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Abstract

The effects of Reynolds number and the inlet height ratio on separated flow over
backward facing step are investigated. The flow field is studied numerically with
different inlet height ratio. The laminar flow field is analyzed numerically by solving
the steady, two-dimensional incompressible Navier-Stokes equations. A collocated
(non-staggered) grid is used in the momentum equations, which discretized by finite
volume method, SIMPLE algorithm is used to adjust the velocity field to satisfy the
conservation of mass. The range of Reynolds number is (Re = 100 - 800). The results
show that at low height ratio (h/H = 0.25) and high Reynolds number the flow separated
along the top wall of the channel. Good agreement with the experimental data is
obtained.
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Nomenclatures Y Dimensionless vertical coordinate
F mass flux

H Total channel height

h Inlet channel height

L Length of the channel

P Dimensionless Pressure

Re Reynolds number

U Dimensionless axial velocity

V Dimensionless vertical velocity
X; Dimensionless Reattachment
length

X Dimensionless axial coordinate

Subscripts

e East face of the control volume
n North face of the control volume
s South face of the control volume
w West face of the control volume

Superscripts
* Old value
' Corrected Value
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Introduction

The separated flow generated as fluid
passes over a backward-facing step is
of interest for a variety of reasons.
First, separated flows produced by an
abrupt change in geometry are of great
importance in  many engineering
applications. Also, the backward-
facing step is an extreme example of
separated flows that occur in
aerodynamic devices such as high-lift
airfoils at large angles of attack. In
these flows separation may be created
by a strong adverse pressure gradient
rather than a geometric perturbation,
but the flow topology is similar.
Secondly, from a fundamental
perspective, there is a strong interest in
understanding instability and transition
to turbulence in plane channels and
pipes.

The flow over a backward facing step
(BFS) was studied extensively to
understand the physics of such separated
flows. The BFS has the most features of
separated flows, such as separation,
reattachment, recirculation, and
development of shear layers. Armaly et
al. ™ studied laminar, transition, and
turbulent isothermal flow over a BFS
experimentally. Also, numerical studies
in the laminar regime for isothermal
flow were conducted by Armaly et al. !
and by Durst and Periera 2. Additional
numerical work for a two-dimensional
isothermal flow over a BFS was
conducted by Gartling !, Kim and Moin
(4 and Sohn F!.

All numerical methods were presented
in the previous studies wused a
staggered grid.

In the present study the non staggered
gird Peric et al. ® is used to predict the
reattachment length of the separated
flow and the effect on the height ratio.

Governing Equations

The basic flow configuration, under
study, is shown in figure 1. The flow is
considered to be two-dimensional,

laminar,  steady, constant  fluid
properties, and incompressible. The
dimensionless continuity, and
momentum, equations in Cartesian
coordinates are given as
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Where

X=x/H, Y=y/H, U=u/Upyk, V = v/ Upyi
,P= p/p Uzbuu(, Re = Upyik H/v.

Configuration and Boundary
Conditions

The basic flow configuration, under
study, is shown in figure 1. The
boundary conditions used in the
numerical solution are also illustrated
in figure 1. A parabolic inlet velocity
profile is assumed which is given by:

Uin=u/Upux=6Y(1-Yp) 4
Where Yp=(y-(H-h))/h
Discretization of the Flow Equations

The  governing  equations  are
discretized by using the finite volume
method based on non-staggered
(collocated) grid. Since all variables
are stored in the center of the control
volume, the interpolation method is
used to avoid the decoupling between
velocity and pressure; this
interpolation method is presented in
this paper.

The continuity and the momentum
equations are discretized over the
collocated gird shown in figure 2.

By integrating the Xx-momentum
equation (3) over the control volume
shown in figure (2), we have
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For numerical stability, the convection Re oY s
term (left side of equation (5)) are
approximated by the  upwind DUy ~Up) = D,(Up -Us) ©)
g%fferencing scheme (UDS), Patankar

as

Where Dn:( ax j,DS:( ax j

[UUAY, =U.F. U F, = ReAY ), ReAY ),
[Up max(F,,0) —U. max(-F,,0)]
-[U,, max(F,,,0) ~U, max(-F,,0)] (6) Substituting of equs. (6), (7), (8), and

(9) into equ.(5) gives:-
Where F, = (UAY),,F, = (UAY),,

_ _ 0
are the mass flux at the control volume apUp = %anbunb + (1 Ay hPU P
faces e and w respectively.

_(Pe - Pw )AY| (10)
By the same scheme the second P
convective term can be approximated )
as Where the index (nb) runs over all
neighbouring points E, W, N, and S,
[UVAY];]:UnFn_Ust: and
[UP maX( I:n!o)_uN max(_Fn’O)]
—[U max(F,,0)—U, max(—F,,0)] @) a. = D, + max(- F,,0) (11a)
Where F, = (VAX),, F, = (VAX),, a, = D, +max(F,,0) (11b)
are the mass flux at the control volume
faces n and s respectively. a, =D, + max(- F,,0) (11c)
The diffusion terms can be " "
approximated by the center difference a, =D, + max(Fs,O) (11d)
scheme (CDS) as
i[a—UAY]SV _ a, = a,/a, (11e)
Re "oX nb
D,(U, -U,)-D, U, -U,) (8) Where (ay) is the under-relaxation

parameter, necessary for stability
Patankar . The quantity Ug° in
equation (10) indicates the value of Up
from the previous iteration. For the
collocated arrangement, the coefficient
in equs. (1la-e) are same for V-
equation.
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Pressure-Velocity Coupling

The U- and V- momentum equations
are solved using guessed values for the
pressure field and mass fluxes. The
velocity components U” and V,
calculated with these guessed values
will not satisfy the continuity equation,
so that the velocity components must
be corrected as

U=U'+U" (12a)
V=V'+V" (12b)
WhereU’, and V'are corrected

velocities and can be calculated as
follows:-

Rewrite the U-equation (equ. 10) for
node (P) and (E) (see figure 2) as:

Zanbugb+(l_au)aPU8_(Pe*_Pv:)AY
up =| (13)
ap
P
> i + -y U8 (B — Ry Y
Ug =| b (14)
ap

E

To find u, at east face of the control
volume (figure 2), we use linear
interpolation except the pressure term
which is calculated as in the staggered
approach Rhie and Chow [8].

LUl =0 - [i] (Aav), (P -P;)  @5)

ap
Where

Zanbu o T (1_ ay )aPU S
nb

a, =
e aP

(16)

e

By the same method we can find the
velocities at (w, n, and s) faces as

J (av),(PI-R;) @7)

Q=T H (), (s -P) a8

ap

_ (i] (ax),(Pr=P7)  @9)

To enforce mass conservation, velocity
and pressure correction are introduced
by Rhie and Chow @

u, = —(aij w).r-R) @)

c
s ~
I
|
TN

—j (AaY), (P —Ry) (21)

v, = —(iJ (ax),(Py Py ) (22)

ap

v, = —(ij (ax),(P; -P2 ) (23)

aP
The discretization  of
equation is
(UAY), —(UAY),, +(VAX ), —(VAX ), =0 (24)

To correct the velocities at the faces of
the control volume:

continuity

U, =u, +u’ (25a)
u, =u, +u’ (25b)
vV, =V, +V, (25¢)
V, =V, + V. (25d)

Substituting equs.(25) into equ.(24)
yields
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(WAY), = (U'AY), +(v'AX),

~(V'AX), =S, (26)

Where Sp is the mass source and is
given by

Sp = (U"AY), —(u"AY), + (v AX),
—(v'ax), (27)
Substituting equs. (20, 21, 22, and 23)
into equ. (26) gives:-

1 ! ! ! [
app P = age P + 3y Ry Py tasshs +

S (28)
Where

a = (aiJ (ay|,f (29a)
B = (aiJ (av] f (29b)
By = (aiJ (ax| f (29¢)
ag = (ai] (ax|.f (29d)
App = g T Ay +8yy T 855 (29)

Solution Procedure

For the steady and non-staggered
(collocated), the overall SIMPLE
solution procedure takes the following
steps

(1) Assume the initial pressure field

(P*=0).

(2) Calculate the coefficient of the
momentum  equations  form
equations (11).

(3) Solve the (U*,v*) momentum
equation by line-by-line method
of equation (10) using the guessed
pressure field (P*).

(4) Compute the face mass flow rates
(Fe', Fw, F, and Fs) by using
interpolated face velocities from
equations (16, 17, 18, and 19).

(5) Calculate the source term of the
pressure correction equation from
equation (27).

(6) Calculate the coefficients of the
pressure correction equation from
equations (29).

(7) Solve the pressure correction

(28) by

method to obtain the corrected

equation line-by-line
pressure field (P").
(8) Calculate the correction of the
velocities from equations (20, 21,
22, ad 23).
(9) Calculate the correction of face
mass flow rates (Fe, Fw, Fn, and
Fs) based on the corrected
velocities calculated in step (8).
(10) Correct the velocities by using
equations (12); and face mass
flow rates by
Fe=Fe + Fe (30a)
Fu=Fu + Fu (30b)
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Fo=Fn +Fq (30c)
Fe=F +Fs (30d)
Correct the control volumes pressure
by  underrelaxed the  pressure
correction as
(P=P +a,P') ... (31)

Return to step 1 and repeat step 1 to 11
until the convergence is attained.

For each variable, the sum of the
absolute value of the residuals over all
the control volume is calculated, and
normalized by an appropriate quantity
Fn, typically the inlet mass or
momentum flux, this normalized sum
of the absolute residuals should be
satisfies

2R
k

n

<A (32)

Values of A used in calculations were
of order 107,

Grid Independence

The table below shows the results of
the reattachment length (X;) obtained
for the grid independence study for the
case Re = 400, and h/H = 0.5. A grid
size of 61X21 (61 in X direction and
21 in Y direction) gives a grid
independence solution.

Grid Reattachment
Size(MXN) Length
31X21 3.98
41X21 4.05
51X21 4.22
61X21 4.3
61X31 4.3
Validation

The numerical solution is validated by
comparing results of the reattachment
length (X;) with the experiment of
Armaly et al. [1] and with the

numerical results of staggered grid of
Eiyad Abu-Nada ! for different
Reynolds number (Re) for the case
(h/H = 0.5). Figure 3 shows good
agreement between the present results
and the experiment of Armaly et al. [1].

Results

Three inlet height ratio (h/H = 0.25,
0.5, 0.75) are considered. The channel
length (L) is set to 10 H.

In figure 4 the contours of the
predicted streamlines are shown for
Reynolds number (100-800) and for
(h/H = 0.25). Two recirculation flow
zones are encountered for Re > 400 the
primary recirculation zone occurs
directly downstream the step at the
bottom wall of the channel, whereas
the other secondary recirculation zone
exists along the top wall. However, for
lower Reynolds numbers, such as Re <
400, only the bottom recirculation zone
appears. In this geometry the flow is
descend from small area to sudden
enlargement so that the velocity
decreased and adverse pressure
gradient created, this adverse pressure
causes the separation along the top
wall as shown in figure (4c-e).

In figure 5 the contours of the
predicted streamlines are shown for
Reynolds number (100-800) and for
(h/H = 0.5). As Reynolds number
decreases the secondary recirculation
zone that exists along the top wall
begins to disappear. However, for
lower Reynolds numbers, such as Re =
400, only the bottom recirculation zone
appears.

In figure 6 the contours of the
predicted streamlines are shown for
Reynolds number (100-800) and for
(h/H = 0.75). In this configuration the
secondary recirculation zone exists
along the top wall is totally disappears,
and the flow just separated
downstream the step at the bottom wall
of the channel.
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Conclusions

The finite volume method with
collocated grid is used to analyze the
flow field over backward facing step
for two dimensional steady flows. The
results show that at low height ratio
(hH = 0.25) and high Reynolds
number, in addition to the separation
that occur down the step the flow also
separated along the top wall of the
channel.
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Figure (1) Geometry and Boundary
Conditions

Figure (2) Control Volume
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Figure (3) Comparison of the reattachment
length with the Reynolds number for
present and previous works for the case
h/H=0.5.
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Figure (4) The effect of Reynolds number
on the streamlines for flow configurations
(h/H =0.25).
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Figure (5) The effect of Reynolds number
on the streamlines for flow configurations
(h/H =0.5).
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Figure (6) The effect of Reynolds number
on the streamlines for flow configurations
(h/H =0.75).



