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Abstract 

       The tendons arrangement effects on the response of reinforced concrete frame 

experiencing blast loads is investigated in this paper. The structure is modeled using 

nonlinear finite elements employing a bilinear hysteretic model. So that elements are 

used so that yielding of the structures could be accurately modeled and captured. The 

frame is analyzed using a non-linear, elastic-plastic finite element program written in 

code MATLAB. Six tendon architectures were investigated. A single tendon was placed 

between different floors and its effects investigated. From the obtained results, the ideal 

case which causes a reduction in the maximum displacement and the amount of 

permanent deflection without increase in the maximum structural shear forces greatly is 

obtained. 
Keywords: Tendon arrangement, Reinforced concrete, Blast loading, finite elements.  

 

 تأثير ترتيب الأوتار على الهياكل الخرسانية المسلحة تحت تأثير أحمال الانفجار
 

 الخلاصة
 

ثلهي كدددل ثلاريددد مي  ثلايدددم   ثلا ر ددد  عمدددر ثيددد   ى   ثلأو ددد ريهدددهذ  دددحث ثلى دددث ثلدددر هرثيددد   ددد  ير  ر يددد         
ثل م صر  ى ي اهثمىر و م ماح   ثلامش  طوث   يث  م هرثي   يكل اري مي ايمح اكون ان  لا لأ ا ل ثلامف  ر. 

ثيد اهثم ا دل  دحل ثل م صدر ييد عه عمدر ماح د  ار مد   إنثلا ههة ان الال ثي اهثم ماوحج ثل امذ  مد يي ثلادط. 
. MATLABىرمد ا   وى يد اهثمثلمدهن -ثل  ميدل ثللااطدي ثلادرن ى يد اهثمثلا وع لمامش  ىهق . و م   ميل ثلامش  

طوثىدر  ففدي كدل   لد   دم و دو و در وث ده ىدين   ر يد  ثلدو ر عمدر امشد  اكدون ادن  لا د م هرثي  يت  د لات ادن  
ثلطوثىددر لهرثيدد   دد  يرل. واددن اددلال ثلم دد ي  ثل ددي  ددم ثل صددول عميهدد   ددم ثيدد م  ج ثل  لدد  ثلا  ليدد  ل ر يدد  ثلددو ر وثل ددي 

    ال ثلامف  ر.  ى   يرثلامش   ان قوى ثلقص ثل ظار في هولا  زي وثلأوه ثلإزث  تان  ثلأعمر ؤهي ثلر  قميل ثل ه 
 

Notations 

[C]       Damping matrix 

E          Modulus of elasticity 

[F]        Flexibility matrix 

{F}       Incremental applied force vector 

I           Moment of Inertia 

[K]       Stiffness matrices 

[KL]      Linear stiffness matrices 

[KG]     Geometric stiffness matrices 

[M]      Mass matrix 

m         Mass 

[T]       Transformation matrix 

 u      Incremental acceleration 

 u      Incremental velocity 
 u      Incremental displacement 

          Stress 
           Strain 
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      In the modern world, the risk of 

structures experiencing blast loads has 

increased with a rise in terrorist activities 

around the world, as well as military 

actions and the chances of accidental 

explosions
 [1]

. Numerous blast load 

hazards present themselves in the form 

of car bombs, accidental blasting of 

stored ordnances and numerous other 

forms of ground shocks 
[2-4]

. As such, it 

is desirable that modern structures are 

able to withstand a blast load, 

particularly relatively distant blasts 

where the specific structure is not the 

primary target, but may still suffer 

extensive damage from the loading. 
     Blast loads differ from seismic loads 

in that they excite higher frequency 

modes, rather than only lower or 

fundamental frequency modes
 [5]

. As 

such, damage from blast loads can occur 

in two stages. First, the initial impact of 

the blast produces large shear stresses 

within the structure, which may (if near 

enough) cause a structure to collapse. 

Second, after the initial impact of the 

blast there is a free vibration response, 

which can produce large non-linear 

displacements due to the large initial 

blast induced displacement. Structures 

can be damaged and/or fail due to 

excessive non-linear free vibration 

displacement in this latter stage. Thus, 

structures that survive the initial blast 

loading impact can still fail during the 

free vibration response 
[2]

, as both 

portions of the response are non-linear. 

Reducing both the initial shear stress and 

the amount of displacement in the free 

vibration stage are thus required to best 

reduce the likelihood of failure. 
      The response to an impulse load, 

therefore, has two general phases. The 

first phase, the forced vibration phase, 

occurs during the very short application 

of the impulse. The structure does not 

reach its maximum displacement in this  

 

Phase, as there is not enough time. The 

second phase, the free vibration phase, 

occurs after the impulse has been 

applied. Generally, this phase contains 

small accelerations and large 

displacements. 
 

Structural Model 

      To investigate the effectiveness of 

tendon arrangement on structures 

experiencing blast loads, a basic 

structural analysis computer model was 

developed as a foundation for these 

studies. The model accounts for the 

effects of yielding, plasticity, hysteresis, 

damping and the excitation of higher 

frequency local modes. A non-linear 

finite element model of structure was 

developed. Due to the nature of blast 

loads, the modeling technique differs 

slightly from traditional finite element 

models of such structures. Blast loads 

tend to excite the higher frequency 

modes of the structure on which they     

act 
[5]

. It is therefore important that the 

model is able to capture these higher 

frequencies that are excited by the initial 

short pulse of the blast load, particularly 

where they represent local structural 

modes of columns or beams. This initial 

pulse also results in initial damage, 

facilitating failure in the later free 

vibration response 
[2]

. 

 

Giberson One-Component Model 

      The elements used in the model are 

based on the Giberson one-component 

model, as shown in Figure (1)
 [6]

. This 

model has rigid-plastic rotational springs 

at each member end. It is assumed that 

all inelastic deformation occurs at the 

member ends with the central part of the 

beam remaining elastic. The incremental 

flexure rotations at the member ends are 

obtained from Equation (1), using the 

Giberson one component model defined 

in those element equations. 
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Where lp is the plastic hinge length and ri 

is the ratio of the inelastic to the elastic 

stiffness, and all other terms are defined 

in Figure (2). From Equation (1), the 2 

by 2 flexibility matrix, f, for each 

member can be found, the inverse of 

which will give the stiffness matrix, K. 
 

    1

2222



  fK      ………………… (2)                                                                                    
 

      The 2 by 2 stiffness matrix becomes 

a 3 by 3 stiffness matrix when the axial 

stiffness of the member is considered, 

denoted by the decoupled AE/L term in 

Equation (3). 
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Rigid End Blocks 

    When members connect into large 

structural joints, rigid end block effects 

should be considered. The assumption of 

rigid end blocks has a significant effect 

on the stiffness of a frame, its response 

to dynamical excitation and its natural 

frequencies of free vibration. For an 

elastic member with length Lc the 

variation of the moment along the rigid 

end block is assumed to be linear, as 

given in the following relations. 
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  cc Sf      ……………...... (4) 

Where: 

  









21

12

6EI

L
f c

c Is the flexibility of 

an elastic member that may be replaced 

by the flexibility of any inelastic model, 

such as the Giberson one-component 

model? The model and parameter 

definitions with end blocks are shown in 

Figure (3). 

      From Figure3, the relationship 

between the forces at the member end 

and those of the rigid end blocks can be 

derived: 

c

cc LL
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       ……..…... (5)                                                                           
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Equations (5 & 6) can be rearranged to 

give: 
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Equation (7) can be solved for cS as: 
 

    sbsc 1              ………………. (8) 
                                                                                  

Now, from the principle of virtual work; 
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Substituting Equation (8) into Equation 

(9) results in the following expression 

for the end rotations: 
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Substituting Equations (4) and (8) into 

Equation (10) the yields: 
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Where [f] is the flexibility of the rigid 

end-blocks, and thus, the stiffness of the 

member with rigid end-blocks can be 

determined by inverting the flexibility 

matrix [f]. 
 

Coordinate Transformations 

    Once the flexibility matrix is inverted 

to find the member stiffness matrix, 

[K]3x3, the stiffness matrix can be 

transformed using the transformation 

matrix, [a], into the stiffness matrix 

[K]6x6 in the local coordinate system as 

shown in Figure (4). Then, using the 

transformation matrix [T] the stiffness 

matrix can be transformed from local 

coordinates to global coordinates. 
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Note that the transformation matrix [a] is 

a function of the member length only, 

shown in Equation (13). 
































1
1

00
1

0

0
1

01
1

0

001001

LL

LL
a  …. (13)                                             

     The local coordinates of the member 

may differ from those of the global 

system. This point is illustrated in Figure 

(5) with an angle   between the two 

systems.  
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This generic transformation matrix [T] is 

a function of the angle   only, as shown 

in Equation (15). 
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 Both transformation matrices, [T] and 

[a], are used to convert element matrices 

into a full system model coordinate 

system for assembly. 
 

Lumped Mass Model 

    The four conditions that a mass matrix 

must satisfy are matrix symmetry, 

physical symmetries, conservation and 

positivity. Matrix symmetry means (M
e
)
 

T
 = M

e
 for each element. Physical 

symmetry means the element symmetries 

must be reflected in the assembled global 

mass matrix. Conservation means that 

the total element mass must be preserved 
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in the system model. Higher order 

conditions, such as conservation of 

angular momentum, are not critical nor 

always desirable for this type of 

structural analysis, but should be 

checked. The final condition of positivity 

demands that the mass matrix must be 

nonnegative, which for structures 

implies positive definite. 

     It is assumed that the entire mass of 

each floor is concentrated at the beam-

column joints, with the beam-columns 

mass being evenly distributed over the 

six points along the beam column. The 

masses for the translational degrees of 

freedom are lumped at the nodes, 

defined by: 
 



1

0
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2

1
dxmm t

x           …………….. (16)                                               

     The mass is uniform across the beam 

length, so Equation (16) is simplified to: 
 

2

Lm
m                     …………….… (17)                                       

    To be numerically stable, the mass 

matrix is preferably rank-sufficient and 

because of the positivity requirement, 

positive definite. As such, the rotational 

degrees of freedom are also assigned a 

rotational inertia. This form of consistent 

diagonal mass matrix for a uniform 

member with six degrees of freedom is 

defined: 
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Rayleigh Damping Model 
 

       Damping plays an obviously 

important role in the dynamic analysis of 

structures. The most effective method of 

calculating the damping present in a 

modal analysis form is to treat it as being 

partly proportional to the relative 

velocities of the differing degrees of 

freedom. The equivalent Rayleigh 

damping is in the form: 
 

     KMC            …………. (19)                                       
 

Where [C] is the assembled damping 

matrix of the full physical structural 

system, [M] is the assembled mass 

matrix of the system, [K] is the 

assembled stiffness matrix of the system, 

and α and β are predefined constants.  
 

Equations of Motion 

      The incremental equation of motion 

for the assembled non-linear system can 

be written: 
 

             FuKKuCuM GL                                       

…………….. (20) 

     Where [M] and [C] are the mass and 

damping matrices respectively, [KL] and 

[KG] are the linear and geometric 

stiffness matrices, {F} is the incremental 

applied force vector and 

 u ,  u and  u are the incremental 

acceleration, velocity and displacement 

respectively 
[7, 8]

. 
 

Bilinear Strain Hardening Model 

      Civil structures undergoing large 

deflections behave non-linearly. To 

model this behavior a bilinear elas to-

plastic hysteresis model is employed. To 

reflect the non-linear behavior of the 

response, two linear force-deflection 

relationships are used with different 

stiffness values, as shown in Figure (6). 

This basic behavior will model the 

strain-hardening property of the material
 

[7]
. 

      This model does not take into 

account a characteristic feature of 
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reinforced concrete. Specifically it does 

not account for the degradation of 

unloading and reloading stiffness values. 

Such degradations are assumed to be 

small and are ignored in this case. The 

stress-strain relationship can be 

expressed as: 

yσσfor
E

σ
ε           ………… (21)                                  

yσσfor)yσ(σ

s1
E

1

E

yσ
ε   … (22) 

 

Modeling of Blast Loading 

      Relatively distant blast loads are 

typically characterized by a rapid rise in 

pressure followed by decay back to 

atmospheric pressure. Some amount of 

reverse pressure usually occurs 

following the decay period, but this level 

is usually small and ignored here 
[4]

. In 

this study, the blast load is modeled as a 

simple triangular wave that acts over a 

small period and displays no reverse 

pressure as shown in Figure (7) 
[4]

. It is 

modeled using equivalent point loads, 

based on pressure and applied area, at 

each story. During a blast, structures are 

subjected either to ground shaking (in 

cases of underground explosion) or to 

lateral pressure (common for air-blast). 

In either case, the ground shaking or the 

lateral pressure is of an impulsive nature, 

with a high peak and short duration. In 

this study, the blast load is modeled as a 

point load, P, acting on the top of the left 

column of the structure, as shown in 

Figure (8). The point load, P, is in 

Newtons, which is obtained by 

multiplying the blast-induced pressure 

by the area it acts upon, which is 

assumed to be half the force area. 
 

Numerical Model 

      To understand how a tendon located 

at different points on a structure 

responds to a blast load, three-story 

structure is modeled in this study. From 

the prospective parametric analysis of 

these simple multi-story structures, a 

general tendon layout and design 

approach can be determined to best resist 

the effects of blast loads in a general 

sense. 

      The frame used in the analyses in 

this study is assumed to be reinforced 

concrete. As shown in Figure (9), the 

frame is 3.6 meters wide and 10.8 meters 

tall. The structure is designed so that it 

has a natural frequency of 0.7Hz. The 

beam and column frame members have 

the same 300mm x 300mm cross-section 

with an elastic modulus of 10 GPa. The 

structure is modeled using nonlinear 

finite elements employing a bilinear 

hysteretic model that degrades to 5% of 

the pre-yield stiffness during yielding as 

shown in Figure (10). The frame is 

analyzed using a non-linear, elastic-

plastic finite element program written in 

MATLAB.  

       Six tendon architectures were 

investigated as shown in Figure (11). A 

single tendon was placed between 

different floors and its effects 

investigated. The ideal case will be that 

which reduces the maximum 

displacement, the amount of permanent 

deflection and not increase the maximum 

structural shear forces greatly. In other 

words, a tendon that will reduce 

displacement but keep shear at a safe 

level for foundation capacity is the 

desired solution. The blast wave is 

modeled as a simple triangle wave with a 

peak of 35kN and a width of 0.05 

seconds. 
 

Results 

    The maximum displacement response 

of the structure with and without the 

tendon is plotted against the structural 

period in Figure (12). As the structural 

period increases, the magnitude of the 

first displacement peak decreases. Above 

a period of 1 or 2 seconds the reduction 
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in peak displacement remains effectively 

constant for all structural periods.  

    The permanent deflection, shown in 

Figure (13), shows a trend similar to the 

peak displacement. For periods above    

1 second the reduction in the permanent 

deflection is minimal with the tendon. 

     Figures (14-16) show the effect of 

using a 30kN tendon (fails at 30kN) 

arranged in the form of six cases as in 

Figure (11) and exposed to a 35kN blast 

load. The tendon arrangements going 

from the ground to the second and third 

floors (arrangements 2 and 3) reduce the 

size of the first peak displacement, as 

shown in Figure (14). The ground to 

second floor arrangement is the slightly 

more effective of the two architectures 

as shown in Figure (15). Arrangements 

with the tendon attached between the 

story, rather than to the ground, do not 

perform well. However, as shown in 

Figure (15), these arrangements may 

lead to further reduce in the amount of 

permanent deflection in some cases. 

        Figure (16) shows the induced base 

shear. The arrangements that do not 

involve the ground have the least effect 

on the base shear, as expected. The 

ground to second floor increases the 

base shear by the smallest margin when 

compared to the other arrangements 

involving the ground.  
 

Conclusions 
1. The effectiveness of the tendon is 

greatest for structures with lower 

periods, where higher modes are 

less excited. Thus, for structural 

periods greater than 1 or 2 seconds a 

tendon may not be warranted. 

2. The results indicate that a tendon 

spanning from the ground to 

approximately two thirds the height 

of the structure would perform the 

best, reducing the displacement by 

the greatest amount with a smaller 

cost in increased base shear, as 

compared to the other effective 

tendon arrangements. 
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Figure (1): Giberson one-component Model 

 

 

Figure (2): Moment-Rotation Relations at the 

Member End 

 

 

Figure (3): Model for Member with Rigid  

End-block 
 

 

Figure (4): the 3 Relative Displacements 

(Upper) and the 6 Nodal Displacements 

(Lower) in the Local Coordinate System 
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Figure (5): Local and Global Coordinate 

Systems 

 

 

Figure (6): Bilinear Hysteresis Model 

 

Real Pressure History        Simplified Pressure History 

Figure (7): Modelled Blast Load 

 

 

Figure (8): One-Story Layout 

 

 

Figure (9): General Model Configuration 

 

 
Figure (10): Bilinear Hysteretic Model 
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Figure (11): Tendon architectures 
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Figure (12): The Effectiveness of Using a 

Tendon on Peak Displacement 
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Figure (13): The Effectiveness of Using a 

Tendon on Permanent Deflection 
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 Figure (14): Structural Responses (Peak 

Displacement) 
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Figure (15): Structural Responses (Permanent 

Deflection) 
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Figure (16): Structural Responses 

(Normalized Base Shear) 

 

 

 

 

 

 

 


