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Abstract  
    In This search, the phenomena of resonance in series piping systems with oscillating 

valve have been studied. The one-dimensional flow, unsteady state flow, and partial 

differential equations have been solved by using transfer matrix method. 

     

The details of the transfer matrix method, the derivation of the field matrices and point 

matrices, and procedures for determining the natural frequencies and frequency 

response of piping system are then presented. A computer program (Resonance) was 

developed to calculate the pressure and discharge oscillations at the valve, the phase 

angle between the pressure head and relative gate opening of the valve, the phase angle 

between the discharge and the relative gate opening of the valve and also the pressure 

and discharge oscillations at certain sections of the pipes. To verify the transfer matrix 

method, the results have been compared with impedance method and agreement has 

been found. 
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 دراسة الرنين لمنظومة انابيب مربوطة على التوالي بوجود صمام متذبذب
 

 الخلاصة
نين لمنظوماا  مان نانابيار مرةوعاة الاو التاوالي , الذر ااب د  البحا  الوا ا  في هذا البحث , سيتم دراسة ظاهرة الر 

 ,الذر اب الغير مستقر,  المحادلا  التفاضلية  تم  لها باستخ ام عر قة المصفوفة نانتقالية.
نشااتقاط عر قااة مصاافوفا  الحقااط  عر قااة مصاافوفا  النقتااة  ن را ااا  تح  اا  تفاصاايط عر قااة المصاافوفة نانتقاليااة   

برناام  الحاساوا االرتر ناي يرناينر عاور لحسااا الماغب المتذباذا  .التردا  التبيحية  نساتذابة التاردد تام تقا  مها
 الت فق المتذبذا ,  زا  ة فرط التور باين الماغب  فتحاة بواباة الصامام  زا  اة فارط التاور باين التا فق  فتحاة بواباة 

مقاااعم محاا دة ماان نانابياار. للتحقااق ماان اسااتخ ام عر قااة  الصامام  ذااذلل المااغب  المتذبااذا  التاا فق المتذبااذا فااي
      توافق  ي ا بينهما. impedanceالمصفوفة اانتقالية , النتا   تم مقارنتها مم عر قة 

صمام متذبذب ,أنابيب مربوطة على التوالي, رنين -الكلمات الدالة:  
 

Notation & Symbols 
A: Cross Section area of the Pipe(m2) 

Av: Area of the Valve Opening(m2) 

a: Wave Speed(m/Sec) 

CD: Coefficient of discharge 

CL: Lift Force Coefficient 

D: Diameter of Pipe(m) 

F: Field Transfer Matrix 
f: Darcy-Weisbach Friction 

g: Acceleration(m/Ses2) 

H: Pressure Head(m) 

Ho: Average Pressure Head(m) 

h*: Pressure Head Deviation from the Mean(m) 

hr: Pressure Head Ratio 
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P/
ov: The Extended Point Matrix for an 

Oscillating Valve 

Re: Real Part of the Complex Variables 

Q: Discharge(m3/Sec) 

Qo: Average Dischrage(m3/Sec) 

q*: Discharge Head Deviation from the 

Mean(m3/Sec) 

qr: Discharge Head Ratio 

Superscripts R: Right of the Section 

T: Time(Sec) 

Tth: Therotical Period(Sec) 
U: Overall Transfer Matrix 

ω: Frequency(Rad/Sec) 

ωn: Natural Frequency of mass-spring(Rad/Sec) 

ωth: Theortical Frequency (natural frequency)      

( Rad/Sec) 

x: Distance(m) 

Zi: State Vector 

τ: Instantaneous relative Gate Opening 

τo: The Mean relative Gate Opening 

τ*: Deviation of The Valve Motion 

υ: Kinematic viscocity of the fluid(m2/sec) 

Φm:The Phase Angle Between The Pressure 

Head & The Relative Gate Opening(Degree) 
φm:The Phase Angle Between The Discharge & 

The Relative Gate Opening(degree (  

 
Introduction 

Fluid oscillations in systems may be 

analyzed conveniently by use of 

procedures borrowed from linear 

vibration theory and electrical 

transmission-line theory. By use of the 

method forced oscillatory motions are 

effectively treated, and the resonating 

characteristics of systems may be 

identified [1]. 

The pipeline system conveying high 

pressurized unsteady internal flow may 

experience severe transient vibrations 

due to the fluid-pipe interaction under 

the time-varying conditions imposed by 

the pump and valve operations, a set of 

fully coupled dynamic equations of 

motion for the pipeline system are 

developed to include the effect of the 

circumferential strain due to the internal 

fluid pressure [2]. 

A finite element model and its 

equivalent electronic analogue circuit 

has been developed for fluid transients 

in hydraulic transmission lines with 

laminar frequency-dependent friction. 

Basic equations are approximated to be 

a set of ordinary differential equations 

that can be represented in state-space 

form [3]. 

Impedance methods have been used 

extensively in steady state vibration 

problems. The specific application of 

these concepts to resonance in fluid 

systems is accomplished [4]. 

 

Steady oscillatory flow in a branched 

piping system with partial blockages is 

studied by using the frequency response 

method. The peak pressure frequency 

diagrams at the downstream end are 

developed with the partial blockage at 

different locations in the system by 

using the transfer matrix method [5]. 

The design for a side discharge valve 

for generating a pseudorandom binary 

sequence of pressure changes that are of 

a small magnitude in relation to the 

steady state head of the pipeline [6]. 

A new procedure utilizing transient 

state pressures to detect leakage in 

piping systems. Transient flow, 

produced by opening or closing a valve, 

is analyzed in the time domain by the 

method of characteristics and the results 

are transformed into the frequency 

domain by the fast Fourier transform [7]. 

The aim of this work is to obtain a 

mathematical model to find out the 

pressure and discharge oscillations at 

the valve, the phase angle between the 

pressure head and relative gate opening, 

the phase angle between the discharge 

and the relative gate opening and also to 

find out the pressure and discharge 

oscillations at certain sections of the 

pipe .A transfer matrix method is used 

to analyze and calculate these variables. 
 

Development of Resonating Conditions 

From fundamental mechanics that the 

natural frequency ,ωn , of the spring-
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mass system shown in s(.1a) is equal 

M
K

2

1


 ,in which ωn=natural 

frequency of the system in rad/Sec 

,M=mass(kg),and K=spring constant. If 

a sinusoidal force having frequency ω 

(fig.1b) is applied to the mass, initially a 

beat develops (transient state) and then 

the system starts to oscillate (fig.1c) at 

the forcing frequency ω and with a 

constant amplitude. These oscillations, 

having constant amplitude, are called 

steady vibrations. The amplitude of the 

vibrations depends upon the ratio 

n
r 

 . If the forcing frequency ω 

is equal to the natural frequency ωn and 

the system is frictionless, then the 

amplitude of steady vibrations becomes 

infinite. The reason for this is that the 

total energy of the system keeps on 

increasing with each cycle because no 

energy is dissipated in the system [8]. 

Now let us consider a pipeline having a 

reservoir at the upstream end and a 

valve at the downstream end (fig.2a). 

Let us assume that the valve is initially 

in a closed position but that we open 

and close it sinusoidally at frequency ω 

staring at time t=0 (fig.2b). Similar to 

our spring-mass system, a beat develops 

first (transient state), and then the flow 

and pressure oscillate at a constant 

amplitude but with frequency ω (fig.2c). 

Such a periodic flow is termed steady-

oscillatory flow [8]. 

 

Let us compare the characteristics of the 

steady-oscillatory flow in our simple 

hydraulic system with the steady 

vibrations of the spring-mass system. 

The displacement of the spring at the 

fixed end in our spring –mass system is 

zero. Similarly, the water level in the 

upstream reservoir of the hydraulic 

system is constant. Therefore, the 

amplitude of pressure node at the 

reservoir .In the spring-mass system, 

there is only one mass and one spring; 

therefore, there is only one mode of 

vibrations or one degree of freedom, 

and hence the system has only one 

natural frequency (or natural period). 

Let us now consider another significant 

difference between our spring-mass and 

hydraulic systems. In the former, the 

source of energy is the external periodic 

force acting on the mass. In the 

hydraulic system, although the valve is 

the forcing function, it is not the source 

of energy .The valve is just controlling 

the efflux of energy from the system, 

whereas the upstream reservoir is the 

source of energy. 

Once a discharge node is formed at the 

valve, opening or closing of the valve 

has no effect on the energy efflux, and 

thus the amplitude of the pressure 

oscillations does not increase further 

even though it is assumed that there is 

no energy dissipation in the system [8]. 

 

Forced Oscillations 

Steady-oscillatory flows in piping 

systems may be caused by a boundary 

that acts as a periodic forcing function. 

The system oscillates at the frequency 

of the forcing function during forced 

oscillations. 

       

A periodically opening and closing 

valve is an example of a periodic 

variation of the relationship between the 

pressure and the flow [8]. 

 

Mathematical Model 
The terminology is used in the 

mathematical model [8] is: 

 

Instantaneous and Mean Discharge 

and Mean Head 

In a steady-oscillatory flow, the 

instantaneous discharge, Q, and the 

instantaneous pressure head, H, see fig. 

(3) Can be divided into two parts:- 
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 *

o qQQ  ……………………….(1) 

*

o hHH  ……...…………..…..... (2) 

In which Qo=mean discharge (m3/Sec); 

q*=discharge deviation from the mean 

(m3/Sec); Ho=mean pressure head (m); 

and h*=pressure head deviation from the 

mean (m). 

Both h* and q* are functions of time, t, 

and the distance, x. It is assumed that h* 

and q* are sinusoidal in time, which, in 

practice, is often true or a satisfactory 

approximation. 

 

By using complex algebra 

  tj* exqReq  ………………..... (3) 

  tj* exhReh  ……….………….(4) 

1j  ;h & q are complex variables 

 

Theoretical Period 

For a series piping system, 





m

1i

th
ai

Li
4T …………………...…... (5) 

And 

th

th
T

2
 ………………………….. (6) 

In which Tth=theoretical period (Sec); 

ωth =theoretical frequency(rad/Sec) 

n=number of pipes; and a=velocity of 

water hammer waves (m/Sec).  

The subscript i denotes quantities for 

the ith pipe. 

 

State Vectors and Transfer Matrices 
A general system (fig. (4)) whose input 

variable x1,x2,….xn and output variables 

y1,y2,…..,yn are related by the following 

n simultaneous equations:- 

nn12121111 xu......xuxuy   

nn22221212 xu......xuxuy   

…………………………………..     

………………………………….. 

nnn22n11nn xu......xuxuy   

………………………………………(7) 

 

In the matrix notation, these equations 

can be written as 

    xUy  ...……………………….(8) 

 In which U=transfer matrix  

The general system of fig.(4) has n 

input and output variables. In hydraulic 

systems, however, the quantities of 

interest at the section i of a pipeline are 

usually h and q, which can be combined 

in the matrix form as 

 

i

i
h

q
z









 ………………………….(9) 

The column vector zi is called the state 

vector at section i. The state vectors just 

to the left and to right of a section are 

designated by the superscripts L and R , 

respectively. For example, L

iz  refers to 

the state vector just to the left of the ith 

section (fig.(5)). 

 

A matrix relating two state vectors is 

called a transfer matrix. The upper-case 

letters F,P,and U are used to designate 

the transfer matrices. 

 

Transfer matrices are of three types:- 

1-Field Transfer Matrix or field 

Matrix (F):- 

A field –transfer relates the state vectors 

at two adjacent sections of a pipe. for 

example in fig.(5) 

 
R

ii

L

1i zFz  …………………………(10) 

In which Fi=field matrix for the ith pipe. 

 

2-Point Transfer Matrix or Point 

Matrix (P) 

The state vectors just to the left and to 

the right of a discontinuity, such as at a 

series junction see fig.(6) or at a valve 

,are related by a point-transfer matrix. 
L

1isc

R

1i zPz   ………………………(11) 

In Which Psc=point matrix for a series 

junction 
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3-Overall Transfer Matrix (U):- 

The overall transfer matrix relates the 

state vector at one end of a system, or a 

side branch, to that at the other end. For 

example if n+1 is the last section, then 

 
R

1

L

1n Uzz  ……………………...…(12) 

In which, U=overall transfer matrix. 

This is obtained by an ordered 

multiplication of all the intermediate 

field and point matrices as follows:- 

R

nn

L

1n

L

nn

R

n

L

i

R

i

R

1i1i

L

i

R

22

L

3

L

22

R

2

R

11

L

2

zFz

zPz

................

Pizz

zFz

..............

zFz

zPz

zFz

















 ……………………….(13) 

Elimination of L

2z , R

2z ,………., L

nz , and 
R

nz from eq.(13) yields 

  R

112233iinn

L

1n zFPFPF........PF.....PFz  .(14

)  

Hence, it follows from Eqs. (12) and 

(14) that 

12233iinn FPFPF.........PF..........PFU  ...(15) 

 

Block Diagrams 
A block diagram is a schematic 

representation of a system in which 

each component ,or a combination of 

components , of the system is 

represented by a "black box". The box 

representing a pipeline of constant 

cross-sectional area, wall thickness, and 

wall material is characterized by a field 

matrix, while that representing a 

discontinuity in the system geometry is 

represented by a point matrix [8]. 

The number of the section is written 

below the circle and the left- and right-

hand sides of the section are designated 

by written the letter L and R above the 

circle. For example, in fig.(7),i and i+1 

denote the number of the sections, and 

L and R denote the left-and right-hand 

sides of the section. 

 

Derivation of Transfer Matrices 

To determine the resonating 

characteristics of a piping system by the 

method of transfer matrix, it is 

necessary that the transfer matrices of 

the elements of the system be known. 

The point matrices for a series junction 

and for valves are developed [8]. 

 

Field Matrices 

Single Conduit 

The field matrix for a conduit having a 

constant cross-sectional area, constant 

wall thickness, and the same wall 

material is derived in this section. In the 

derivation, the system is considered to 

be distributed, and the friction-loss term 

is linearized. 

  

The continuity and dynamic equations 

describing the flow through closed 

conduits. 

 

1-continuity Equation 

0
t

H

Q

gA

x

Q
2










…………………..(16) 

 

2-Dynamic Equation 

n

n

gDA2

fQ

t

Q

gA

1

x

H










………..….(17) 

 

In which A=cross-section area of the 

pipeline (m2); g=acceleration due to 

gravity(m/Sec2);D=inside diameter of 

the pipeline(m);f=Darcy-Weisbach 

friction factor;n=exponent of velocity in 

the friction losses term ;x=distance 

along the pipeline(m),measured positive 

in the downstream direction(see fig.(5)); 

and t=time(Sec). 
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As the mean flow and pressure head are 

time-invariant and as the mean flow is 

constant along a pipeline,
x

Qo




,

t

Qo




, 

and 
t

Ho




 are all equal to zero .Hence ,it 

follows from eqs.1 and 2 that 

 

 

x

h

x

H

x

H
;

t

h

t

H

t

q

t

Q
;

x

q

x

Q

*

o

*

**










































…….(18) 

 

However, since it is considering the 

friction losses,
x

Ho




 is not equal to zero 

For turbulent flow, 

n

n

oo

gDA2

fQ

x

H





………………..…(19) 

 

and for laminar  

flow,
2

oo

gAD

Q32

x

H 





……… ……(20) 

In which υ=kinematic viscosity of the 

fluid (m2/Sec) 

 

if q* << Qo ,then 

  *1n

o

n

o

n*

o

n qnQQqQQ  …...(21) 

In which higher-order terms are 

neglected 

It follows from eqs.16 through 21 

 

0
t

h

a

gA

x

q *

2

*










…………………(22) 

0Rq
t

q

gA

1

x

h *
**










…….…….(23) 

 In which    n1n

o gDA2/nfQR   for 

turbulent flow and    2gAD/32R   

for laminar flow. 

Elimination of 
*h from eqs.22 and 23 

yields 

t

q

a

gAR

t

q

a

1

x

q *

22

*2

22

*2














………..(24) 

Now, if it is assumed that the variation 

of q* is sinusoidal with respect to t, then 

on the basis of eq.3, eq.24 takes the 

form 

q
a

RjgA

adx

qd
22

2

2

2








 



 ……….(25) 

Or 

0q
dx

qd 2

2

2

 ……………………(26) 

 

In which 

22

2
2

a

RjgA

a





 ……………..(27) 

The solution of eq.26 is 

xCosh2Cxsinh1Cq  ……...(28) 

 

In which C1 and C2 are arbitrary 

constants. 

If  h* is also assumed sinusoidal in t, 

then by substituting eqs.28 and 4 into 

eq.22 and solving for h, we obtain 

 

 xSinh2CxCosh1C
jgA

a
h

2





 …

……………………………………..(29) 

 

The field matrix relating the state 

vectors at the ith and at the (i+1)th 

section of the ith pipe (see fig.(5)) of 

length Li is to be derived. It is known 

that at the ith section (at x=0), R

ihh   

and R

iqq  .Hence, it follows from 

eqs.28 and 29 that 

 

R

i

R

i

i

2

i

i

q2C

and

h
a

jgA
1C








……..…………...(30) 

In addition, at the (i+1)th section (at 

x=Li), 
L

1ihh  and 
L

1iqq  . 

50 



Tikrit Journal of Eng. Sciences/Vol.18/No.2/June 2011, (45-61) 

 

The substitution of these values of h and 

q ,and C1 and C2 from Eq.30 into 

Eqs.28 and 29 yields 

  R

iii

R

iii

L

1i hLSinh
Zc

1
q)LCosh(q 

……………………………………(31) 

  R

iii

R

iii

L

1i h)LCos(qLSinhZch 

……………………………………(32) 

In Which 
 

 i

2

ii

gAj
a

Zc



   

Equations 31 and 32 can be expressed 

in the matrix notation as 

R

i
iiii

iiii

L

1i
h

q

LCoshLsinhZc

LSinh
Zc

1
LCosh

h

q






































………………………………..........(33) 

 

Or  
R

ii

L

1i ZFZ  ……………………..….(34) 

 

Hence ,field matrix for the ith pipe is  

 




















iiii

iiii
i

LCoshLZcSinh

LSinh
Zc

1
LCosh

F

…………………...………………(35) 

If friction is neglected, i.e.,Ri=0, the Fi 

becomes 

 




















ii

i

i

i
i

CosbjSinb

Sinb
C

j
Cosb

F ……(36) 

 

In which 
i

i
i a

L
b   and  i

i
i gA

a
C   

.Note that bi and Ci are constants for a 

pipe and are not functions of ω. 

 

Point Matrices 

The point matrix is required in the 

calculation of the overall transfer matrix 

for the system, which is then used to 

determine the resonant frequencies and / 

or frequency response of the system. 

 

Series Junction 

A junction of two pipes having different 

diameters (see fig. (6)), wall 

thicknesses, wall materials, or any 

combination of these variables is called 

a series junction. 

 

It follows from the continuity equation 

that 
L

i

R

i qq  ………………………..…..(37) 

 

In addition 
L

i

R

i hh  ……………………...…….(38) 

 

If the losses at the junction are 

neglected, these two equations can be 

expressed in the matrix notation as  
L

isc

R

i zPz  ……………………..…..(39) 

 

In which the point matrix for the series 

junction is 











10

01
Psc

…………………..…..(40) 

Since Psc is a unit matrix. 

 

Oscillating Valve Discharge into 

Atmosphere 
The oscillating valve is used to control 

the efflux of energy from the system 

and it is used in pressurized piping 

system [8]. 

  

The point matrix for a valve can be 

derived by linearizing the gate equation. 

The instantaneous and mean discharge 

through a valve (fig.(8)) are given by 

the equations 

  2/1L

1nvd

L

1n gH2ACQ   ………..….(41) 

    2/1

oovdo gH2ACQ  ………..…..(42) 

Division of Eq.41 by Eq.42 yields 
2/1

o

L

1n

oo

L

1n

H

H

Q

Q












  ……………..(43) 
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In which the instantaneous relative gate 

opening 
 

 
svd

vd

AC
AC

 ,and the 

mean relative gate opening 

 
 sAC

AC

vd

ovd
o  .The subscript s 

denotes steady-state reference, or index 

, values 

The relative gate opening may be 

considered to be made up of two 

parts,i.e. 
*

o  ……………………..…..(44) 

Substitutions of Eqs.1,2 and 44 into 

eq.43 yields 
2/1

o

L*

1n

o

*

o

L*

1n

H

h
11

Q

q
1 






























  ....(45) 

If the valve motion is assumed 

sinusoidal, then 

 tj* keRe  ……………..………(46) 

In which k=amplitude of the valve 

motion 

By expanding eq.45, neglecting terms 

of higher order (this is valid only if 

o

L*

1n Hh  ),and substituting eqs.3, 4, 

and 46 into the resulting equation, we 

obtain 

o

oL

1n

o

oL

1n

kH2
q

Q

H2
h


  …..………(47) 

Since 0hR

1n  ,on the basis of eq.47 , 

we can write 

L

1n

o

o

o

oL

1n

R

1n q
Q

H2H2
hh  


 …..…(48) 

In addition, from the continuity 

equation it follows that 
L

1n

R

1n qq   …………………………(49) 

Equations 48 and 49 may be expressed 

in the matrix notation as 


















































o

o

L

1n
o

o

R

1n

kH2
0

h

q
1

Q

H2
01

h

q

……………………………...……...(50) 

 

 

The two matrix terms on the right-hand 

side may be combined as follows: 

L

1n

o

o

o

o

R

1n
1

h

q

100

kH2
1

Q

H2
001

1

h

q


























































…

……………………………..……...(51) 

To combine the matrix terms in some 

cases the state vector is defined as 

i

/

i

1

h

q

z
















 ……………………...…...(52) 

Because of the additional element with 

unit value, the column vector /

iz  is 

called the extended state vector  

On the basis of Eq.52, Eq.51 may be 

written as 
L/

1n

/

ov

R/

1n zPz   …………………..….(53) 

In which /

ovP =the extended point matrix 

for an oscillating valve and is given by 
























100

kH2
1

Q

H2
001

P
o

o

o

o/

ov ………...(54) 

Let /U be the extended overall transfer 

matrix relating the state vectors at the 

1st and the (n+1) the section of the 

system,i.e., 
R/

1

/L/

1n zUz  ……………………....(55) 

In addition 
L/

1n

/

ov

R/

1n zPz   …………………..….(56) 

Hence 
R/

1

//

ov

R/

1n zUPz  ……………….…..(57) 

 

Boundary Conditions 
From fig(8) 

At the 1st (constant head reservoir) 

0hR

1   

 

At the (n+1) section 0hR

1n   & 
R

1n

L

1n qq    
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 By substituting /

ovP from eq.54; 

multiplying the matrices /

ovP and U/ ; 

and by using boundary conditions 

13

o

o
11

o

o
21

33

o

o
13

o

o
23

R

1

u
kH2

u
Q

H2
u

u
kH2

u
Q

H2
u

q







 ….(58) 

13

R

111

L

1n uquq 
……………….....(59) 

 

In which u11,u12,….,u33 are the elements 

of the matrix, U/.By expanding eq.55 

and noting that 0hR

1    , it obtain 

23

R

121

L

1n uquh 
……………..…..(60) 

To determine the frequency response, 

the extended field and point matrices 

are first computed. Then, the extended 

overall transfer matrix is determined by 

multiplying the field and point matrices 

starting at the downstream end,i.e; 

 
/

1

/

2

/

n

/

n

/ FP.........PFU  …………….....(61) 

The value of R

1q is determined from 

eq.58, and L

1nq  and L

1nh  are computed 

from eqs.59 and 60.The absolute values 

of L

1nh  and L

1nq  are the amplitudes of 

pressure head and discharge fluctuations 

at the valve, and their arguments are, 

respectively. The phase angles between 

head and τ* and between discharge and 

τ*. 

 

If there is no other forcing function 

except the oscillating valve at the 

downstream end of the system ,ordering 

field and point matrices may be used 

instead of the extended ones. In this 

case, u13=u23=u31=0 and u33=1 in eqs.58 

through 60 [8]. 

 

The phase angle between the pressure 

head and the relative gate opening is 















)hRe(

)hIm(
tan

L

1n

L

1n1

m …………….(62) 

The phase angle between the discharge 

and the relative gate opening is 

 















)qRe(

)qIm(
tan

L

1n

L

1n1

m …………..…(63) 

The pressure head ration at the valve is 

o

L

1n

r
H

h2
h


 ……………………..…(64) 

The discharge ratio at the valve is  

 

o

L

1n

r
Q

q2
q


 ………………...………(65) 

 

Procedure for Determining the 

frequency Response 
The frequency response of piping 

systems may be determined as follows: 

 

1-Draw the block diagram and then the 

simplified block diagram for the system. 

 

2-calculate the overall transfer matrix 

by an ordered multiplication of the point 

and field matrices, starting at the 

downstream end. For this calculation, 

the block diagram of step 1 is very 

helpful. 

 

3-Use the expression developed in this 

section to determine the frequency 

response. 

 

4-If a frequency-response diagram is to 

be plotted, repeat step 2 and 3 by taking 

different frequencies. 

 

Pressure and Discharge Variation 

along a Pipeline 

It is necessary to determine the 

amplitudes of the discharge and 

pressure fluctuations along the length of 

the pipeline. 

 

Suppose that the amplitudes of the 

discharge and pressure oscillations at 

the kth section on the ith pipe (fig.9a) are 
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to be determined. Let the transfer matrix 

relating the state vectors at the first 

section of the first pipe and the first 

section of the ith pipe be designated by 

W[8] ,i.e., 

 

    
1

R

1i

R

1 zwz  ……………..……....(66) 

 

And the field matrix relating the state 

vectors at the first and the kth section of 

the ith pipe by Fx ,i.e., 

 

   
i

R

1xi

L

k zFz  ………………...……(67) 

 

In these equations, the subscript within 

the parentheses refers to the pipe 

number. The matrix W is computed by 

multiplying the point and field matrices 

for the first (i-1) pipes (see fig.9b),i.e., 

 

11i1ii F..........PFPW   …………...(68) 

And the matrix Fx is calculated by 

replacing L with x in eq.35.Note that 

the elements of the matrix W for a 

specified frequency are constants, while 

those of the matrix Fx depend upon the 

value of x as well. 

 

It follows from eqs.66 and 67 that 

   
1

R

1i

L

k zSz  ……………………... (69) 

 

In which 

11i1iixx F........PFPFWFS  …..… (70) 

The value of  
1

R

1q  is calculated from 

eq.58.furthermore, it is known that 

  0h
1

R

1  substitutions of these values 

into the expanded form of eq.69 yields 

 

   
1

R

111i

L

k qsq  …………...………...(72) 

And 

   
1

R

121i

L

k qsh  ………………...…...(73) 

 

The amplitude of the discharge and 

pressure fluctuations at any other 

section can be determined by 

proceeding in a similar manner. 

Case Study 

The details of the two series piping 

systems investigated are shown in 

fig.(10a), the friction is neglected in this 

case(R=0) and the valve motion is 

assumed sinusoidal[4] and the block  

diagram of this case is illustrated in 

fig.(10b). 

 
Computer Program 

By using (Q-Basic) language a 

computer program which is named 

(Resonance) is developed to solve 

numerical one-dimensional partial 

differential equations, unsteady state 

using transfer matrix method. The flow 

chart of the computer program is shown 

in fig.(11). 

 

Results & Discussions 

In this section, the numerical results are 

obtained by using transfer matrix 

methods . 

     The response spectrums are 

represented in a non dimensional form. 

The frequency ratio ωr , is defined as 

ω/ωth. 

           

      Fig.(12a) show the relation between 

the frequency response ratio (ωr) and 

head ratio (hr) and the results are 

compared with impedance method. 

In the impedance method the pressure 

head ratio at the valve is 

2

so

2

o

so

r

)XQ(H4

XQ8
h




 …………….(74) 

 

      In which δ =amplitude of oscillatory 

motion of valve; and Xs=real number 

denoting the imaginary part of the 

complex impedance. 

     And more details on impedance 

method it can be return to [4]. 
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The agreement between the transfer 

matrix method and impedance method 

is reasonable 

 

      fig.(12b) show the relation between 

the frequency response ratio (ωr) and 

discharge ratio (qr ). 

      The values of hr and qr determined 

by the transfer matrix method represent 

the amplitude of the swing from the 

minimum to maximum value. The 

frequency of the forcing function is 

designated by ω. 

      The oscillating valve is the forcing 

functions and the valve movement is 

taken as sinusoidal with τo=1 and k=0.5. 

      The pressure head fluctuation does 

not continue to grow during the forced 

valve movement. The answer lies in the 

fact that although the excitation 

remains, its effect becomes very small 

since the discharge is reduced to a value 

near zero in the resonating conditions as 

shown in fig.(12a) that demonstrates 

that the maximum  value of hr=2 at 

ωr=3 and fig.(12b) that demonstrates 

that the minimum value of qr=0 at ωr=3. 

Fig.(13) shows the variation in the 

pressure head at section A & B and 

fig.(14) shows the variation in the 

discharge at section A & B. 

      The phase angle between the 

pressure head and the relative gate 

opening and the phase angle between 

the discharge and the relative gate 

opening are presented in table (1). 

 

Conclusions 

It is concluded from this paper that:- 

 

1-The transfer matrix method was 

verified by comparing its results with 

impedance methods. 

 

2-The frequency response diagram 

gives a useful aid in evaluating the 

frequency response of the system. 

 

 3- The pressure head fluctuation does 

not continue to grow during the forced 

valve movement as shown in fig. (12a). 
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ωr Φm φm 

0.2 -93.17641 -3.183044 

0.4 -96.73576 -6.742381 

0.6 -101.2443 -11.25096 

0.8 -107.9189 -17.92554 

1 -120.2022 -30.20885 

1.2 -150.2127 -60.21932 

1.4 152.3755 62.38211 

1.6 120.0508 30.05743 

1.8 106.8753 16.88193 

2 99.60407 9.610703 

2.2 94.35714 4.363767 

2.4 -90.46196 -0.4685906 

2.6 -96.43787 -6.44449 

2.8 -108.5118 -18.5184 

3 -178.8325 -88.8391 

3.2 108.8317 18.83833 

3.4 96.55218 6.558803 

3.6 90.53909 0.5457221 

3.8 -94.28376 -4.290385 

4 -99.51443 -9.521064 

4.2 -106.7362 -16.74278 

4.4 -119.7625 -29.76917 

4.6 -151.6133 -61.61988 

4.8 150.937 60.94361 

5 120.474 30.48068 

5.2 108.0496 18.05618 

5.4 101.3251 11.33175 

5.6 96.79534 6.801967 

5.8 93.22669 3.233319 

6 90.04095 4.757981E-2 

 

 

     Φm= The Phase Angle Between The Pressure Head & The Relative Gate 

Opening(Degree) 

    φm= The Phase Angle Between The Discharge & The Relative Gate 

Opening(Degree) 

 

 

 

 

 

 

Table (1) Phase Angles (degree) 
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t
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Figure (3).Instantaneous ,Mean ,and 

Oscillatory Discharge 

Figure (4).Block Diagram for One-

Component System 
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Figure (5).Single Pipeline 
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Figure (7).Block Diagram 
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Pipe n

1st

Figure (8).Valve at Downstream End of 

Pipeline 
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Figure (10b) Block Diagram 

1o 

Reservoir

H
o

Qo

Pipe 1
Pipe 2

1 2 3L1=579m

a1=1158m/s

D1=0.61m

L2=1097m

a2=1097m/s

D2=0.3m

X=250m X=250m

Section B Section A Oscillating Valve

(Sinusoidal Motion)

Head of Reservoir (Ho)=30.38m

Steady-State Mean Discharge=0.0089m
3
/sec

&k=0.5

F1 F2

R LL R

1 2 32

U=F1PscF2

1 3

LR

Psc

Figure (10) Frequency response of a series piping system 
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 Fig.(11) Flow Chart of Computer Program 

Resonance 

start

Input Data of Pipe1 & 
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Calculate Tth from eq.(5) 

and    from eq.(6) 
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w=wth*wr

1

1

Calculate Fi for Pipe & Pipe2 

from eq.(36)

Calculate U
/
 Matrix from 

eq.(61)

Calculate q1
R
 From eq.(58)

Calculate qn+1
R
 From eq.(59) 

& hn+1
R
 From eq.(60)

Calculate        From eq.(62) &  

From eq.(63)

Calculate hr From eq.(64) & 

qr From eq.(65)

Subroutine Section A

Calculate (q
l
k)i From eq.(71) 

& (h
l
k)i From eq.(72)
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Calculate (q
l
k)i From eq.(71) 

& (h
l
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