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Abstract 

A numerical study using (FEM) has been carried out to investigate the effect of 

some parameters on the stress concentration factor in a plate, having different types of 

cutout and subjected to uniaxial tension.  These parameters include the location of 

cutout, orientation of cutout with respect to the axis of loading, radius of bluntness of 

cutout and the thickness of the plate. Maximum values of  stress concentration factor 

(SCF) were found in cases of: 1. the cutout is in the center of the plate, 2. the angle of a 

corner of cutout is bisected by an axis perpendicular to the loading axis, 3. the corners 

of cutout are sharp (zero radius), and 4.the plate is very thin. 
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 دراسة عددية لتمركز الإجهاد في صفيحة مشدودة

 
 الخلاصة:

أجريت دراسة عددية بأستخدام طريقة العناصر المحددة لغرض البحث في تأثير بعض العوامل على      
 معامل تمركز الأجهاد في صفيحة تحتوي على قطوعات مختلفة و معرضة لشد محوري احادي.

قع القطع ، أتجاه القطع بالنسبة لمحور التحميل ، نصف قطر حافة القطع و تضمنت هذه العوامل مو  
أظهرت الدراسة ان معامل تمركز الأجهاد يبلغ ذروته في الحالات التالية : عندما يكون القطع في  سمك الصفيحة.

ون حافات عندما تك مركز الصفيحة. عندما تكون زاوية حافة القطع منصفة بمحور عمودي عاى محور التحميل.
 عندما تكون الصفيحة رقيقة جداً. القطع حادة )نصف قطر يساوي صفر( و أخيراً.

 

 صفائح، ثقوب، معاملات التمركز، العناصر المحددة، الشد.: الكلمات الدالة
 

Introduction 

Plates of various constructions 

find wide uses as primary structural 

elements in both modern and classical 

structures. In recent years, the 

increasing need of lightweight efficient 

structures has led the structural engineer 

to the field of structural shape 

optimization. Different cutout shapes in 

structural elements are needed to reduce 

the weight of the system and provide 

access to other parts of the structure. It 

is well known that the presence of a 

cutout or hole in a stressed member 

creates highly localized stresses at the 

vicinity of the cutout. The ratio of the 

maximum stress at the cutout edge to 

the nominal stress is called the stress 

concentration factor (SCF).       

Monahan et al. 
[1]

 applied the 

finite element on a clamped rectangular 

plate with a rectangular hole and 

verified the numerical results by 

experiments. Paramasivam 
[2]

 used the 
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finite difference method for a simply – 

supported and clamped rectangular plate 

with a rectangular hole. Aksu and Ali 
[3]

 

also used the finite element method to 

analyze a rectangular plate with more 

than two holes. Rajamani and 

Prabhakaran 
[4]

 assumed the effect of 

the hole is equivalent to an externally 

applied loading and carried out a 

numerical analysis based on this 

assumption for a composite plate. 

Rezaeepazhand and Jafari
[5]

 

investigated analytically the stress 

analysis of plates with different central 

cutouts in an infinite plate under 

uniaxial tension. The analysis included 

the effect of cutout shape, bluntness, 

and orientation on the stress 

concentration factor. 

Rajab
[6]

 studied the effect of 

single and multiple notches and holes 

on the stress concentration factor. 

Rectangular plates having triangular, 

square and hexagonal cutouts were 

loaded in tension, and the stress 

concentration factor was determined 

using photoelasticity and finite element 

techniques.    

Lam et al.
[7]

 divided the 

rectangular plate with a hole into 

several subareas and applied the 

modified (RRM). Lam and Hung 
[8]

 

applied the same method on a stiffened 

plate. The admissible functions used in 

Refs.
[7,8]

 are the orthogonal polynominal 

functions proposed by Bhat 
[9-10]

. Laura 

et al. 
[11]

 calculated the natural vibration 

characteristic of a simply - supported 

rectangular plate with a rectangular hole 

by the classical (RRM). Sakiyama et al. 
[12]

 analyzed the natural vibration 

characteristic of orthotropic plate with a 

square hole by means of the Green 

function assuming the hole as an 

extremely thin plate. The vibration 

analysis of a rectangular plate with a 

circular hole dose not lend an easy 

approach since the geometry of the hole 

is not the same as the geometry of the 

rectangular plate.Takahashi 
[13]

 used the 

classical (RRM) after deriving the total 

energy by subtracting the energy of the 

hole from the energy of the whole plate.  

Theocaris and Petrou 
[14]

 used 

Schwarz –Christoffel transformation to 

evaluate the stress concentration factor 

for an infinite plate with central 

triangular cutout. Stress and strain 

distributions along the border of 

rectangular cutout in an infinite elastic 

plate were presented by Theocams and 

Petrou
[15]

. Lasko et al.
[16]

 used relaxation 

element method to determine the stress 

fields in a plate with three circular 

cutouts. Ultimate strength of metallic 

plates with central circular cutout under 

shear loading was investigated by Paik 
[17]

. 

Ulza and Semercigilb 
[18]

 used 

standard finite elements to present 

numerical modeling of dynamic 

behavior of perforated plates. They 

explored the possibility of employing the 

cutout as a vibration absorber for 

controlling the vibration of plates. Effect 

of electromechanical coupling on stress 

concentration factors of perforated 

isotropic piezoelectric materials was 

presented by Dai et al. 
[19]

.    

Rezaeepazhand and Jafari 
[20] 

investigated stress analysis of composite 

plates with noncircular cutout subjected 

to bending load. Furthermore, the effect 

of cutout shape and load direction on 

maximum stresses of perforated 

composite plates with quasi – square 

cutout was presented. 

Despite the importance of SCF in 

cutouts, little attention has been paid to 

stress concentration factor in plates with 

special shaped cutouts. It would be thus 

of interest to investigate SCF in more 

general and practical cutouts. 

The present work focuses on the 

effect of cutout type, cutout location, 

cutout rotation, cutout bluntness and 

plate thickness on stress concentration 

factor. 
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Theoretical Considerations 

The uniform distribution of 

stresses in sections loaded with tension 

or compression, can be found only in 

the areas which are somewhat far from 

the influence of loads assuming that the 

dimensions are fixed or changing 

gradually. If the dimensions change 

dramatically, the distribution of stresses 

in the cross-section is non uniform 
[21]

. 

The phenomenon of sharp increase in 

stress in these places is called a stress-

concentration and stresses in places of 

concentration can be determined 

experimentally or using the method of 

the theory of elasticity. The theoretical 

stress concentration factor, which is 

symbolized by Kt is the proportion of 

the greatest stress to the nominal stress. 

 

Kt = σMaximum / σNominal …………....(1) 

   

Nominal stress means the stress 

which is determined by the usual 

strength of materials without taking into 

account the effect of concentration, and 

the theoretical stress-concentration 

factor Kt, which is determined on the 

assumption that the material follows 

Hook's law, does not give the actual 

effect of concentration of stress on 

strength of the part in many cases 
[21,22]

. 

If the material follows Hook's law 

before failure, the strength of the part 

with stresses concentrated will be less 

than that of no concentration of stress 

by Kt times. This decrease is determined 

experimentally by the ratio of the 

endurance limit (σE) of the part without 

stress concentrations to the endurance of 

the part including the centralized 

stress(σEC). 

 

Kf = σE / σE …………………………(2) 

 

Kf is known as the fatigue stress 

concentration factor. Therefore, 

experiments showed that in static 

loading, especially for plastic elements 

Kf =1 and this means that the stress 

concentration is taken into consideration 

only for parts made of brittle materials 

or materials of limited plasticity and on 

impact loading, the stress concentration 

is taken into account for all materials
[21]

. 

The abrupt changes in the sections 

has a special significance in the design 

of machine parts machines which are 

subjected to external forces and 

dynamic stresses, where the stress 

exceeds at some points of change in the 

section the average stress, and if there is 

a variable stress it is probable to initiate 

cracking at these points. Note that most 

of the failures are attributable to this 

kind of cracks
[22]

. 

Designers often ignore the 

concentration of stress, but they reduce 

the error arising from this ignorance by 

using high values of safety factor when 

analyzing the stresses, although this 

does not justify the ignorance of 

concentration of stress in cases in which 

it plays an important role. To 

understand the mechanism of 

concentration of stresses assume the 

strip shown in Fig.(1A), then the tensile 

stress of a non-perforated strip is: 

 

       ……………(3) 

 

 

In the perforated strip with a 

central hole of diameter (d), Fig.(1B), 

away from the hole the stress remains 

uniform across the section at σnom 

whereas the value of the nominal stress 

through the hole is σ = F / [(d-b)t], and 

it is uniform at points far from the edge 

of the hole. The stress at the edge of the 

hole is in fact greater than this value. 

Therefore, if the factor of safety is less 

than the stress concentration factor Kt 

the engineering part will fail, hence it is 

necessary not to rely on safety factors in 

order to avoid failure due to 

concentration stress 
[23,24]

. 

Many efforts have been made to 

calculate the stress in a strip containing 

a central circular hole when subjected to 

).( tb

F

A

F
nom


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tension. The analysis showed that there 

is a high concentration of stress at both 

edges of hole parallel to the direction of 

loading. When the size of the hole is 

small compared to the width of strip, it 

is possible to calculate the value of 

stress at any point located at a distance 

(a) from the center of the hole, shown in 

Fig.(2), by 
[24]

 : 

 

 

                                                       ….(4) 

 

 

If σ indicates the stress at both 

ends of the strip d = hole diameter(2r) 

twice the radius of the hole), therefore 

the maximum value of stress at the 

edges of hole parallel to the axis of 

loading i.e. when r = a is equal(σmax = 

3σ): this value decreases when moving 

away from the edges 
[22]

. Stress 

components were calculated using the 

elastic analysis; these are the radial 

stress(σr) and tangential stress(σθ), and 

shear stress(σs), which are calculated at 

a distance (a) from the center of a 

circular hole of radius (r) in an infinite 

strip subjected to tension, as shown in 

Fig.(2) as
[24]

: 

                                                   

                                                     …...(5) 

 

                                        

 

 

 

 

                                    ………………(6) 
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When (a = r) and the value of the 

angle(θ
o 

= 0
o
 , 180

o
), the tangential 

stress at the edges of the hole, the upper 

and the lower (A,B), will be: σθ = - σ. 

Also, if (a = r) and the value of the 

angle (θ
o 

= 90
o
, 270

o
), the tangential 

stress at both edges of the hole at the 

side(D,C), will be: σθ= 3 σ = σmax. 

 

Numerical Work 

The numerical work was all done 

using the FEM-based commercial well-

known software ANSYS. A short 

review of the method as well as the 

equations employed in a classical run by 

the software was attached in the 

Appendix.    

Four types of cutout were selected 

throughout the program of numerical 

work. These are circular, triangular, 

square and pentagonal cutouts. In all 

cases a flat plate, having length of (2L) 

= 100 mm, width of (2B) =100mm, 

thickness of (t =1mm) and hole radius 

of (R = 2mm), was subjected to pure 

tension, see Fig.(3). Typical values for 

the mechanical properties of an 

isotropic material of the plate were 

chosen, namely E= 200 GPa,  = 0.3. 

 It should be noted that the 

element type employed in the present 

work was PLANE145 which may be 

used as a plane stress element. This 

element is a triangular, six node element 

having two degrees of freedom at each 

node (linear displacements)
[25]

. 

As usual, advantage was taken of 

symmetry so that more elements could 

be used especially at the cutout corner 

where highly-localized stress is 

expected. Convergence tests were also 

made for optimizing, the various types 

of meshes. 

Total number of 174 runs was 

exacted in the present work. 

In order to facilitate presentation 

of the present work, the various 

parameters that affect the stress 

concentration factor were grouped as 

follows: 

Group 1: deals with the effect of 

cutout location along an axis (x) 
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displaced by an angle (θ) from the axis 

of loading, see Fig.(3). Three values of  

(θ) were examined, namely (0
o
,45

o
 and 

90
o
).  

Group 2: deals with the effect of 

angle of rotation (θ) of a central cutout 

with respect to the axis of loading, see 

Fig.(3) . Values of (θ) up to 90
o
 were 

examined. 

Group 3: deals with the effect of 

corner sharpness of a central and non-

rotated cutout, see Fig.(4).Values of (rc 

/R) as high as (1), were examined. 

Group 4: deals with the effect of 

the plate thickness. Values of (t/B) in 

the range (0.01 – 0.03) were examined. 

 

Results and Discussion 

As mentioned earlier, four groups 

of parameters were examined to reveal 

its effect on the stress concentration 

factor in a uni-axially – tensioned plate 

with different types of cutout. 

Therefore, the results found and 

discussed, were grouped in the same 

manner, as follows: 

Group1: The effect of cutout 

location (x/l), along an axis (x) 

displaced by an angle (θ) of (0
o
,45

o
 and 

90
o
), is shown in Figs.(5, 6 and 7) 

respectively. In these figures, the (SCF) 

increases as the number of sides in a 

cutout decreases, i.e as a cutout is 

changed from circular to pentagonal, to 

square and to triangular cutout. Thus 

(SCF) of a hexagonal cutout will be less 

than a pentagonal one, but still it is 

higher than a circular cutout. 

This result is seen to confirm the 

work by Rezaeepazhand and Jafari 
[5] 

and Rajab 
[6]

 who used a hexagonal 

cutout in addition to the presently used 

types of cutouts. Moreover, this result 

validates the results obtained using the 

present numerical work. It should be 

noted that, in general, there is an 

agreement among many researchers that 

any type of cutout other than circular 

will be accompanied by an increase in 

the value of SCF. The reason is 

normally attributed to the presence of 

sharp corners in the cutouts other than 

circular ones. 

Moreover, these figures show 

almost a general trend of decreasing in 

(SCF) values with the cutout location up 

to( x/l = 0.4) above which the(SCF) 

restores its value at( x/l = 0.7). The 

somewhat irregular changes in (SCF) 

values are attributed to the Saint 

Venant's principle which states that 

there are considerable changes in the 

state of stress near the loading points. 

The most interesting result displayed by 

these figures , that the presence of a 

circular hole at locations, other than the 

center of plate, would be beneficial 

especially at locations near x/l = 0.15. 

Group 2: The effect of rotation 

angle (θ) of a central cutout is shown in 

Fig.(8). In this figure, it is well apparent 

that the (SCF) for a given type of cutout 

is fluctuating between minimum and 

maximum values at equal intervals of 

rotation angle. Thus, for the triangular 

cutout, the (SCF) fluctuates 

between4.75 to 5.25 every 30
o
 of 

rotation; for the square cutout, the 

(SCF) fluctuates between3.75 to 4.25 

every 45
o
 of rotation; for the pentagonal 

cutout, the (SCF) fluctuates between 

3.65 to 3.85 every 36
o
 of rotation. As 

the rule, the maximum value of (SCF) 

for a given cutout occurs at a corner 

when an axis, perpendicular to the axis 

of loading, bisects the angle of that 

corner. 

A relevant work was conducted by 

Rajab 
[6]

 who found similar intervals 

during which the SCF value is 

fluctuating. Besides, it was concluded 

that down to a value of SCF = 2.88 

would be attained when rotating a 

square cutout through 10
o
; a result 

which is not the case in the present 

work which reports an optimum angle 

of 30
o
 corresponding to a value of SCF 

= 3.75. 

A less relevant study by 

Rezaeepazhand and Jafari 
[5]

 , who used 

5 
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anisotropic material, found optimum 

values of angle of rotation of both the 

cutout orientation and loading axis.  

 Group 3: The effect of corner 

radius (rc /R) is shown in Fig.(9), where 

the value of (SCF) for a given cutout 

decreases nearly at constant rate as the 

corners are being rounded or the radius 

of curvature is increased . When rc 

approaches R the cutouts change in 

shape to different shapes close to a 

circular one. To mention, in particular, 

the pentagonal cutout is reshaped to a 

circular one where the (SCF) 

approaches the well known value of (3). 

This result reflects the common 

reasoning that the rounding of sharp 

corners minimizes the stress 

concentration. Moreover, a larger radius 

of corner will further minimize the 

stress concentration. 

It should be mentioned herein that 

a value of SCF = 2.6 was reported by 

Rezaeepazhand and Jafari 
[5]

 when using 

a square cutout of rounded corners if the 

cutout is rotated through an angle of 

45
o
. This result seems to be 

questionable in view of the present 

results in which neither rotating the 

cutout nor nor the rounding of corners 

succeeds in lowering the value of SCF 

below a value of SCF = 3.     

Group 4: The effect of thickness 

of the plate is shown in Fig.(10). The 

values of thickness were intentionally 

selected in the range where the plane 

stress state is maintained. It is 

interesting to note that the values of 

(SCF), decreases as the thickness is 

increased; a result which is missed in 

assumptions made by many researchers. 

Should the thickness increased 

beyond those of Fig.(10), a transfer 

from plane stress to a plane strain state 

may occur. The transition range of 

thickness so obtained needs extensive 

work in future. 

 

 

 

Conclusions   
To summarize the main 

conclusions drawn out of the present 

work: 

1. The location of a cutout at points 

other than the center seems to 

decrease the values of (SCF) in a 

manner dictated by restriction due to 

Saint Venant's principle. 

2. Maximum value of (SCF) at a 

corner is attained, for a given type 

of cutouts, when an axis, 

perpendicular to the axis of loading, 

bisects the angle of that corner. 

3. Increasing the radius of bluntness 

decreases the values of (SCF). 

4.   The thickness of the plate does have 

an effect on the values of (SCF). Lower 

values of     (SCF) are attained upon 

increasing the thickness of a plate. 
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Figure (1): Stress concentration effect 

of a hole [24] 
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o
. 
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Figure (8): Effect of angle rotation of cutout on the 

S.C.F. 

 

      

      

  

 

 

 

 

 

 

 

      

  

Figure (7): Effect of location of cutout on the 

S.C.F at θ = 90
o
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[25]

 

Introduction 

The F.E.M. is a numerical 

technique in which the governing 

equations are represented in matrix form 

and as such are well suited to solution 

by digital computer. The solution region 

is idealized as an assemblage of small 

sub-regions called finite elements. 

When applied to the analysis of a solid 

the idealization becomes an assemblage 

of a discrete number of elements each 

with a limited or  FINITE  number of 

degrees of freedom (D.O.F.). The 

ELEMENT is the basic " building unit", 

with a predetermined number of D.O.F.   

Elements are considered to be 

connected at discrete joints known as 

nodes. Implicit with each element type 

is the nodal force-displacement 

relationship, namely the element 

stiffness property. Analysis requires the 

assembly and solution of a set of 

simultaneous equations, to provide the 

displacements for every node in the 

model. Once the displacement field is 

determined, the strain and hence 

stresses can be derived, using the strain-

displacement and stress-strain relations, 

respectively. 

 

F.E.M. solution of plane stress 

problem:  

The three-nodded triangles, shown 

in Fig. A, has been chosen herein, to 

illustrate the general procedure since it 

provides the simplest two-dimensions 

element for linear plane-stress analysis. 

 

Formulation of element matrices and 

vectors: 

 Each node of the element, shown 

in Fig. A, is assumed to have two 

D.O.F., namely u and v displacements 

in the x and y-direction, respectively. 

 

Interpolation polynomial: 

 They are functions that are used 

to represent the behavior of the solution 

within an element. In the present 

example the assumed interpolation 

polynomial with describe the 

displacements, and hence called the " 

displacement function". 

Both u and v displacements are 

assumed to very linearly in the x and y 

directions, respectively, i.e: 

u(x,y) = α1 + α2 x + α3 y 

v(x,y) = α4 + α5 x + α6 y        

or, in matrix form: 

 













































6

5

4

3

2

1

1000

0001













yx

yx

v

u
..( A1) 

 

Substituting boundary conditions 

at x = xi  and  y = yi ,   u = ui  and  v = vi 

at x = xj  and  y = yj ,   u = uj  and  v = vj 

at x= xk and  y = yk ,   u = uk  and  v = vk 

gives: 





































































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







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j

i
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yx

v

v

v

u

u

u

                                                                                

 

Or more concisely: 

{p}= [A] {α} ……………….(A2) 

 

Formulation of element stress-strain 

matrix: 

The stress-displacement relations 

for a plane stress condition are: 

 

,
x

u
xx




                            ,

y

u
yy




  

,
x

u

y

u
xy









  …………………...(A3) 

 

Where xx , yy  and xy  are 

respectively, the direct strains parallel to 
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x and y axes and the shear strain in the 

xy plane. 

In matrix form: 

 

{ }= 

































































v

u

xy

y

x

xy

yy

xx

0

0







 ….…..(A4) 

 

Substituting from Eq. Al gives: 

 

{ }= 





























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




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
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010100

100000

000010
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









 

 

Which is of the form:   

 { }= [B] {α}……………………( A5)                                                                                     

For plane stress conditions (σzz = 

σxz = σxy = 0) and isotropic material, the 

stress-strain relations in matrix form 

are: 

 

{σ}= 






































2

1
00

01

01

1 2












E

xy

yy

xx

{ } 

 

i.e:  

{σ}= [D] { } …………………….(A6) 

 

Where  σxx, σyy and σxy are 

respectively, the direct stresses parallel 

to x and y axes and the shear stress in 

the xy plane, and [D] is known as the " 

elasticity matrix". 

 

Formulation of element stiffness 

matrix: 

Equating the total, internal and 

external, virtual work yield the 

generalized coordinate stiffness: 

 

     
vol

T dvBDBk  ……………...(A7) 

 

Since both matrices [B] and [D] 

are independent of the x and y 

coordinates, hence: 

 

[k] = at [B
T
][D][B]  ………………(A8) 

 

Where (a) is the area of the 

element and (t) is the element thickness 

(assumed to be constant). 

 

Assembly of elements: 

The assembly process to obtain 

the structure stiffness matrix, [k] can be 

written as: 

 

   



m

i

ikk
1

 ………………………( A9) 

 

Where [ki] is the stiffness matrix 

of the ith element and m is the total 

number of elements in the assemblage. 

In the same manner, the structure 

load vectors {p} are assembled, i.e: 

 

 {p} = 


m

i 1

{pi} …………………( A10) 

 

Solution of the structure equilibrium 

equations: 

Once the boundary conditions 

have been applied, the system of equs.: 

{P } = [k] {p}  

Can be solved using direct or 

iterative methods. 

 

Computation of element results: 

The solution of the final equations 

will provide the vector of global nodal 

displacements {pα} for the enter 

structure. 

Element stresses can now be 

expressed in terms of nodal 

displacements by use Eqs. A6,A5 and 

A2. i.e.: 
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{σ}= [D][B][A
-1

]{Pe} 

 

Or, more fully, 

   
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Figure A: Three-nodded triangular plane 

element [25].  
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