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Abstract

Sometimes in a manufacturing environment, a robotic arm is wanted to move in a
straight path such as welding, painting and assembling. This straight path causes the
manipulator to actuate all or most of its joints in the same time to track the path. Along
this path, the manipulator may reach a specific singular configuration in its workspace
at which one or more joints are in their limits, or a part of the path lies outside the
workspace. These conditions make the arm’s movement be unsmooth and may cause
damage to the manufacturing process. In this paper, the singularities inside the
workspace of a 4-DOF spherical manipulator are indicated and a method is presented
for finding the arm configurations (assuming that all joints are actuated at the same
time) along a straight path between an initial and a goal configurations. All joint limits
are presented and if a part of the path lies outside the workspace, the model processes
this condition by introducing a new initial configuration through changing the third
joint’s (qg3) position only. A smooth straight path is generated between any two
configurations using the parametric equations of the line connecting them. Unlike the
analytical inverse kinematics, which needs a (4 x 4) homogeneous transformations
convention matrix (DH) to find the joint variables, this method needs only the initial
configuration, goal configuration, link lengths and the corresponding Cartesian
coordinates of the path. It always gives the correct solution for the under taken path.

Keywords: Singularity, Jacobian matrix, rank deficiency, path generation, kinematics,
configuration.
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Notations

X Cartesian position vector.

®(q) position vector in terms of joint

q  Vector of generalized coordinates
(joint variables).

number of DOF.

A (3x1) translation vector.

A (3x3) rotation matrix.

A (4x4) transformation matrix.

A set.

A subvector of generalized

coordinates.

C w—-HD TS

Introduction

Many tasks performed by a
manipulator arm in a manufacturing
environment such as welding, spray-
painting and assembling, required that
the end-effector follows a straight path
trajectory  connecting an initial
configuration to a goal configuration.

During this process of motion,
singular behavior of the manipulator
may occur inside its workspace, or a part
of the straight path lies outside the
workspace. All theses conditions make
the path be unsmooth which by itself
may cause damages to the manufacturing
process. In simple terms, a singularity of
a robotic arm occurs where the number
of instantaneous degree of freedom
(DOF) of its end-effector differs from
the expected number based on the DOF
of its individual actuated joints. There
are mainly three types of manipulator
singularities:  work-space  boundary
singularity at which one of the joints
reaches its limit, a singularity inside the

= [Qui 92i g3i 4] initial
configurations.
Ogoal = [O1g O2g Gy Gag] goal
configurations.
®qy(q) Jacobian matrix.
pi A singular set of constant
generalized coordinates.
R"  Space of n- coordinates.
¥  Abounded parameterized
subsurface.
t A parameter.

Qintial

work-space at which one or more joints
reach their limits, and a singularity also
inside the workspace at which the
manipulator losses one of its DOF
without being any joint at its limit.

The significance of singularities in the
design and control of robots is well
known and there is an extensive
literature on the determination and
analysis of singularities for a wide
variety of serial manipulators-indeed
such an analysis is an essential part of
manipulator design. Donelanfl, in his
study, provides singularity theory
methodologies for a deeper analysis with
the aim of classifying singularities,
providing local models and local and
global invariants, and surveys the
applications  of  singularity-theoretic
methods in robot kinematics and
presents some new results. Investigations
of manipulator singularities are reported
by Abdel-Malek?. He presented
algorithms base on the Jacobian matrix
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ranks deficiency and classified the
singularity into three types: type I, where
no joints reach their limits and types 11
and Il where some joints reach their
limits. According to theses types, a
series  of  generalized constant
coordinates subset vectors is generated
that can be submitted into the position
vector of the end-effector to produce a
series of parametric singular surfaces
and curves as a function of the remaining
generalized non constant coordinate
vectors. These singular curves and
surfaces can be used also to draw the
interior and exterior boundaries to the
workspace of the robotic arm; this is
shown by the work of Abdel-Malek[!.
One of the main problems in robotics
research is the generation of trajectories
that a manipulator must follow and the
computation of the joint variables
required to move the hand to the target
positions. A proper motion plan can have
advantages with respect to different
aspects, for example, obstacle avoidance,
work or method simplicity and
efficiency, better tracking performance
etc. For multi-link robotic systems, the
automatic task execution can be divided
into three smaller subproblems!*!:
P1 For a given robot and task, plan a
path for the end-effector between two
specified positions. Such a path optimize
a performance index, in the mean time
satisfies either equality (for instance,
robot’s end-tip is required to move on a
surface) or inequality (for instance,
obstacle avoidance, joint angle limit)
constraints.
P2 For a given end-effector path
expressed in the task (operational) space
(usually coincides with the Cartesian
space), find the joint trajectory according
to our knowledge about the robot
kinematics and Kinetics. Similarly, some
performance index can be optimized in
case of a redundant robot; namely, the

robot has more DOFs than necessary to
perform the given task.

P3 Design a feedback controller which
can track the given reference joint
trajectory accurately.

Generation of path trajectory is
usually accomplished by the inverse
kinematics of the manipulator, which
may be hard to derive or may not exist at
all. As alternative approaches, neural
networks and optimal search methods
have been used for inverse kinematics
modeling and control in robotics.
Rosales, Gan, Hu, and Oyamal® present
a first analytical solution to the inverse
kinematics of Pioneer 2 robotic arm
which combined with an optimal search
method. On some rare occasions, the
inverse model provides completely
wrong solution due to the inaccuracy
problem in atan2 function, which is a
disadvantage of the analytical inverse
model and in order to avoid this
problem, they used a hybrid approach.
This approach works as follows: given a
desired DH convention, the inverse
kinematic will provide joint variables. Its
corresponding position and orientation
will be calculated using the forward
kinematics and if this solution meets the
correctness criterion, the joint variables
will be sent to the arm, otherwise, an
optimal search will be conducted to get a
satisfactory solution. Qin and Perpinan®
present a machine learning approach for
trajectory inverse kinematics. Given a
trajectory in workspace, find a feasible
trajectory in angle space (joint space).
The method learns offline a conditional
density model of the joint variables
given the workspace coordinates. This
density implicit defines the multivalued
inverse kinematics mapping for any
workspace point. At run time, the
method computes the modes of the
conditional density given each of the
workspace points, and finds the
reconstructed  joint  variable by
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minimizing over the set of modes a
global, trajectory —wide constraint that
penalties discontinuous jumps in joint
space or invalid inverse. They
demonstrate the approach with a PUMA
560 robot arm. Their approach works
well even when the workspace trajectory
contains singularities. Calderon, Rosales,
and Alfaro”l presents a comparison
between an analytical inverse kinematics
based hybrid approach and a resolve
motion rate control method (RMRC) for
controlling the Pioneer arm. In their
work, trajectories for arm to follow in
the Cartesian space or work space are

obtained by image processing via
imitation. This implies having a
transformation  from  the  visual

information of the external model to the
execution information of the arm. The
transformation  process gives the
position/orientation of a specific point
and the processing of sequential images
produces a sequence of target points.

As it can be noted from above, there
are many problems in path generation
and joint variable calculations. These
problems can be summarized into two
mainly problems:

1- Singularities,

2- The uncertainties that may result in
the solutions of the inverse
kinematics model, therefore, the
researchers produced many methods
and approaches to overcome these
problems.

In this paper, a 4-DOF spherical
manipulator is presented. All
singularities of the manipulator are
obtained using the algorithms in the
work of Abdel-Malek?l. A method based
on the geometry movement of the
spherical manipulator is developed. A
straight line connects an initial and final
configuration and according to the
parametric equation of this line, the end-
effector is forced to track the path by
computing the joint variables. The

method assumes that all joints must be
actuated at the same time. The first joint
variable (1) is calculated depending on
the change in the parametric coordinates,
the second joint variable (g2) changes in
the interval [q2 initial, 02 goat] With a
specified step, and the third and fourth
joint variables (gs, q4) are computed
based on corresponding g> and the
change in the parametric coordinates. (g2
& (3) are updated when (gs) has a
negative value, since qs [Qa:
0 — 400] and this is by letting gz = 0
and computing the corresponding g2 &
gs. If a part of the path lies outside the
workspace, the method produces a new
initial configuration by changing ()
only. The paper is organized as follows:
kinematics of the manipulator is given in
section 2. In section 3, the singularity
algorithms and generation of the joint
variables according to the path
parametric equation are presented.
Finally, some conclusions are given in
section 4.

Manipulator Kinematics
1- Forward Kinematics

For a serial manipulator, the forward
(direct) kinematics describes the position
of the end-effector— parametrised in
space by, say, Xi,....., Xe¢ Where three
parameters correspond to translations,
and three to rotations— as a function f of
the actuated joint variables qi, ...., On.
The joint variables are the angles
between the links in the case of revolute
joints, and the link extension in the case
of prismatic joints. The fixed coordinate
systems attached to the 4- link spherical
manipulator linkages, which called the
word or base frame, are shown in figure
(1). Five word frames are used to
describe the position and orientation of
the end-effector (frame 4) with respect to
manipulator base (frame 0). The
homogeneous transformations or
Denavit-Hartenberg (DH) convention is
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used to simplify the transformation
among the attached coordinate frames,
combines the operations of rotation (R)
and translations (P) into a single general
matrix multiplication, and finds the link
parameters. For the manipulator shown
in figure (1), the four DH convention
matrices are:

cosg, -sing; 0 O
TO0 - sing, cosq, 0 O o
' 0 0 1 d
0 0 0 1
10 0 O
T} = 00 -10 -2
01 0 gq
00 0 1
—sing, 0 cosg, O
T2 cosg, O sing, O e
: o 1 0 0
0 o 0 1
100 0
T, = 010 0 .(4)
0 01 g,+d,
0 0O 1

g: and gs are joints 1 & 3 angles, g2 and
g4 are joints 2 & 4 extensions, and d; and
ds are the link lengths. The general
forward kinematics DH transformation

4 .
can be obtained by HTIi—l ,and is given

i=1
as below:

—C0sg,sing,  sing,  €0sg, C0Sa,
-sing;sing, —cosg, sing,cosq, (g, +d,)sing, cosa,
€os, 0 sing; (g, +d,)sing, +q, +d,

0 0 0 1
.(5)

with link parameter shown in table (1).

(q, +d,)cosg cosg,

T =

This manipulator has joint constraints as
follows:

0 <0g1<360°% 0 <2 <400 mm,
-75°% < g3 < 180°, and 0 < g4 < 400 mm.
2-Inverse Kinematics

The inverse Kkinematics problem
concerned with finding the joints
variables in terms of the end-effector
position and orientation, and it is, in
general, more difficult than forward
kinematics problem. The more degrees
of freedom that the manipulator may
have, the more difficult inverse
kinematics solution is. Because the
current manipulator has 4-DOF, closed
form solution, that based on analytic
expressions, can be used®l,

Let:
he T Ty Py
H — r21 r22 r23 py . (6)
r-31 r32 r33 pz
0O 0 0 1

be a (4x4) homogenous transformation,
here H represents the desired position
and orientation of the end-effector on the
path, and the task is to find the values for

joint variables so that T)=H.
Therefore:
r, =sinq, -1
= tan 2(r,, ,—r.

r22 _ —Cosql}ql ( 12 22)

+(7)
and
r,, = CO0S(, -1

= tan 2(r,,,—r.

r, = sing, }‘% (r3,—Fs3)

.(8)
and for g2 & g4
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P« = (Q, +d,)cosg, cosq,
p, —d, cosg, cosq;, -(9)
C0sg, C0Sq,

q, =

or

P, =(q, +d,)sing, cosq,
p, —d, sing, cosg, ~(10)
sing, c0sq;,

q,=

and

p, =(q, +d,)sing, +4, +d1}
q,=p, -(q, +d,)sing, —d, | -1

Equations (7) through (11) are the
general solutions of inverse kinematics.

Path Trajectory
1- Verification

It must be noted that the singularity
algorithms listed in this section are
presented in the work of Abdel-
Malek?31, The position vector of a point
on the end-effector of a serial
manipulator can be written in the terms
of joint coordinates as:

X = ® (q) (12)

where qeR" and @ (q) can be obtained

from the forward kinematics DH
conversion which can be written as:
78
R @
ro - R0 @) .(13)
0 1

End-effector  velocities can  be
determined by deriving eq.(12) w.r.t.
time:

X=0,q .(14)
where®, =0®,/6q;, (i, j: 0 — n).
Define a subvector pi of q as a set of

constant generalized coordinates pie R™
where m < n-1, and g = uu pi. Singular
sets pi can be obtained from studying the
rank-deficiency of the Jacobian matrix.
Three singularity types are identified:

1- Jacobian singularities: this is obtained
when no joints reach their limits and
they satisfy the following eq.:

SW = {pie R™ Rank[®q] < 3, for some
constant subset of g} ..(15)

2- Singularity sets characterized by the
null space criterion imposed on the
reduced-order manipulator ie. some
joints reach their limits. These sets
satisfy the eq.:

S@ = { pieR™ dim[null(q)} @] =1,
for some constant subset of g}  ..(16)

D denotes the Jacobian after reducing

the order of the manipulator (substituting
a joint limit). and,

3- Singularity sets defined by a
combination of all constant generalized
coordinates:

S = { pieR™ [gi™",q{™], for i, j :
1—-n;i#j} -~(17)

Substituting these singular sets into
the position vector given by eq.(12)

yields singular surfaces and curves
parameterized by W (u) such that:

d(u, pi) = P(u) ..(18)

The position vector of a point on the
end-effector of the spatial manipulator
shown in figure (1) is:

(9, +d,)cosq, cosq,
O(q) = (q4 + d4)5inq1 C0sqQ;, -(19)
(9, +d,)sing; +4, +d,
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where q = [gq1 92 Os Q«]", and the
Jacobian is derived as:

-(q,+d,)s,c; 0 —(q,+d,)cs; cc
@, =| (q,+d,)cc, 0 —(g,+d,)s;S; S
0 1 (q,+d)e; s

..(20)

where s13 & c13 denote sin(gi3) and
cos(qz1,3) respectively.

The Jacobian rank-deficiency is
studied under the conditions of the
singularity sets and the following results
are found:

There are no singular sets due to
Jacobian singularities because the results
obtained from eq.(15) do not satisfy the
joint constraints. Therefore, S® = null.
Singularity sets defined by fixing one
joint at its limit and solving eq.(16) are
given by S@® = {p1, p2} where p1 = (gs =
90°, g4 = 0) and p2 = (g3 = 90°, g4 = 400).
And finally, singularity sets resulting
from the combinations of any two joints
reaching their limits are S® = {p;, i = 3
— 14} where p3 = (02 =0, g3 = -75°), ps
= (02=0,03=180%, ps = (=0, g4 =
0),

Pe = (42 =0, gs = 400), pr = (g2 = 400,
gs = -750), Ps = (qz =400, g3 = 1800),

Po = (02 =400, g4 = 0), p1o = (g2 = 400,
G4 = 400), p11 = (g3 =-75° g4 =0),

P2 = (gs = -75% qa = 400), p1s = (s =
180°, g4 = 0), and p14 = (qs = 180°, g4 =
400). Substituting each set of pj, (i: 1 —
14) into eq.(19) yields singular surfaces
in R® (Wi) part of which are shown in
figure (2) and the manipulator
workspace which is shown in figure (3).

2- Generation (finding joint variables)

The aim of this work is finding the
manipulator configurations (joint
variables) along a straight path
connecting an initial configuration to a
goal one without using the inverse
kinematic model, which may give

uncertain solution or no solution. In the
current implementation, the straight path
between [Qintial] & [Qgoar] is simulated as
a line in R® space with parametric
equations given by:

[X] = [Xinita] + [AX]+t, 0<t<1 .(21)

where [AX] = [Xgoal] — [Xintial] ..(22)
[Xintia] & [Xgoal] are the initial and goal
Cartesian coordinate vectors defined by
substituting [Qintiar] & [Qgoar] iNto €q.(19).
By choosing a specific increment ng, the
path can be divided into ng subintervals
with end points € line parametric
equations. At each point, the
manipulator’s configuration can be
determined as the following algorithm:
(k- 1 — ng), t = (k-1)/ng, and point
coordinate vector is found from eq.(21).
According to point coordinate vector and
figure (4), the first joint variable g1 can
be computed as:

Yl if (4x, & +,)

1 y .
x —tan| 27X if (-x, &+Y,)

(@), =
(=% &=y, )

-1
27 — tan| 2k if (4%, &—,)
X

k

.(23)

The second joint variable gy varies
uniformly with the assumed increment:

(92)x = Qzintiat + (K-1) " n2 ..(24)
where n2 = (AQz2)/ng. Third joint
variable gz is determined depending on

the coordinate vector and g2 as shown in
figure (5):
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11(2), = ((a,), +d,)]
tan
(@), |
(@), = - tan I i), @)
—t;’l((qz)k z_dC;l)_(Z)k if (Z)k <(q2)k +d1
.(25)
where  (d), =/(X)% +(Y)’% . And

finally, the fourth joint variable g4 is
computed using the following equation:

(figure (6))

(Ge)e = V(@) — (@), +d))? +(d)% —d,
.(26)

The joint variables qi, g2, and g3 have
values that e joint constraints, but g4
may go out the minimum joint constraint
and to avoid this state, it is assumed that
gs = 0 and new values of g2 and gz are
evaluated:

For (gs)x <0, g4 =0,

.(27)

80
and reuse of eq.(25). Now all joint
variables are known, but g1 and gz must
be updated according to the initial
configuration Cfintiar. FOT 01, if (q3)k > 90°:

(Q2)k = (Z)k - (d4)2 _dk2 _dl

(ql)k = (Q1)k -7 --(28)
and for gz, if (Q3)k < (Q3)k+1 & AqQsz < 0,
then :

-1
(43)a = tan|((z)k+l — ()0 + dl))/(d)k+l|
..(29)
as shown in figure (7).

If the straight path (line) that connects
[Qinia] & [Qgoa] €manipulator’s work
space, then equations (23) through (29)
give the required joint variables that can

make the end-effector follows this
straight path and ensure that all joint
variables e joint constraints. But if all or
a part of it ¢ manipulator’s workspace,
then the initial configuration gi must be
changed so the path can be tracked. In
this work, to produce a new @i, the
following technique is presented: Qsi is
changed to a new one so that the straight
path between the new [Qintial] & [Qgoal] be
tangent to the semicircle that is a part of
the manipulator boundary workspace,
generated when 2= ¢z = 0 and gs € (gs:
-75% — 1809), in the two configurations
plane. This technique gives two values
of Qai. Figure (8) shows the four
probabilities that all or a part of the path
lies out the manipulator’s workspace.
From figure (8), the following
calculations can be made to find out if
the path ¢ workspace and produce a
new [Qiniar] based on the above
technique:

If {(qsi > 90° & AQs > 0 & () < di} or
{(as)« < -75% or
{x+y: -(z,—d,)* <d’}, then some or
all determined joint variables may
¢ joint constraints (i.e. all or a part of the
path ¢ workspace), therefore, a new Qs
is generated as listed below:

D, = JAX? + Ay + A7
" D; =d, +0qy
Dg :d4+q4g

Dci =\/Di2_dj
D,, =D -d?

since the angles a1 and o> are always >
90, it can be calculated as:

.(30)
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o, =sin(d, /D,) an

-1
a, =cos((D,’ +D? -D?)/2-D, -D,)
based on the values of a1 and a», the
lengths of AD are computed:

AD; =(D,’ +(D, +D,)* 2D, (D, + D) -Cos(ey +,))
AD; = (D, + (D +D,)* ~2:D, (D, +D,,)-Cos(et, - ,))
(32)

also the new values of gz are always less
than 90°, therefore,

-1
Usg = cos((2- Di2 - AD;)/Z' Di2)

Uss =COS((2- D? — AD?)/2- D)
.(33)

now, the new values of [Qinia] can be
generated by editing the values of gs; :

|Ag,|

Osis =05 + (A_q3) “Oss
..(34)
Oais =0 +(|Aq3|)-q
sis = Usi 3s
AQ,

the form of eq.(34) ensures that the new
calculated values of gz are edited
corresponding to the sign of Ags. The
choice of gsi (gai: gzig Or Qais), that satisfy
the above technique, is made by
introducing a parameter called lest.
When the two values of gz are
generated, the method uses Qsis first to
produce [Qintal], then all joint variables
are calculated if any value of [g] ¢ joint
constraints, which means that the path ¢
workspace, then osig is submitted to
determine [Qinia].

Figure (9) shows a model of the
spherical ~ manipulator  that  was
manufactured to help in building and
applying the presented method. Four
different sets of [Qintiar] & [Qgoal] are used
as inputs to the method for testing and

table (2) shows the results. The method
flowchart is shown in figure (10).

Conclusions

In this paper, a method is built for
determining the joint variables of a
spherical manipulator with 4-DOF end-
effector to track a straight path between
two given configurations. In this method,
when all or a part of the path lies out the
workspace, a new initial configuration is
generated. All singularity surfaces of the
manipulator ~ workspace are also
determined. The presented method
always gives a suitable unique solution.
The exist of singular surfaces in the
manipulator workspaces does not affect
the solution because the method
computations depend on dividing the
path between [Qintial] & [Ogoal] Nt
subintervals at which all joint variables
are calculated. The method can be
improved to make the current
manipulator tracks any known paths. For
same calculations, the number of inputs
in this method is less than general
inverse kinematics since the last one
needs the DH matrix at each point for
the same path.
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Table (1): DH parameters for the 4-link spherical manipulator

Link | ai (mm) | di (mm) O
1 0 0° d:=30 o}
2 0 90° 02 0°
3 0 90° 0 0z + 90°
4 0 0° Qs + dg 0
Qi = joint variable, d, = 30

Table (2): The results of four sets of different [initiai] & [ggoar] used
as inputs to the method, nq¢ = 11.

Point coordinates generated
from the parametric equation

The corresponding generated joint

The tracking point coordinates
computed by substituting the
corresponding generated joint

(eq. (21)). variaples. variables into the forward
kinematics (eq.(19)).

Xp Yp Zp qu gs Q4 Xt Yt Zt
(mm) (mm) (mm) (degree) Gz (mm) (degree) (mm) (mm) (mm) (mm)
AYo -1o,\o0¢ Yo,7Ye4 120 Yo, veen YWa,venn O v AVo -Vo,Vo0¢ Ve, ¥y ed
Y,AAVA -Y, YAV Vé,AYoV 120 Yo, TTA AV, YAV . Y,AAVA Y, YAVY Y¢,AYoVY
-¢,q90¢Y A, 0AVY Va,vé g 120 ARFEREA Yo, VYYY 0 -¢,90¢Y A,0AVY Ya,veée¢

VY, A0 Y.,8¢90 AY,AooY 120 Y4,00 00 £0,ANT0 Y,ayyy V), A8 Y., €40 AY,AooY
VAT 0AY YY,YYVA AN YV o 120 AP Ye,d¢0V VY,0 AT SYAT0AY YY,¥YVYA ANYY oo
-Yo,0) A £E,YAT) AY,AANEA 120 £Y,00 00 YY,VVAY Y¢,96YY -Yo,0V ¢ A £6,YAT) AY,AAEA
SYY, YUY oM, 08¢ qv,Y¥441 120 9,000 YO,ATAA o.,1Y4 _YY, YT 0%, 08¢ qv,v441
-Y4,YVo¥ v,avyy Ye),q) ¢y 120 00,044 YY,AY T YV,¥4.¢ -Y¥4,Yvo¥ 1v,avyvYy AERFEARAY
-8, VY va,vay. AR YA RN 120 Y, 00w A,deY 1Y,Yevy €7, VY Ya,vay . Yo, EY9)
-oY,4%40 4),704Y AREFREAR 120 TN, 1,Ve0v Y1,01A) -oY,4%V40 4y,104Y Yy.,9¢v4
-04,YVvyY YeY,evva YYo,¢0AY 120 Vo, vaun O, v e, v -04,vYvyY \EAFIAR A VYYo,s0AY

[Ginitiar] = [120° 10 120° 5], [qgoar] = [120° 75 5° 90], the straight path that connects [Qinitial] & [Ggoal], lies inside the

workspace. gz)new = 0°.

Xp Yp Zp g1 g3 Q4 Xt Yt 7t
Gz (mm)
(mm) (mm) (mm) (degree) (degree) (mm) (mm) (mm) (mm)
Y,onyoe Y., Yeq¢ YT, YAV Ve, 0nen 1Y Yo, ennn Yo, oenn Y,enye Y., Ye4s YT, ¥ANVT
VV,éved -Yo,1VYo YAAATYY YA€ Y 1y,vayy YY, 60 VA VV,éved -)o,1VYe YAAATYY
Y, YAAY B R E-h YWY, YEY Yéo, 614 ARER3 £A,Y4¢ Ye, Yoo ¥, YAAY -y, vet YVY,YEwY
£0,Y Y -1,09AY YoY,AY .Y Yoy, vyvyy ANt YV, YAYo Yy,e14y £0,Y vy -1,04AY YOY,AY Y
09,Y\YY =Y, VA VYT, Y444 YoA, v OA AA ARAARARY YY, ey 09,Y\YY =Y, A VYT, Y44A
YY,YYe1 Y,éve) VYA VYA€ Y,47AT A T,AEYY £Y,14yyY YY, Yot Y,éve) VYA, VYA€
AV, YA Y,V Y YY), YoAl £, \al -, EATY oV, ¥YY) AV, YA Y, o\ Y Y+),YoAq
Yoo,9008 VY,06A4 AY,YYAo 1,0¥1¢ ¢ -0,Y1TA YY,\Yov Yeo,9008 VY,08A4 AY,YYAo
VY E,ATYA AR PRW-LY TLY YA V,avY) o -4,1v4y AY,TeAT VYE,ATYA V1,0 A04 TLYYA
YYA,YYoy Yo, TYYA £A,14vT q,«4A¢ €A AR PR i Yo¥,ve YYA,YYoy Yo, IYYA £AAV
VEY,TAVY Yo,)o4y ¥V, YY) Yo, 0nnn i N0, Yo, enan YEY,TAVY Yo,\o4V ¥, VY)Y

[Glinitiar] = [100° 120 100° 30], [qgoa] = [10° 40 -15° 120], the straight path that connects [Ginitial] & [Ggoar], lies
inside the workspace. gs)new = 0°.
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Xp Yp Zp (o] (mm) 03 Q4 Xt Yt Zt
(mm) (mm) (mm) (degree) g2 (degree) (mm) (mm) (mm) (mm)
350 O vann VYo, eann YO, v nn

350 A,TOYY TY,VY € 0
350 _Y,aY ) Av,i.04 0
350 S1),voed4 AY,AVAY 0
350 S\V,avYe 10,YYov .
350 YV, 000 ST, YY,00 0
350 £, 0es TR Yoeos
350 04,00 Sl e £V,00 00
350 AR JETINNNN 0, e
350 e JETINNNN AY, 00t
350 I JETINNNN Yea,vnen
[Ginitiar] = [350° 5 120° 15], [qgoa] = [350° 70 -60° 100], a part of the straight path that connects [Ginitiai] & [Cgoar],

lies outside the workspace, therefore, gs)new = 53.68° is calculated and add to the gsi to form

5 11,¥Y0 15]

anew [qinma|] = [3500

Xp Yp Zp 0 Qs Qs Xt Yt Zt
g2 (mm)

(mm) (mm) (mm) | (degree) (degree) | (mm) (mm) (mm) (mm)
-9, 711 Vo,1004 Y4LY Y)Y 350 O,vunn TLYY e YO, v v -4, ¥11 Vo,1014 Y4L,YY W
-V, ¥AYO 14,vV04 AR 350 VY,00 0 A4V £,6VY -V, YAY0 14,vY04 ,¥TY Y
-VY,vyay YY,vvaa oA, t0VY 350 VLYTAY YY,VYeye . -V, vYay YY,vyvaa oA, E0YY
-1, eve YV,AEYA £9,0VYA 350 Y&,000n -ALYYYA Y,ovit -1, vel YV,ALYA £9,0VYA
SYAEYY . ¥Y,4 VA £4,04Y¢ 350 YY,ennn -YAATY 0 VY, 14¢ SYAEYY YY), VYA £4,74Y¢
=Y o, YIAY Yo,AVIA ARIVAR Y 350 YV,00 0 -6,V YE,VUNY =Y o, VIAY Yo,aVYA ¥Y,AVYA
BANREAY £v,0YoOA YY,qv¢o 350 £, 00 -EV,A¢0VY YA AAYA BANREAY £v,0YOA YY,qv¢o
-Yo, ey 6,494V V¢,000, 350 04,00 -oy,oveyY oyY,VAYY -Yo,e1Y . £¢,+94Y V¢,0000
SYY,A WYY EANTYY o,\ve1 350 OV, vann -oo,vq1y TA,4Y00 SYV,A VY SANYY o,\ven
¥ evy oY,YYVY RAN L 350 ¥, 00 SOAVAYY AE,¥4YY Y, ery oY,YYVY RAN L
S¥Y, 00 on, YAV SVY,0AYY 350 Ve, oenn [ PO Yoo, enn B Y-TI o1, Y4y Y SVY,0AYTY

Xp Yp Zp (o] gz (mm) g3 Q4 Xt Yt 7t

(mm) (mm) (mm) (degree) (degree) (mm) (mm) (mm) (mm)

Foa,onnn . Avyvonn Fo,onnn
¥Y.,avey Sa,inn YV,oYYY 1),1.0Y
Yéo,y.Yo VYy,c00Y VY, &vo04 0
o,VA 4 90,1Y . 14,7¢. Y 0
V4,vavy VYA, YYoY TE,V00A 0
YA, Q€€ Yeu,e0es ’ T,4v.Y
T£,9V40
Yo, \YEA XEa,0nnn 4,807 Yo,YY. 1
Y4,¢VA0 YA, venns SVY,aves £Y,VasY
£Y,TTAY FY e VY, EYEY Y, EAMVA
£0,.47Y Yle, 000 -Y¢,yoo0 AY,YYou
£V, 00 Saa,nann Vo, Yo venn

[Ginitiar] = [300° 0 80° 30], [qgoal] = [47° 400 -75° 100], a part of the straight path that connects [Ginitiai] & [0lgoat],
lies outside the workspace, therefore, gs)new = ¢, €Y 0 is calculated and add to the gs; to form a new [Ginitial] =

[300° 0 ¥1,1eV10 30]

Xp Yo Zp 0 gz (mm) Qs Q4 Xt Vi Zt
(mm) (mm) (mm) | (degree) | (degree) | (mm) (mm) (mm) (mm)
Ye,0%00 | -£),1A80 16,AY14 Yo 0 ¥,V P Yé,0N0 | -g),TAt0 10,AYY4
Yy,d0¢1 -Yo,.00Y AQLTAYY YYE,veny 1 Yo, YA V1,Y4A0 Yy,40¢1 -Yo,.00¥ AQ,TAYY
YY,AEY1 YA EYTY VYY,06Y¢ Y+9,4AA0 A 0,¢001 Y,YV Y YY,AEYT YA EYTY VVYY,06Y¢
YY,vy.n -Yy,vana VYV, e 8Y YYV, YY) \Y . -Y),¥o.4 ¢,091Y YY,vy.eu -Yy,vaid VYV, e eY
YY,TVAY Yo, vy Y1y, Y0, YYV,Y4VA AR Y -£0,TVYY Ve, 14 YY,UVAY -Vo,Vavy Y1),Ye.
Yy,o.yv -A, oY Ao YA,V YoA YEe, YV Yoo STOATAN YV, YVYYA Yy,e.v -A,oYAe YA, YoA
Yy, vacy -),4.4Y Y+«AAA0 Yoo,ryey Yéo -TA40VA Yo,YVYYA YY,vaey -),4.4Y YA, AAT0
YY,YAYY ¢,vyaq YYY,AEVY VY, ¢04yv YA RANYY-24 o, YYVY YY,YAYY £,v144 YYY,AEVY
YOV A VY,vedn You,Ve AN Y1,«40V YY. B N-E TN 11,vava YV VA VY,vedn You,Ye AN
YY, v 0AA VV,aAVAY YA+, 07A4 Yv,d¢Yo Y. Yo, ¢v0 AY, YV YV, 0AA VV,aVAY YA+, 07A4
YY,4€7A Y¢,1aVo Yeg,evan £V, v Lo - Yoo, 0enn YY,4€TA Y¢,lVo Yeg,ev41
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a- In x-z plane (Ag: = 0) b- In 3D (gi: 0 — 90°)

Figure (2): Singularity surfaces
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Figure (3): Manipulator’s work space
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Manipulator top
view (zo=0)

Figure (4): Calculations of q:

20 - axis
A\ project of (d)«

Manipulator side
view (yo = 0)

Zk— ((q2)x + d1)

43

(g2)k + da

S
o’- axis

Figure (6): Calculations of g4
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2oz axis side view (yo = zo‘ \a)as
0)
1
1
1
| b
1
' (Ch)l(; ﬁ )
A 1 A
K 748 X3 - axis /7;//// Xo - axis

Here, the manipulate has this shape
due to (gs)x and if (i)« is calculated
using eq. (23) than it gives a wrong
value which must be corrected by
eqg. (28)

Here, the manipulate has this shape
due to (qi)x which can be computed
by eqg. (23)

20 - axis

Manipulator side

project of (d)x

view (yo = 0)
zk— ((g2)k + d1)
A %
@2k +d1
xo>— axis
Z @2k +d1
\

Figure (5): Calculations of g3

Manipulator side

5
view (yo = 0) ED

ﬁ .
g7 X0 axis

After all values of (gs) are computed by eq.
(25), corresponding values must be
recomputed by eq. (29) if (ga)k < (Ga)k+1 &
A <0.

Figure (7): Recalculations of g; & 3
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New initia D

R=D;
R=D; Y12 B
C Dc qgoal
New Qinitiai D AC
ds ) 1 Dy
Q3f =
A D o X12
A initial I dl Yo /
Ginitial X12
Xo.1
Case (2)

Xo1

A part of the path lies
out the workspace, also
shown in cases 3 & 4.

Case (1)
All the path lies
outside the workspace

qgoal

D New Ginitan

Ginitial R=D;
D, = D; + D,

a2=0

Cinitial

D, = distance between [Qintial] & [goar] (pOints A & B).
D = distance between the origin of frame 2 [Qintiar] and
the new one (points O, A, and D).
D, = distance between the origin and [qgea] (point O and B).
D, = distance between the tangent point of the semicircular and o
[dgoar] (points B and C).
D.i = distance between the tangent point and the new [Qintiar] (points o
C and D). o0
oy = angle in ABCO. i
oz = angle in AABO.

z (mm)

X ()

Figure (8): The four probabilities of the straight path

e il
Zero reference point g2 =0, gs = 180°, 02 =0, g3 = -75°, 1 = 10° g2 = 400,

g4 = 400 g4 =400 gs = 75° ga = 400

Figure (9): The model of the spherical manipulator in different configurations
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Read, n, [q];, [alg | ‘ |
* A

(qa)— — tan’ I (((g2)x + d1) — (2)) / (d)x | | >
d1 =30,d4=30

less =0

[Aql« [ale- [ali

| @ | (@ «qz)k )+ ()| | - de
Manipulator Forward

Is
(a4)«< 0.0
- . (ga)k < 0.0
Kinematics

ol bl [ @ @0 sata @ -d:
I
I
I
I
N

No

:
[ @) tan | @ (@ + )/ x|

s—k-1
t—s/ng s _

V |< ke2,n,1 >€ 5
Line Parametric Equation 1

[XJe —[xi] + ([xg] - [xi] ~t)
-&+ /Y\ -&-
l Is l Yes

(k& (y)
| @ —n— tan | e/ x| | i | @+ tan | e/ 0| |

(g3)k < (ga)k+1 & Agz <0

y&- e | (@91 — tan™ | (@eet — (@t + ) / (@) | |

| (Aa)k < 2n— tan | (y)e/ (x| | | (Ga)k < tan™ | (y)e/ (x| |

v v v v

(G2)k < (qai) + s+

(@) — sqri(()’ + (y)%)

| @ o’ | @ (@) i |

(@) —n— tan™ | (@~ (@) + d) / (@)

Is
{(gsi) <m/2 & Ags >0 & (2)j < di} or
{(a2)k < -75} or {x + yi® — (zxk— d1)* <

d « sqrt ([xg]? - [xi]?)-
G d by / pittai /
dg < da+qag .

deie— sqrt (d% — d%), dege— sqrt (0% — d%).

¥ End
01« sin™(da/ dg).
02— cos™((d 2 + dg? — d?) / (2+«0=dlg)).

v
ADg? « {d ?+ (dai + dog)? — 2<0l<(dci + dog) =cos(oa + 02)}
ADs? — {d 2+ (doi + deg)? — 2+0l+(dei + dog) ~cos(ar — az)} >
No

Q38 < cos *{(2+di - ADg?) / 2«d). @ v

Q3s < cos™{(2+0 — ADs?) / 2-d).

* Q3i < Q3is Q3i < QsiB
qsie < 03i + (| Ags | / Ags)« qss. N7
Qais < Gsi + (| AQa | / Ags)= Qas. | ltest— 1 | | lest<— 0 |

é(_i

Figure (10): The method overall flow
Chart
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