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Abstract 

The effects of Reynolds number and the inlet height ratio on separated flow over 

backward facing step are investigated. The flow field is studied numerically with 

different inlet height ratio. The laminar flow field is analyzed numerically by solving 

the steady, two-dimensional incompressible Navier-Stokes equations. A collocated 

(non-staggered) grid is used in the momentum equations, which discretized by finite 

volume method, SIMPLE algorithm is used to adjust the velocity field to satisfy the 

conservation of mass. The range of Reynolds number is (Re = 100 - 800). The results 

show that at low height ratio (h/H = 0.25) and high Reynolds number the flow separated 

along the top wall of the channel. Good agreement with the experimental data is 

obtained. 
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 الموقعدراسة عددية للجريان المنفصل في درجة خلفية باستخدام ترتيب الشبكة المتحدة 
 

 الخلاصة

حقتل الجريتان  تمت  دراستة .المنفصل في درجة خلفية تأثير رقم رينولد و نسبة ارتفاع الدخول على الجريانتم دراسة 
تحليليتتة عتتدديا بحتتل منتتاد   نتتافير ستتتو  للجريتتان  عتتدديا لنستتت ارتفتتاع دختتول مختلفتتة. حقتتل الجريتتان ال بتتاقي تتتم

المستتتقر والثنتتالي البنتتد. تتتم استتتحدام  تتبوة متحتتدع الموقتتا لتق يتتا منتتاد   التتجخم باستتتخدام  ريقتتة الحجتتم المحتتدد. 
.  (800-100)استتتخدم  لتصتتحيل حقتتل الستترع لتحقيتتل حفتتى الوتلتتة. متتد  رقتتم رينولتتد  تتو  (SIMPLE)خواجميتتة 

ورقتتم رينولتتد عتتالي فتتأن الجريتتان ينفصتتل علتتى  (h/H=0.25)عنتتد نستتبة ارتفتتاع عنتتد التتدخول قليلتتة  بينتت  النتتتاله انتت 
 الس ل النلوي للقناع. توافل جيد بين نتاله البحث والنتاله النملية تم الحصول علية. 

 درجة خلفية، فصل، حجم محدود، جسيما  مجمنة الكلمات الدالة:
 

 

 

Nomenclatures 

F   mass flux  

H  Total channel height  

h   Inlet  channel height  

L   Length of the channel  

P    Dimensionless Pressure  

Re  Reynolds number  

U   Dimensionless axial velocity  

V   Dimensionless vertical velocity  

Xr   Dimensionless Reattachment 

length  

X    Dimensionless axial coordinate  

Y    Dimensionless vertical coordinate 

Subscripts  
e East face of the control volume 

n North face of the control volume 

s South face of the control volume 

w West face of the control volume 
 

Superscripts 

* Old value 

'   Corrected Value 
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Introduction 

The separated flow generated as fluid 

passes over a backward-facing step is 

of interest for a variety of reasons. 

First, separated flows produced by an 

abrupt change in geometry are of great 

importance in many engineering 

applications. Also, the backward-

facing step is an extreme example of 

separated flows that occur in 

aerodynamic devices such as high-lift 

airfoils at large angles of attack. In 

these flows separation may be created 

by a strong adverse pressure gradient 

rather than a geometric perturbation, 

but the flow topology is similar. 

Secondly, from a fundamental 

perspective, there is a strong interest in 

understanding instability and transition 

to turbulence in plane channels and 

pipes.  
The flow over a backward facing step 

(BFS) was studied extensively to 

understand the physics of such separated 

flows. The BFS has the most features of 

separated flows, such as separation, 

reattachment, recirculation, and 

development of shear layers. Armaly et 

al. [1] studied laminar, transition, and 

turbulent isothermal flow over a BFS 

experimentally. Also, numerical studies 

in the laminar regime for isothermal 

flow were conducted by Armaly et al. [1] 

and by Durst and Periera [2]. Additional 

numerical work for a two-dimensional 

isothermal flow over a BFS was 

conducted by Gartling [3], Kim and Moin 
[4], and Sohn [5].  

All numerical methods were presented 

in the previous studies used a 

staggered grid.   

In the present study the non staggered 

gird Peric et al. 
[6]

 is used to predict the 

reattachment length of the separated 

flow and the effect on the height ratio. 

 

Governing Equations 
 

The basic flow configuration, under 

study, is shown in figure 1. The flow is 

considered to be two-dimensional, 

laminar, steady, constant fluid 

properties, and incompressible. The 

dimensionless continuity, and 

momentum, equations in Cartesian 

coordinates are given as  
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Where 
 

X=x/H, Y=y/H, U=u/Ubulk, V = v/ Ubulk 

, P = p/ U
2

bulk, Re = Ubulk H/. 

 

Configuration and Boundary 

Conditions 

The basic flow configuration, under 

study, is shown in figure 1. The 

boundary conditions used in the 

numerical solution are also illustrated 

in figure 1. A parabolic inlet  velocity 

profile is assumed which is given by: 

 
Uin=u/Ubulk=6Yb(1-Yb)                            (4) 

 

Where Yb=(y-(H-h))/h 

 
Discretization of the Flow Equations 

 

The governing equations are 

discretized by using the finite volume 

method based on non-staggered 

(collocated) grid. Since all variables 

are stored in the center of the control 

volume, the interpolation method is 

used to avoid the decoupling between 

velocity and pressure; this 

interpolation method is presented in 

this paper. 

The continuity and the momentum 

equations are discretized over the 

collocated gird shown in figure 2. 

By integrating the x-momentum 

equation (3) over the control volume 

shown in figure (2), we have 
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For numerical stability, the convection 

term (left side of equation (5)) are 

approximated by the upwind 

differencing scheme (UDS), Patankar 
[7]

 as 
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Where wwee YUFYUF )(,)(  , 

are the mass flux at the control volume 

faces e and w respectively. 
 

By the same scheme the second 

convective term can be approximated 

as 
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 Where ssnn XVFXVF )(,)(  , 

are the mass flux at the control volume 

faces n and s respectively. 

The diffusion terms can be 

approximated by the center difference 

scheme (CDS) as 
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Substituting of equs. (6), (7), (8), and 

(9) into equ.(5) gives:- 
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Where the index (nb) runs over all 

neighbouring points E, W, N, and S, 

and  
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Where (U) is the under-relaxation 

parameter, necessary for stability 

Patankar 
[7]

. The quantity UP
0
 in 

equation (10) indicates the value of UP 

from the previous iteration. For the 

collocated arrangement, the coefficient 

in equs. (11a-e) are same for V-

equation. 
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Pressure-Velocity Coupling 

 

The U- and V- momentum equations 

are solved using guessed values for the 

pressure field and mass fluxes. The 

velocity components U
*
 and V

*
, 

calculated with these guessed values 

will not satisfy the continuity equation, 

so that the velocity components must 

be corrected as  
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WhereU  , and V  are corrected 

velocities and can be calculated as 

follows:- 

Rewrite the U-equation (equ. 10) for 

node (P) and (E) (see figure 2) as: 

 

 

   

   
)14(

1

)13(

1

0

0

E

P

wePP

nb

Unbnb

E

P

P

wePP

nb

Unbnb

P

a

YPPUaUa

U

a

YPPUaUa

U

















 



















 



















 

To find *
eu  at east face of the control 

volume (figure 2), we use linear 

interpolation except the pressure term 

which is calculated as in the staggered 

approach Rhie and Chow [8]. 
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By the same method we can find the 

velocities at (w, n, and s) faces as 
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To enforce mass conservation, velocity 

and pressure correction are introduced 

by Rhie and Chow 
[8]
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The discretization of continuity 

equation is  
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To correct the velocities at the faces of 

the control volume: 
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Substituting equs.(25) into equ.(24) 

yields  
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Where SP is the mass source and is 

given by  
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Substituting equs. (20, 21, 22, and 23) 

into equ. (26) gives:- 

 

 

 

 

 

)29(

)29(
1

)29(
1

)29(
1

)29(
1

)28(

2

2

2

2

......

eaaaaa

dX
a

a

cX
a

a

bY
a

a

aY
a

a

Where

S

PaPaPaPaPa

SSNNWWEEPP

s

sP

SS

n

nP

NN

w

wP

WW

e

eP

EE

P

SSSNNNWWWEEEPPP





















































 

Solution Procedure 

For the steady and non-staggered 

(collocated), the overall SIMPLE 

solution procedure takes the following 

steps 

(1) Assume the initial pressure field 

( *P = 0). 

(2) Calculate the coefficient of the 

momentum equations form 

equations (11). 

(3) Solve the (  VU , ) momentum 

equation by line-by-line method 

of equation (10) using the guessed 

pressure field ( *P ). 

(4) Compute the face mass flow rates 

(Fe
*
, Fw

*
, Fn

*,
 and Fs

*
) by using 

interpolated face velocities from 

equations (16, 17, 18, and 19). 

(5)  Calculate the source term of the 

pressure correction equation from 

equation (27). 

(6) Calculate the coefficients of the 

pressure correction equation from 

equations (29). 

(7) Solve the pressure correction 

equation (28) by line-by-line 

method to obtain the corrected 

pressure field ( P ). 

(8) Calculate the correction of the 

velocities from equations (20, 21, 

22, ad 23). 

(9) Calculate the correction of face 

mass flow rates (Fe
'
, Fw

'
, Fn

'
, and 

Fs
'
) based on the corrected 

velocities calculated in step (8). 

(10) Correct the velocities by using 

equations (12); and face mass 

flow rates by    

Fe=Fe
*
+ Fe

'
                                             (30a) 

Fw=Fw
*
+ Fw

'
                            (30b) 
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Fn=Fn
*
+Fn

'
                              (30c) 

Fs=Fs
*
+Fs

'
                               (30d) 

Correct the control volumes pressure 

by underrelaxed the pressure 

correction as  

( PPP p    )                ………..   (31) 

Return to step 1 and repeat step 1 to 11 

until the convergence is attained. 

For each variable, the sum of the 

absolute value of the residuals over all 

the control volume is calculated, and 

normalized by an appropriate quantity 

Fn, typically the inlet mass or 

momentum flux, this normalized sum 

of the absolute residuals should be 

satisfies  

 

)32(


n

k

k

F

R

 

Values of  used in calculations were 

of order 10
-3

. 

 

Grid Independence 

The table below shows the results of 

the reattachment length (Xr) obtained 

for the grid independence study for the 

case Re = 400, and h/H = 0.5. A grid 

size of 61X21 (61 in X direction and 

21 in Y direction) gives a grid 

independence solution. 
 

Grid 

Size(MXN) 

Reattachment 

Length 

31X21 3.98 

41X21 4.05 

51X21 4.22 

61X21 4.3 

61X31 4.3 
 

 

Validation 

The numerical solution is validated by 

comparing results of the reattachment 

length (Xr) with the experiment of 

Armaly et al. [1] and with the 

numerical results of staggered grid of 

Eiyad Abu-Nada 
[9]

 for different 

Reynolds number (Re) for the case 

(h/H = 0.5). Figure 3 shows good 

agreement between the present results 

and the experiment of Armaly et al. [1].  
 

Results 

Three inlet height ratio (h/H = 0.25, 

0.5, 0.75) are considered. The channel 

length (L) is set to 10 H. 

In figure 4 the contours of the 

predicted streamlines are shown for 

Reynolds number (100-800) and for 

(h/H = 0.25). Two recirculation flow 

zones are encountered for Re > 400 the 

primary recirculation zone occurs 

directly downstream the step at the 

bottom wall of the channel, whereas 

the other secondary recirculation zone 

exists along the top wall. However, for 

lower Reynolds numbers, such as Re  

400, only the bottom recirculation zone 

appears. In this geometry the flow is 

descend from small area to sudden 

enlargement so that the velocity 

decreased and adverse pressure 

gradient created, this adverse pressure 

causes the separation along the top 

wall as shown in figure (4c-e).     

In figure 5 the contours of the 

predicted streamlines are shown for 

Reynolds number (100-800) and for 

(h/H = 0.5). As Reynolds number 

decreases the secondary recirculation 

zone that exists along the top wall 

begins to disappear. However, for 

lower Reynolds numbers, such as Re = 

400, only the bottom recirculation zone 

appears. 

In figure 6 the contours of the 

predicted streamlines are shown for 

Reynolds number (100-800) and for 

(h/H = 0.75). In this configuration the 

secondary recirculation zone exists 

along the top wall is totally disappears, 

and the flow just separated 

downstream the step at the bottom wall 

of the channel. 

 

6 



Tikrit Journal of Engineering Sciences/Vol.18/No.4/December 2011, (1-9) 

Conclusions 

The finite volume method with 

collocated grid is used to analyze the 

flow field over backward facing step 

for two dimensional steady flows. The 

results show that at low height ratio 

(h/H = 0.25) and high Reynolds 

number, in addition to the separation 

that occur down the step the flow also 

separated along the top wall of the 

channel. 
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Figure (1) Geometry and Boundary 

Conditions 

 

 

 

 

 

 

 

 

 

 
Figure (2) Control Volume 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (3) Comparison of the reattachment 

length with the Reynolds number for 

present and previous works for the case 

h/H=0.5. 

 

 

 

 

 

 

 

 

 

 

 
(a) Re = 100 
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Figure (4) The effect of Reynolds number 

on the streamlines for flow configurations 

(h/H = 0.25). 
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(a) Re = 100 
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(e) Re = 800 

 

 
Figure (5) The effect of Reynolds number 

on the streamlines for flow configurations 

(h/H = 0.5). 
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(e) Re = 800 

 

 
 

Figure (6) The effect of Reynolds number 

on the streamlines for flow configurations 

(h/H = 0.75). 
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