clad+ (K, ]+ [Ks auj={aF}
................. (20)

Where [M] and [C] are the mass and
damping matrices respectively, [K.] and
[Ks] are the linear and geometric
stiffness matrices, {F} is the incremental
applied force vector and
A{i}, Alu}and A{ulare the incremental

acceleration, velocity and displacement
respectively "8,

Bilinear Strain Hardening Model

Civil structures undergoing large
deflections behave non-linearly. To
model this behavior a bilinear elas to-
plastic hysteresis model is employed. To
reflect the non-linear behavior of the
response, two linear force-deflection
relationships are used with different
stiffness values, as shown in Figure (6).
This basic behavior will model the

Ec,t]rain-hardening property of the material
7

This model does not take into
account a characteristic feature of
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reinforced concrete. Specifically it does
not account for the degradation of
unloading and reloading stiffness values.
Such degradations are assumed to be
small and are ignored in this case. The
stress-strain  relationship  can  be
expressed as:

o

SZE forGSGy ............ (21)
c

SzEy+_El (G—Gy) f0r6>6y ... (22)

sl

Modeling of Blast Loading

Relatively distant blast loads are
typically characterized by a rapid rise in
pressure followed by decay back to
atmospheric pressure. Some amount of
reverse  pressure  usually  occurs
following the decay period, but this level
is usually small and ignored here ¥, In
this study, the blast load is modeled as a
simple triangular wave that acts over a
small period and displays no reverse
pressure as shown in Figure (7) ™. It is
modeled using equivalent point loads,
based on pressure and applied area, at
each story. During a blast, structures are
subjected either to ground shaking (in
cases of underground explosion) or to
lateral pressure (common for air-blast).
In either case, the ground shaking or the
lateral pressure is of an impulsive nature,
with a high peak and short duration. In
this study, the blast load is modeled as a
point load, P, acting on the top of the left
column of the structure, as shown in
Figure (8). The point load, P, is in
Newtons, which is obtained by
multiplying the blast-induced pressure
by the area it acts upon, which is
assumed to be half the force area.

Numerical Model

To understand how a tendon located
at different points on a structure
responds to a blast load, three-story
structure is modeled in this study. From
the prospective parametric analysis of

these simple multi-story structures, a
general tendon layout and design
approach can be determined to best resist
the effects of blast loads in a general
sense.

The frame used in the analyses in
this study is assumed to be reinforced
concrete. As shown in Figure (9), the
frame is 3.6 meters wide and 10.8 meters
tall. The structure is designed so that it
has a natural frequency of 0.7Hz. The
beam and column frame members have
the same 300mm x 300mm cross-section
with an elastic modulus of 10 GPa. The
structure is modeled using nonlinear
finite elements employing a bilinear
hysteretic model that degrades to 5% of
the pre-yield stiffness during yielding as
shown in Figure (10). The frame is
analyzed using a non-linear, elastic-
plastic finite element program written in
MATLAB.

Six tendon architectures were
investigated as shown in Figure (11). A
single tendon was placed between
different floors and its effects
investigated. The ideal case will be that
which reduces the maximum
displacement, the amount of permanent
deflection and not increase the maximum
structural shear forces greatly. In other
words, a tendon that will reduce
displacement but keep shear at a safe
level for foundation capacity is the
desired solution. The blast wave is
modeled as a simple triangle wave with a
peak of 35kN and a width of 0.05
seconds.

Results

The maximum displacement response
of the structure with and without the
tendon is plotted against the structural
period in Figure (12). As the structural
period increases, the magnitude of the
first displacement peak decreases. Above
a period of 1 or 2 seconds the reduction
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in peak displacement remains effectively
constant for all structural periods.

The permanent deflection, shown in
Figure (13), shows a trend similar to the
peak displacement. For periods above
arranged in the form of six cases as in
Figure (11) and exposed to a 35kN blast
load. The tendon arrangements going
from the ground to the second and third
floors (arrangements 2 and 3) reduce the
size of the first peak displacement, as
shown in Figure (14). The ground to
second floor arrangement is the slightly
more effective of the two architectures
as shown in Figure (15). Arrangements
with the tendon attached between the
story, rather than to the ground, do not
perform well. However, as shown in
Figure (15), these arrangements may
lead to further reduce in the amount of
permanent deflection in some cases.

Figure (16) shows the induced base
shear. The arrangements that do not
involve the ground have the least effect
on the base shear, as expected. The
ground to second floor increases the
base shear by the smallest margin when
compared to the other arrangements
involving the ground.

Conclusions

1. The effectiveness of the tendon is
greatest for structures with lower
periods, where higher modes are
less excited. Thus, for structural
periods greater than 1 or 2 seconds a
tendon may not be warranted.

2. The results indicate that a tendon
spanning from the ground to
approximately two thirds the height
of the structure would perform the
best, reducing the displacement by
the greatest amount with a smaller
cost in increased base shear, as
compared to the other effective
tendon arrangements.

1 second the reduction in the permanent

deflection is minimal with the tendon.
Figures (14-16) show the effect of

using a 30kN tendon (fails at 30kN)
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Figure (8): One-Story Layout
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Figure (10): Bilinear Hysteretic Model
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