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Abstract  

In this article, multi-input multi-output (MIMO) linear model predictive 

controller (LMPC) based on state space model and nonlinear model predictive 

controller based on neural network (NNMPC) are applied on a continuous stirred tank 

reactor (CSTR). The idea is to have a good control system that will be able to give 

optimal performance, reject high load disturbance, and track set point change. In order 

to study the performance of the two model predictive controllers, MIMO Proportional-

Integral-Derivative controller (PID) strategy is used as benchmark. The LMPC, 

NNMPC, and PID strategies are used for controlling the residual concentration (CA) and 

reactor temperature (T). NNMPC control shows a superior performance over the LMPC 

and PID controllers by presenting a smaller overshoot and shorter settling time. 

 

Keywords: Linear Model, Model Predictive Control, Neural Network, Continuous 

Stirred Tank Reactor.  

 

ة المدخلات والمخرجات الخطية وغير الخطية للمفاعل ذو السيطرة التنبؤية النموذجية متعدد
 الخلط المستمر

 الخلاصة
( LMPCدخلات والمخرجات للمسيطر من نوع النموذج التنبؤي الخطي )في هذه المقالة ، متعدد الم 

غير الخطي والمعتمد على نوذج الشبكة لمسيطر من نوع النموذج التنبؤي والمعتمد على نموذج فضاء الحالة وا
ث هو للحصول على نظام ( تم تطبيقهما على المفاعل ذو الخلط المستمر . الفكرة من البحNNMPCالعصبية )

يستطيع تتبع مجموعة من قادر على اعطاء افضل اداء ، رفض اضطراب عالي لمتغيرات الحمل ، و ة جيد سيطر 
القيم المرغوب فيها. لغرض دراسة ادائية انظمة السيطرة التنبؤية فان متعدد المدخلات والمخرجات للمسيطر ذو 

ات المستخدمة في هذا البحث استخدمت ( تم استخدامه كمقارن . كل انواع المسيطر PIDالتغذية المرتدة من نوع )
من نوع النموذج التنبؤي للسيطرة على تركيز المادة المتبقية للمادة المتفاعلة ودرجة حرارة المفاعل . ان المسيطر 

يظهر تفوق في الاداء على المسيطر من نوع النموذج التنبؤي الخطي ومسيطر التغذية المرتدة من غير الخطي 
     مة لتجاوز الحد واقصر وقت لزمن الاستقرار .خلال تقديم اصغر قي

 
 النموذج الخطي ، سيطرة النموذج التنبؤي ، الشبكة العصبية ، المفاعل ذو الخلط المستمر  الدالة: الكلمات 
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Introduction 

      In any manufacturing process, 

where there is a chemical change taking 

place, a chemical reactor is at the heart 

of the plant. Depending on mode of 

operation, reactors are classified as 

batch-wise or continuous. In batch-wise 

mode, reactants are charged at the 

beginning of the reaction and products 

are removed at the end of the reaction. 

In continuous stirred tank reactor 

(CSTR), reactants are continuously 

charged and products are continuously 

removed.  

      Thermodynamic systems, and 

among them chemical reaction systems, 

are usually nonlinear dynamical 

systems. They can therefore have a 

complex behavior and be difficult to 

analyze and control. Stirring tank 

reactor exhibits nonlinear operations 

where reaction is exothermic. Thus, 

performance prediction becomes more 

difficult with high degree of 

nonlinearity. 

      Therefore, and with the advent of 

high-speed computer systems in 

addition to giant programs such as 

(MATLAB, SIMULINK, LABVIEW… 

etc), there is more increase interest in 

the study for these types of systems. 

      Process control has become an 

integral part of process plants. An 

automatic controller must be able to 

facilitate the plant operation over a wide 

range of operating conditions. The 

proportional-integral (PI) or 

proportional-integral-derivative (PID) 

controllers are commonly used in many 

industrial control systems. These 

controllers are tuned with different 

tuning techniques to deliver satisfactory 

plant performance. However, specific 

control problems associated with the 

plant operations severely limit the 

performance of conventional 

controllers. The increasing complexity 

of plant operations together with 

tougher environmental regulations, 

rigorous safety codes and rapidly 

changing economic situations demand 

the need for more sophisticated process 

controllers 
[1]

. 

      Model Predictive Control (MPC) is 

an important advanced control 

technique which can be used for 

difficult multivariable control problems 
[2]

. 

      The term MPC describes a class of 

computer control algorithms that 

control the future behavior of the plant 

through the use of an explicit process 

model. At each control interval the 

MPC algorithm computes an open loop 

sequence of manipulated variable 

adjustments in order to optimize future 

plant behavior. The first input in the 

optimal sequence is injected into the 

plant, and the entire optimization is 

repeated at subsequent control intervals 
[3]

. 

      Model predictive control (MPC) has 

become a first choice of control strategy 

in industry because it is intuitive and 

can explicitly handle multivariable 

systems with constraints. The basic 

control strategy in MPC is the selection 

of a set of future control moves (control 

horizon) and minimizes a cost function 

based on the desired output trajectory 

over a prediction horizon with a chosen 

length. This requires a reasonably 

accurate internal model that captures the 

essential on linearities of the process 

under control and predicts the dynamic 

behavior 
[4]

. 

      In this search, the continuous stirred 

tank reactor (CSTR) was controlled by 

using three different controller types 

which are: linear, nonlinear model 

predictive controller, and the 

conventional feedback controller which 

used as a comparable. The steady state 

calculations, dynamic behavior, and 

controllers programs was developed by 

several SIMULINK models.     
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      In the next section, the 

mathematical model of CSTR is 

described. The feedback and model 

predictive controller are explained in 

sections three and four. In the section 

five, the SIMULINK environment is 

described. Finally, the results are 

discussed in section six. 

 

CSTR Mathematical Model 

      The first step in the studying of the 

dynamic behavior and control of CSTR 

is to develop a mathematical model 

depending on mass and energy balances 

that can be considered the gate for all 

works. 

      Suppose first order irreversible 

exothermic reaction (A → B) in a 

Continuous Stirred Tank Reactor as 

shown in Figure (1). The heat generated 

by the reaction is removed using a 

cooling jacket surrounding the reactor. 

Perfectly mixing is assumed in CSTR 

and the change in volume due to 

reaction is negligible. The jacket water 

is assumed to be perfectly mixed, the 

mass of the metal walls is considered 

negligible, and constant hold up of the 

water in the jacket. 

The reactor mass and energy equations 

are: 

Over all Mass Balance 
 

  

  
                                            

 

(Since the volume of the reactor is 

constant), therefore: 
 

                                                
 

Component (A) Mass Balance 
 

    

  
              

       
     ⁄        

 

Since (V) is constant and from equation 

(2), equation (3) becomes: 

 

   

  
 

 

 
    

 

 
  

      
     ⁄          

 

Heat Balance 
 

 
     

  
                   

         
     ⁄  

                    
 

Since (V) is constant, the specific heat 

(Cp) is not function of Temperature, 

and from equation (2), equation (5) 

becomes: 
 

  

  
 

 

 
    

 

 
  

       
     ⁄  

   

 
  

    
             

 

Energy Balance on the Jacket 
 

       

   

  
                 

                      
 

After simplification, equation (7) 

becomes:   
  

   

  
 

  

  

         

  
  

       

       

                                                          
 

      The variables and nominal CSTR 

parameter values are shown in table (1). 
 

Feedback Controller 

      Currently, the Proportional-Integral-

Derivative (PID) algorithm is the most 

common control algorithm used in 

industry. Often, it is use to control 

processes that include heating and 

cooling systems, fluid level monitoring, 

and pressure control. In PID control, a 

process variable and a set point must be 
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specific. The process variable is the 

system parameter determines to control, 

such as temperature, concentration and 

the set point is the desired value for the 

controlling parameters. The PID 

controller compares the controlled 

variable value with the set point value 

to compute the error. 
               
                
                                     

                                             
      Depending on error value, a PID 

controller determines a controller output 

value, such as the heater power or valve 

position. The controller applies the 

controller output value to the system 

(manipulated variable), which in turn 

drives the process variable toward the 

set point value. 

      The most important types of 

industrial feedback controllers include: 

on-off controller, proportional 

controller (P), Proportional-Integral 

Controller (PI), Proportional-Derivative 

Controller (PD), Proportional-Integral-

Derivative Controller (PID). 

      For most processes, the PID 

controller is the best one of the above 

types since it compromises between the 

advantages and disadvantages of PI and 

PD controllers. 

The PID controller action U (t) 

can be expressed as 
[5]

: 

 

       [    

 
 

  
∫       

 

 

   
     

  
]               

 

      Where:   =proportional constant, 

  = integral time constant, 

  =derivative time constant, E(t) = the 

tracking error, U(t) = the controller 

action that will pass to the plant to 

adjust the appropriate manipulated 

variable. 
 

Model Predictive controller (MPC) 
      Model predictive control (MPC) 

refers to a wide class of control 

algorithms that use an explicit process 

model to predict the behavior of a plant. 

      Model predictive control was 

conceived in the 1970s primarily by 

industry. Its popularity steadily 

increased throughout 1980s. At present, 

there is little doubt that it is the most 

widely used multivariable control 

algorithm in the chemical process 

industries and in other areas. While 

MPC is suitable for almost any kind of 

problem, it displays its main strength 

when applied to problems with 
[6]

: 

1- A large number of manipulated and 

controlled variables. 

2- Constraints imposed on both the 

manipulated and controlled variables. 

3- Changing control objectives and/or 

equipment (sensor/actuator) failure. 

4- Time delays. 

      Over 30 years, there are a wide 

variety of MPC algorithms have been 

developed. The fundamental framework 

of MPC algorithms is common for any 

kind of MPC schemes. The main 

differences in many MPC algorithms 

are the types models used to represent 

the plant dynamics and the cost function 

to be minimized. The basic elements of 

MPC are illustrated in Figure (2) and 

can be defined as follows 
[7]

: 

      An appropriate model is used to 

predict the output behavior of a plant 

over a future time interval or normally 

known as the prediction horizon (P). 

For a discrete time model this means it 

predicts the plant output from  ̂      

to  ̂      based on all actual past 

control inputs u(k),u(k-1),...,u(k-j) and 

the available current information y(k). 

      A sequence of control actions 

adjustments (Δu(k|k-1)… Δu(k+m|k-1)) 
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to be implemented over a specified 

future time interval, which is known as 

the control horizon (m) is calculated by 

minimizing some specified objectives 

such as the deviation of predicted 

output from set point over the 

prediction horizon and the size of 

control action adjustments in driving the 

process output to target plus some 

operating constraints. However, only 

the first move of computed control 

action sequence is implemented while 

the other moves are discarded. The 

entire process step is repeated at the 

subsequent sampling time. 

      A nominal MPC is impossible, or in 

other words that no model can 

constitute a perfect representation of the 

real plant. Thus, the prediction error, 

ε(k) between the plant measurement 

ym(k)  and the model prediction  ̂    
will always occur. The ε(k) obtained is 

normally used to update the future 

prediction. Figure (3) illustrated the 

error feedback of MPC. 

      Recently, the MPC is actually a 

synonym to Linear Model Predictive 

Control (LMPC). Most of the MPC 

software available in the market 

nowadays used linear models even 

though most processes are nonlinear 
[8]

. 

      LMPC algorithms employ linear or 

linearized models to obtain the 

predictive response of the controlled 

process. There are many LMPC 

algorithms and all similar in the sense 

that they rely on process models to 

predict the behavior of the process over 

some future time interval, and the 

control calculations are based on these 

model predictions. 

      In this work, LMPC based on state 

space model is used. The general 

discrete time linear time invariant (LTI) 

state space based model predictive 

control used in the MATLAB toolbox is 

described as follows 
[9][10]

: 

      The controller design is based on a 

model of the open loop process. 

 

                   
       
                             

                                                 
                                       
 

      Where: y(k) and z(k): are vectors 

with measured and noise free process 

variables. 

x(k): is the vector with state variables. 

u(k): is the vector with manipulated 

outputs. 

d(k): is the vector with measurable 

disturbances. 

w(k) and v(k): are noise vectors and 

assumed to be white noise sequences. 

(A, Bu, Bd… etc): are constant matrices 

of appropriate size.  

      Integrators are introduced by using 

an extended state space model that uses 

the differentiated state vector Δx(k) = 

x(k) – x(k-1) and the controlled outputs 

z(k) of above model equations (11, 12, 

and 13). This gives: 

 

 ̅       ̅ ̅     ̅      
  ̅      
   ̅                        

      ̅ ̅                                          

                                       
 

      The state vector is estimated using a 

state observer. It is based on the model 

of eq. (14, 15, and 16). The observer is 

given by: 

 

           ̅ ̅                   
 ̂         ̅ ̂         ̅      

  ̅      
                           

 

      The observer (17, 18) provides the 

one step ahead prediction of the 

extended state vector. Further 

predictions are obtained by repeated use 
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of equations (14, 15, and 16) with the 

assumption that Δu(k) = 0, k > m, Δd(k) 

= 0, k > 1, and ε(k) = 0, k>1.  

      Multiplication with  ̅ provides 

prediction of z, based on estimated 

state, actual measurements, and future 

manipulated output moves. The output 

vector is predicted p samples ahead 

(prediction horizon) and control actions 

are considered for m future samples, 

    (control horizon). 
       

      Now, introduce: 

     [
    

 
        

]    

     [
    
 

        
]                      

 

      The predicted process variables over 

the prediction horizon are: 

 

            ̂       
                
                           

 

      Where: S
x
, S

u
, S

d
, S

e
 are constant 

matrices of appropriate size from 

( ̅   ̅  ̅     ). 

      The control error over the prediction 

horizon is the difference between 

predictions and the trajectory of future 

set points (yr). 

 

                        

                                      
 

      Each optimization problem is of the 

form: 

 

                    

 ∑ ‖  
  [        

 

   

        ] ‖
 
 

 ∑ ‖  
 [         ]‖ 

 

   
 

               

 

      Where   
 
 and   

  are weighting 

matrices to penalize particular 

components of Z or U at certain future 

time intervals. 

      The main Steps for LMPC design in 

SIMULINK are described as follows: 

1- Development of the Plant Model. 

2- Introduce the steady state condition. 

3- Linearize the plant model at current 

steady state condition. 

4- Define of controlled, manipulated, 

and disturbance variables. 

5- Define the model predictive control 

toolbox for the model. 

6- Simulate the plant for change in set 

point or disturbance variable. 

      Although of LMPC is probably 

acceptable in more industrial process 

but it still undesirable when the process 

nonlinearities are strong, operates at 

multi set points, and the controller is 

use for large disturbances rejection. 

Therefore nonlinear model predictive 

controller NMPC is more applicable 

and desirable to the areas of these 

conditions. 

      Nonlinear Model Predictive Control 

refers to the MPC algorithm that 

employs a more accurate nonlinear 

model in doing prediction and 

optimization.  

      In NMPC, there are many different 

nonlinear models for system 

identification and control that depend 

on first-principle models or black–box 

model methods which are: Volterra 

models, Polynomial autoregressive 

moving average model, Hammerstein 

and Wiener type models, artificial 

neural networks, and others.   

      Neural networks have been applied 

successfully in the identification and 

control of dynamic systems. Neural 

network based model predictive 

controller (NNMPC) is one of the best 

types of nonlinear model predictive 

control 
[11]

. 
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      When using NNMPC, Two steps are 

carried out which are:  system 

identification and control design. In the 

system identification step, a neural 

network model of the plant is 

developed. In the control design stage, 

the neural network model is used to 

design (or train) the controller. 

      In this controller type a neural 

network model of the nonlinear plant is 

used to predict future plant performance 

and an optimization algorithm is used to 

select the control input that optimizes 

future performance. 

      The most common neural network 

model structure employed is multilayer 

perception (MLP).This structure 

consists of a number of highly 

interconnected processing unit called 

"neurons" which are interconnected by 

connection weights. Each unit typically 

receives signals from other units or 

from the external environment (bias, 

offset). A subgroup of neurons is called 

a layer in the neural network. The first 

layer is the input layer and the last layer 

is the output layer. The layers that are 

placed between the input and the output 

layers are called hidden layers. The 

neural network plant model trained off-

line from a set of N real system outputs 

by minimizing an output error least-

square (OLS) criterion (J): 

           ∑       ̂  
 

 

   

       

Where:    : the plant measurement,  ̂ : 

the model prediction. 

      Figures (4, 5) show the system 

identification and the structure of the 

neural network plant model. 

      The neural network model predicts 

the plant response over a specified time 

horizon. The predictions are used by a 

numerical optimization program to 

determine the control signal that 

minimizes the following performance 

criterion (I) over the specified horizon. 

  ∑           ̂   
  
    

     ∑            
  
   

            

                                            
      Where: N1, N2, and Nu are define 

the horizons over which the tracking 

error and the control increments are 

evaluated. The u' variable is the 

tentative control signal, yr is the desired 

response, and  ̂ is the network model 

response. The   value determines the 

contribution that the sum of the squares 

of the control increments has on the 

performance index. The block diagram 

that illustrates the NNMPC process is 

shown in figure (6). 

      To have good representation of the 

model, two data sets were generated 

from the system to train the network, 

one data set for validation and another 

one testing. Uniform random input 

signals, which span the upper and lower 

limit of operating range, were used to 

excite the system. This was done to 

enable network learn the non-linear 

nature of the system.  

      In this study, the neural network 

considered as a multi layer perceptron 

(MLP) with a single hidden layer. The 

activation function used is non-linear 

tan sigmoid function in hidden layer 

and the linear function in the output 

layer, the optimum number of hidden 

layer neurons is (11), 10000 data were 

generated to train, validate and test the 

trained network. 
 

Simulation 

      MATLAB (matrix laboratory) is a 

technical computing environment for 

high performance numeric computation 

and fourth-generation programming 

language. 

      SIMULINK (Simulation and Link) 

is an extension of MATLAB. It works 

with MATLAB to offer modeling, 

simulation, and analysis of dynamical 
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systems under a graphical user interface 

(GUI) environment. 

      The Model Predictive Control and 

Neural Network Toolboxes are a 

collection of software built in 

MATLAB and SIMULINK blocks 

which help to design, analyze, and 

control of the linear and nonlinear 

processes.  

      The first design step in the control 

of the processes in SIMULINK is to 

implement the linear or nonlinear 

equations of the process model in a 

SIMULINK block model. 

      The nonlinear equations (4, 6, and 

8) are implemented in a subsystem 

SIMULINK model named Continuous 

Stirred Tank Reactor as given in Figure 

(7). 

      The steady state calculations, 

dynamic behavior, PID, LMPC, and 

NNMPC controllers SIMULINK 

models are shown in figures (8, 9, 10, 

and 11) respectively. 
 

Results and Discussion 

Steady State Calculations 

      The steady state mass and heat 

calculations displayed that the 

equilibrium points for component (A) 

residual Concentration (CA), reactor 

temperature (T), and coolant 

temperature (TC) are: 
 

CAS = 0.0922 mol/l     TS = 375.8 K     

TCS = 336.2 K 
 

Close Loop Response 

      In the control design process, the 

manipulated variables must be choosing 

and by using relative gain array, it 

found that when the inlet flow rate (F) 

coupled with concentration (CA) and 

coolant water flow rate (FC) coupled 

with reactor temperature (T), the 

relative gain array is: 

               F    FC   

    [
  
  

]
  

 
 

 

      As show above, the best loops are 

obtained by pairing these variables. 

      In order to check the ability of the 

controller to reject the load disturbance, 

10% step change in Feed Conc. CAo is 

applied. 

      The close loop responses for PID, 

LMPC, and NNMPC of component (A) 

residual concentration and reactor 

temperature for 10% step change in CAo 

are shown in figures (12, 13) 

respectively. 

      In figure (12), for PID, the response 

has overshooting with oscillation and 

didn’t be able to reject the disturbance 

and return to its starting value. For the 

LMPC, the response is slow and settled 

through the simulation with long time 

but didn’t return to its starting value. 

The NNMPC response has overshooting 

and long settled time but it is return to 

its starting value, the response 

characteristics (steady state error, 

Maximum percent overshoot, rise time, 

and settling time) of the concentration 

CA response for the model predictive 

controller types are shown in table (2).  

      In figure (13), for PID the response 

has overshooting with large oscillation. 

For the LMPC, the response has 

overshooting. The PID and LMPC 

responses have long settled time but 

they are able to reject the disturbance 

and return to the starting value. The 

NNMPC response has overshooting but 

it is settled through small time and 

return to the starting value, the response 

characteristics of the rector temperature 

response for the model predictive 

controller types are shown in table (3).   

      The next test is to study the ability 

of the controllers to track set point 

change; set point was allowed to change 

in different values. The responses were 

shown in figures (14, 15). 

      As shown in figure (14), the 

response of PID controller has 
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overshooting in first set points, its slow 

response with oscillation specially in 

first, second, and fifth set points, also its 

didn’t settled through simulation time in 

all set points. For the LMPC, the  

References 

 

 

  

response is slow and settled in second, 

third, and forth set points only. The 

response of NNMPC has overshooting 

in first set point only, its show perfect 

set point tracking. 

      In figure (15), the response of PID 

controller has overshooting with 

oscillation in all set points, also its slow 

response. For the LMPC, the response 

is settled in all set points with very 

small overshooting and show good set 

point tracking. The response of 

NNMPC shows perfect set point 

tracking.  

 

Conclusions  

In present work, the continuous stirred 

tank reactor was controlled by using 

linear model predictive controller 

(LMPC) based on state space model, 

nonlinear model predictive controller 

based on neural network (NNMPC), 

and conventional feedback (PID) 

controller which was used as 

benchmark. The results from NNMPC 

were found to be more accurate and 

suitable and give best responses than 

the LMPC and conventional (PID) 

controller. The results showed also the 

high ability of NNMPC to track set 

point change and reject load disturbance 

and settle through small period 

compared with the other controllers. 

The reason of this poor performance for 

LMPC and PID compared to high 

performance of the NNMPC can be 

adduced because of non-linearity of the 

continuous stirred tank reactor since 

NNMPC is able to take care of non-

linearly aspect of the system. 
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Figure (1): the Continuous Stirred Tank Reactor 

 

 

 
 

Figure (2): model predictive control strategy 
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Figure (3): the model predictive control block diagram 
 

 
 

Figure (4): the neural network plant model identification 
 

 
 

Figure (5): the neural network plant model Structure 
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Figure(6): the neural network model Predictive Controller 
 

 

 
 

 

Figure (7): Nonlinear SIMULINK model of the CSTR 
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Figure(8): Steady State Calculation Model 

 

       

 
 

Figure(9): Feedback PID Controller Model 
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Figure (10): MPC Controller Model 

 
 

 

 
 

Figure (11): NNMPC Controller Model 
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Figure(12): close loop Concentration CA response for 10% step change in CAO 

 

 

 

Figure (13): close loop reactor temperature (T) response for 10% step 

change in CAO 
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Figure (14): close loop Concentration CA response for set point tracking 

 

 

 
Figure(15): close loop reactor temperature (T) response for set point tracking 
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Table (1): The variables and nominal CSTR Parameter values 
 

Variable Description Value 

V Reactor Volume (l) 50 

Fin Inlet volumetric flow rate to the reactor (l/min) 50  

Fout outlet volumetric flow rate from the reactor (l/min) 50  

CA Concentration of component A in outlet Stream (mole/l) - 

CAo Feed concentration of component A (mole/l) 1 

KO Pre-exponential factor (1/min) 7.8*10
10

 

E Activation energy in the Arrhenius equation (cal/mole) 
E/R = 8567 

R Universal gas constant (cal/mole. K) 

ρ Density of the inlet and outlet stream (g/l) 900 

Cp Heat Capacity of inlet and outlet stream (cal/g.K) 0.329 

T Temperature of the reactants in the reactor(K) - 

Tin Inlet stream Temperature (K) 350 

Hr Heat of Reaction (cal/mole) -5*10
4
 

UA Heat Transfer Term (cal/min. K)  5*10
4
 

Tc Temperature of the coolant water in the jacket(K) - 

ρc Density of the coolant water in the jacket (g/l) 1000 

Cpc Heat Capacity of the coolant water in the jacket (cal/g.K) 1 

FC Inlet coolant water volumetric flow rate (l/min) 55  

Vc Jacket Volume (l) 50 

Tcin Temperature of the inlet coolant water in the jacket(K) 300 

 

Table (2): The response characteristics of the concentration (CA) for 10% step 

change in CAO 

  

Controller 

Type 
Error E 

Maximum 

Percent 

Overshoot MP  

Rise Time tr  Settling Time ts  

LMPC 0.0016 Very small 68.1379 min 194.3531 min 

NNMPC 0 52.4946 % 6.2082 min 68.2649 min 

 

 

Table (3): The response characteristics of the Reactor Temperature (T) for 

10% step change in CAO 

  

Controller 

Type 
Error E 

Maximum 

Percent 

Overshoot MP 

Rise Time tr Settling Time ts 

LMPC 0 2.8872 %     9.1431 min 13.7118 min 

NNMPC 0 2.0490 % 0.7836 min 1.1063 min 
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