Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

Hardware Implementation of 3D-Bresenham's Algorithm Using FPGA

Dr. Basma Mohammed Kamal Younis, Lecturer Ne'am Salim Mohammed Sheet

Department of Computer Technology Engineering-Technical College-Mosul

Abstract

Traditional 3D-Bresenham's algorithm is efficient in generating lines on raster
systems using only integer calculations. This algorithm is needed as a solution of hidden
surface problem using depth-buffer method to calculate z value for each pixel, while
calculated values of x and y are used to address frame buffer memory, z value is used to
test hidden surface by saving the closest depth in depth buffer.

In this paper Bresenham's algorithm for plotting 3D-lines is examined then modified
to simplify hardware requirements during implementation phase. Basing on efficiency of
the algorithm on the space symmetry an enhanced version of this algorithm is
implemented using OpenGL. Experimental results confirm results calculated
theoretically for both traditional and modified algorithms.

The hardware implementation is accomplished for real time applications, and a
graphic sub-system is designed using FPGA. Finally, a comparison is accomplished for
Spartan3E utilization which is used to implement the hardware unit.

Keywords: Computer graphics, Bresenham, Pixel, Scan conversion, FPGA.

Llis daapall ciligl) ddghinn aladialy sl 400G algdip Lajlsdd galall oLl s
Ladal)

Aaall) b ala) D aisl Jail) 055 8 a0 e 54S Ape lsd Al aLgd) s Apeylsh 2a3
U Al V) A e S o Aga)plsall oda of LeS L dah Aagmiall adl) bl aladinly 4 daal)
@alally i) s o a5 L A5LE Al JSI AN aad) e liad Graall 5)S13 A8k ardis
o OBLL)R Gaall Jada Alailsy Al 4ng¥) (and B 2adl Zads 5ypaall 55SI3 sl lual
el 5,813

Uaje lallaie ol Layyshais alaf¥) 2006 Jagladll oyl aledy n Anaplsd Ay o3 Candd) 24 8
Gy el A gibal) aonpl) A Alasals Aua) Al (et @ lalil dpald e Tolaie) . salall LI gl
By shaally Apldil) (pina) lsad) BIST 4 Jailly ulaal) 3l AgUas 23 s (OpenGL),

chial) el (b o)) Bdat e sk aay sl ABE aleb p ey lsad salall LS 2
Oiplenall (s A5 jlhe ¢yl 8 Tpaal i Aol AL sl 2ladialy e i) sl s slite i 5 G
-l hanll daadiidl) Spartan3E a3k, jabas (e 3361 Lali (e (ilesiadll

s Faapaall il sl A st coraall Jyont Aala At caledy o smlal) o gusyrddial) clalsl

Introduction be defined as a pictorial representation
Computer graphics remains one of or graphical representation of objects in
the most existing and rapidly growing a computer. In computer graphic a raster

computer fields. Computer graphics may display system is used to create and

38

Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

show the pictures of objects, where in
raster display system The rasterization is
process of determining the appropriate
pixels for representing picture or
graphics object, a picture can be
completely specified set of intensities for
the pixel positions in display, Picture
definition is stored in a memory area
called frame buffer or refresh buffer -

Line drawing is one of the most
fundamental activities in computer
graphics. There are many different line
drawing algorithms used in computer
graphics. Application of inefficient
algorithms may cause drawing to require
unacceptably large amount of time thus
making the graphics presentation boring.
This is why algorithms used in computer
graphics must be computationally very
efficient. As a result computer graphics
algorithms are quite often found to
avoid, for example, floating point
operations or more costly division and
multiplication ~ operations as in
Bresenham's line algorithm. As a line is
drawn by lighting only a finite number
of pixels with integer coordinates, it is
not possible to produce a theoretical line
exactly in a raster device. In order that a
line drawn on a raster device simulates a
theoretical line as closely as possible, a
set of pixels, which represent the real
line as closely as possible, are only
switched on!?.

However, the scan conversion of a
polygon (a graphic major building
primitive) is performed by a scan line
method. The rasterization of a straight
line segment can be accomplished using
any line drawing algorithm. In this work
the value of depth is determined for each
pixel produced by the 3D Bresenham
algorithm, for depth or z-buffer
application. Following review of some
related published works:

In 1991 Edward Angle and Don
Morrison present that a Bresenham's
algorithm is the standard for scan

converting a line segment. A version
based on the properties of linear
Diophantine equations can speed up scan
conversion by a factor of almost five 1!,

Also A. T. M. Shafiqul Khalid and
M. KaykobadZ in 1996 present a new
algorithm for drawing lines in a raster
device in which a suitable data structure
has been chosen to avoid comparisons
that are required, for example, in
Bresenham’s algorithm. Experimental
results as well as clock cycles calculated
theoretically suggest that this new
algorithm outperforms the ones currently
existing in the literature in terms of
computational time. Their experimental
results also suggest that quality of the
line does not deteriorate even when high
resolution raster devices are used .

A group of researchers in 2004
designed a system effectively
implemented two different algorithms
for calculating the intermediate points in
a line given the two endpoints, and
representing the fundamental elements
of this system in VHDL and using the
available FPGAs, their first algorithm is
the Digital Differential Analyzer (DDA)
which requires floating-point
intermediate values and the second is the
Midpoint Line Algorithm, a special case
of Bresenham Line Algorithm, which is
famous for its speed and accuracy .

Andre Redert propose in 2004 a
depth scaling method that enables
visualization of arbitrary-shaped 3D
scenes on 3D displays , his approach
uses spatially adaptive depth scaling that
maximizes the perceptual 3D effect,
from the original scene geometry , the
topology and local depth ordering
among objects are preserved , while
depth linearity is discarded .

In 2006 S. Fawad reviewed the basis
of Bresenham algorithm in graphic
interpolation processes. There are
doubtless other areas where
straightforward interpolations across

Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

polynomials can be managed using this
technique. It seems to be a reasonable
approach to teaching interpolation
processes, even though there may be
faster algorithms for many of these
interpolations ®1.

In 2009 Niu Liangiang and Feng
HaiWen presented A new fast line
drawing algorithm that is different from
the traditional Bresenham algorithm, A
line is treated as an aggregation of
several line segments and the vy
coordinate differences of candidate pixel
points in every step of traditional
algorithm are replaced by the length
errors of each segments in this new
algorithm. Each operation and judgment
can generate a line segment by keeping
the advantages of integer arithmetic and
then the numbers of operating and output
are decreased. Besides these, the skew
symmetric character is considered in the
algorithm and the direct draw property
without operation of some special lines
is also pointed out "),

Also in 2011 Chikit Au and Tony
Woo uncover the reason for little prior
works. The concept of the mid-point in a
unit interval generalizes to that of
nearest neighbors involving a Voronoi
diagram. In their paper, the three-
dimensional extension is based on the
main idea of Bresenham Algorithm of
minimum distance between the line and
the grid points. The structure of the
Voronoi diagram is presented for grid
points to which the line may be
approximated. The deployment of
integer arithmetic and symmetry for the
three-dimensional extension of the
algorithm to raise the computation
efficiency are also investigated .

In 2011 Fakhrulddin Hamid Ali
designed a new algorithm as a three

dimensional development of the
available two dimensional Digital
Differential Analyzer (DDA) and

implemented it using the configurable

Field Programmable Gate Array
(FPGA), In his paper he concluded that
the hardware unit can produces pixels at
a speed of 120M pixel per second
assuming a very small time is lost in
computing the increment values .

Theory of 3D-Bresenham's Algorithm

The original approach of
Bresenham’s algorithm for plotting a
two-dimensional line between origin
point (Xa, Ya) t0 a end point (Xp, Yp) IS
adopted to present the three-dimensional
Jfor plotting a three-dimensional line
between origin point (Xa, Ya, Za) to a end
point (X, Yb, Zb)-

The traditional 2D-Bresenham line
generation algorithm is shown in
Figurel.

The three dimension version of
Bresenham's Algorithm is accomplished
by considering the line segment whose
pixels require to be generated in three
dimensional spaces. So for each pixel a
z-value is calculated in addition to the x
and y values so that the algorithm works
in the object space rather than in the
image space. The 3D-Bresenham
algorithm and the modified one are
shown in Figure2 and Figure3
respectively. As we can see from
Figure3 that the loop calculate the line
pixels is know one instead of three in the
flowchart of Figure2 which will effect
on the amount of hardware component in
the implementation part.

These algorithms are tested using
OpenGL for many possible line
orientation and the generated pixels
values are checked, the vision results are
shown in Figure4 where they are the
same for the two versions of algorithm.

Practical System Implementation

A block diagram of the designed
hardware unit of the 3D-Bresenham is
shown in Figure5, where the scan
conversion operation of a line segment

39

40

Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

requires it's two input vertices start
vertex Vi (Xa, Ya, Za) @and end vertex v (Xp,
Yb, Zp) @S an input to the hardware unit,
then compute the greatest coordinate
difference (dx, dy and dz) with the error
value to calculate the increment value of
X, Yy, z. After that the intermediate pixels
are calculated each time the increment
value is added to the x, y, and z
coordinate.

The address value of the frame
buffer is calculated for each pixel from
its computed coordinate(x, y) to load the
intensity data (RGB) in the buffer.

The refresh controller access the
frame buffer periodically to obtain the
data necessary to refresh the monitor and
display the image stored in the frame
buffer ™. The refresh controller unit
shown in Figure8 generates the timing
and synchronization signals. The HS and
VS signals are control the horizontal and
vertical scans of the monitor. It
generates the video-on signal to indicate
whether to enable or disable the display
to display the form which is only within
the dimensions of the screen.

The graphic controller accesses the
frame buffer to update the image. The
basic operation of the graphic controller
in this work is one of scan line method,
3D-Bresenham's algorithm, to set the
pixel intensity values for storage in the
frame buffer.

The arithmetic section of the
implemented graphic controller starts
from entering the vertices of start and
end point of the line and compute the
slope of each y, x and z. This section
computes the corresponding address
value of the frame buffer using x, and y
coordinates and also computes z value of
each pixel in the line with its intensity,
Figure6 and Figure7 show a block
diagram of the designed graphic
controller of the 3D-Bresenham's
algorithm and the modified one
respectively.

The calculated integer values of x
and y for each pixel are used to address
the memory (frame buffer) while the
color(RGB) or intensity of the line
segment presents the data to be storing
in the frame buffer with its associated
address. The pixels in the frame buffer
can then be read in a synchronized
manner, while scanning the screen, and
displayed on the computer monitor to
show the straight line.

The tradeoff between the access of
the refresh controller and the access of
the graphic controller is a key idea for
the architecture of many graphic
systems. The current design, as shown in
Figure5, overcomes this problem b
using dual port frame buffer memory ™°,
the frame buffer here is performed using
block RAM. Physically, the block RAM
has two completely independent access
ports, labeled Port A and Port B. The
structure is fully symmetrical, and both
ports are interchangeable and support
data read and write operations. Each
memory port is synchronous with its
own clock, clock enable, and write
enable. Read operations are also
synchronous and require a clock edge
and clock enable ™.

This work drains all the capacity of
on-board block RAM (XC3S500E) of
Spartan3E, as used 640 by 480 VGA
screen. Where the address of each pixel
is equal to: y-pixel * 640 plus x-pixel. So
maximum pixel the address is (479*640
+ 639) which is equal to 300kb, so were
exhaust all the capacity of block RAMs
in Spartan3E FPGA kit used in this work
were it is 360kb.

Test results and discussion

The 3D-Bresenham's algorithm is
synthesized usingg VHDL and
implemented using FPGA available on
the kit-board Spartan-3E. Many testing
examples are used for verification where
are the same as OpenGL results,
following example illustrates one of this

Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

tests samples then Figure9 shows the
simulation waveforms that obtained by
the implemented hardware.

Examplel:

To verify the performance of the
designed unit, the pixels are theoretically
computed and listed below the steps as
mentioned in 3D-Bresnham's algorithm
in Figure2:

Stepl: enter the two end vertices of
the line segment.

Xa,Ya,Za=(25,10,4),Xp,Yp,Zo= (20,20,0).

x-addr =25 , y-addr =10, z-addr =4 ,
as shown in the simulation in Figure9,
which represent the initial value of pixel
address, but in the algorithm in Figure2
it consider as (X, Y, 2).

Step2: the coordinate differences dx,
dy, and dz respectively, where
dx=(xb-xa),dy=(yb-ya),anddz=(zb-za).
Thendx=-5 ,dy=10,dz=-4.

Step3: enter dx, dy and dz in a
comparison with zero.

If (dx < 0), yes dx = -5, so xinc = -1.
If (dy <0), no dy =10, so yinc = 1.
If (dz <0), yes dz = -4, so zinc = -1.

Step4: enter one of the three
condition while dx=-5, dy=10, dz=-4.

Since |dy|>|dx| and |dy|>|dz|, so the
middle condition is verified as
mentioned in the algorithm in Figure 2.

Step5: compute errl and err2:
errl=2*|dx|-|dy|=2*|-5|-|10|=2*5-10=0.
err2=2*|dz|-|dy|=2*|-4|-|10|=2*4-10 = -2.

Step6: compare errl and err2 with
zero. If (err1>0),update errl and x-addr,
but this condition is not true then pass it
and check if(err2>0),update err2 and z-
addr, this condition is not true then pass
it and jump to the next step.

Step7: update the following variable:

errl=errl+2*|dx|=0+(2*5)=10.

err2=err2+2*|dz|=-2+(2*4)=6.
y-addr=y-addr+yinc= 10+1=11.

Step8: use a temporary register m as
shown in Figure9 that indicate the
number of pixel, and update it
incrementally.

Step9: check the condition if m<dy
(maximum slope), then repeat the steps
from 6 to 9 until m=dy (stop condition).
Example2:

To verify the performance of the
designed unit, the pixels are theoretically
computed and listed below the steps as
mentioned in Modified 3D-Bresnham's
algorithm in Figure3:

Stepl: enter the two end vertices of
the line segment.

Xa,Ya,Za=(25,10,4), Xp,Yn,Zb= (20,20,0)

Step2: the coordinate differences dx,
dy, and dz respectively, where
dX=|Xp-Xal,dy=[Yb-Yal,dz=(z5-Za|.
dx=|20-25|=5,dy=|20-10|=10,dz=|0-4|=4.

Step3: enter one of the three
condition while dx=5, dy=10, dz=4.

Since dy>dx and dy>dz, so the
middle condition is verified as
mentioned in the algorithm in Figure3,
so flag=1l, and an exchange will
happened (dy by dx, x; by y1 , X2 by y»).

Stepd: x=10, y=25, z=4, which
represent the initial value of pixel
address.

Step5: enter the new coordinate X,
X2, Y1, Y2, and z3, z, in a comparison.

If (x1>X2), no x;=10, x,=20, so xinc=1.
If (y1>Y2), yes y1=25, y»,=20, so yinc=-1.
If (z1>2,), yes z:= 4, 2,=0, so zinc=-1.

Step5: compute errl and err2:
errl=2*dy-dx=2*5-10=2*5-10=0.
err2=2*dz-dx=2*4-10=2*4-10=-2.

Step6: compare errl and err2 with
zero. If (err1>0),update errl and y-addr
then check err2. If (err2>0), update err2
and z-addr then jump to the next step.
But the two conditions are false then
jump to the next step.

Step7: update the following variable:

errl=errl+2*dy=0+(2*5) =10.

err2= err2+2*dz=-2+(2*4)=6.

X =X+ xinc=10+1=11.

Step8: check the flag, as we
determined in Step3 flag=1, so x-addr=y,
x-addr=x, z-addr=z.

41

Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

Step9: use a temporary register m as
shown in Figure9 that indicate the
number of pixel, and update it
incrementally.

Step10: check the condition if m<dx
(maximum slope), then repeat the steps
from 6 to 9 until m=dx (stop condition).

Tablel illustrates that OpenGL
results for this example is the same as
the VHDL simulator results.

Also in this paper we have applied
all the possibility of line segment in the
hardware unit successfully, as shown in
FigurelO.

Table (2) and Table (3) shows the
utilization resources of Spartan3E Kit
that is used to implement the hardware
unit. The difference in the two hardware
units is that the Bresenham algorithm
unit can produces pixels at a speed of
76M pixels per second but the Modified
3D-Bresenham's algorithm can produces
pixels at a speed of 68 M pixels per
second , assuming a small time is lost in
computing the increment values(one
cycle as shown in the waveforms),
before the production of pixels, which
slightly reduces the maximum operating
frequency in the Table2 and Table 3.

Conclusions

From the above analysis it is clear
that performance of the Bresenham's
algorithm depends on the largest value
from dx, dy or dz, in the modified
algorithm we try to shrink the algorithm
to make hardware simpler. The code for
the modified algorithm is shorter in
length than that the old 3D-Bresenham’s
algorithm. So hardware requirements for
the modified one are also less. Hardware
implementation for the modified is much
cheaper than the other algorithm.

Our proposed technique can
efficiently be used for the improvement
of other computer graphics primitive’s
algorithm which use Bresenham's
algorithm, and can be used in many

applications such as calculating z-buffer
values to improve the traditional hidden
surface removal method as shown in the
work.

The designed system effectively
implemented using FPGA two different
versions of scan line method
(Bresenham's algorithm) that generalized
to three-dimensional for using in scan
conversion of a polygon in 3D-scene.

In designing this system, it was
illustrated how the drawing of a simple
3D-line is more complex than initially
thought. Simulation illustrated the issues
that arise upon calculating a line and
reinforced the fact that the three-
dimensional algorithm used to raise the
computation efficiency since it use
integers only. At the end we improved a
simple hardware and the designed unit
can also accept all the type of slope
(negative and positive) in efficient way.

References
1. Donald Hearn and M. Pauline Baker
,M.Pauline Baker, "Computer

Graphics, C version™ , 2nd edition.
Prentice Hall, Inc. 1997.

2. T. M. Shafiqul Khalid and M.
Kaykobad,"an Efficient Line
Algorithm”, Journal of Circuits and

Systems, IEEE 39th Midwest
symposium, Vol. 3, Pages: 1280-
1282, 1996.

3. Edward Angle and Don Morrison
,"Speeding Up Bresenham's
Algorithim”, university of new

mexico, November 1991 , IEEE
Computer Graphics & Application.
4. Jong Lorraine, Shirachi Lisa and
Wang Sherman, "Computer
Graphics: Where Straight Lines,
Aren’t”, Computer Science
Department University of California,
Final Project, Winter Quarter 2004.
5. Andre Redert ,"Visualization of
Arbitrary-shaped 3D Scenes on
Depth-limited 3D Display" , Journal

http://www.cs.ucla.edu/
http://www.cs.ucla.edu/
http://www.ucla.edu/

Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

10.

of 3D Data Processing, Visualization
and Transmission, 2004 IEEE
Proceedings. 2nd International
Symposium, 938-942 , 2004.

S.Fawad, "Adapting Bresenham
Algorithm ", Journal of Theoretical
and Applied Information Technology
Vol. 2 Issue: 2, 27-30, 2006.

Niu Liangiang and Feng HaiWen ,"A
Line Segments Approximation
Algorithm of Grating Lines", Journal
of 2009 International Forum on
Computer Science-Technology and
Applications, IEEE Computer
Society , Vol. 2, 34-37, 2009.

Chikit Au and Tony Woo, "Three

Dimensional Extension of
Bresenham’s Algorithm with
Voronoi Diagram”, Journal of

Computer-Aided Design, Vol. 43,
Issue: 4 ,417-426, 2011 .
Fakhrulddin Hamid Ali, “Depth
Buffer Depth Buffer DDA Based on
FPGA*“, Journal of Al-Rafidain
Engineering ,VVol.19 , No.5 , October
2011.

Fakhrulddin Hamid Ali and Amar 1.
Dawod, “FPGA Design and

11.

12.

13.

14.

15.

16.

17.

Implementation of a Scan
Conversion Graphical Sub-System
Journal of Al-Rafidain Engineering,
Vol.16 ,No.4, Oct. 2008.

Xilinx Company, "Spartan-3
Generation FPGA User Guide",
June 25, 2008.

J. E. Bresenham, "Algorithm for
Computer Control of a Digital
Plotter”, IBM Systems Journal,
Vol.4,no. 1, 25-30 1965 .

Edward Angel, “Interactive
Computer Graphic: A Top- Down
Approach Using OpenGL “,Addition
Wesley, Third Edition 2003.

F.S. Hill , Jr ,"Computer Graphics
Using OpenGL", second edition,
Prentice Hall International, 2001.
Xilinx Company, “User Manual
Spartan-3 FPGA Family:Complete
data Sheet”, March 4, 2004.

Xilinx ~ Company, "Spartan-3E
FPGA Starter Kit Board User
Guide" , June 20, 2008.

Xilinx Company,"Spartan-3E FPGA
Family: Data Sheet",August 26,
2009.

43

44

Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

Read (xa, ya),(xb, yb):
v

Store the left endpoint in (xo, yo) then
load it into the frame buffer;
that is, plot the first point.

v

Calculate constants dx, dy, 2dy,
and 2dy — 2dx

v

Obtain the starting value for the decision

parameter as Po =2dy —-dx , k=0

A 4

Prr1=P\ +2dy

next point to plot is (xc+1, yi)

\ 4

next point to plot is (X«+1, yx+1)

Py+1=Py +2dy-2dx

v Y
v

k=k+1

no

<

Store
pixel (X,V)

End

Figure 1: 2D-Bresenham algorithm

star

[

end point (xb. vb

Read start point (xa, ya, za) and /
. zb).

v

Calculate dx=abs (xb-xa) ,dy=abs (yb-ya) and
dz=abs (zb-za), x=xa, y=ya , z=za

v
v
dz>dy and dx dy>dx and dz

el=2dy-dz el=2dx-dy el=2dy-dx
e2=2dx-dz, step=dz e2=2dz-dy, e2=2dz-dx,
< 7\ <
\ 4 \ 4 \ 4

Store pixel
(X.v.2)

—

!

v

e1>0 Y&

y=y+Yinc

a1=a1.2d7

Store pixel
(X.v.2)

Store pixel
(x.v.2)

no

x=x+¥Xine

NOI1 y=y+Yinc

al=n1_

|
v
Q)O es

no
no X=x+Xinc no z2=z z=z+Zinc
pl=a?- +7inc p?2=p?-
47 A 4
el= el=el+ 2dx el = el+2dy
el+2dy e2 =e2+2dz €2 = e2+2dz
e2 = v=v+Yinc x= x+Xinc
v v v
| step = step - | | step = step - | step = step -

no

no
» yes
i

Figure 2: 3D_Bresenham algorithm

Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

45

v

Read start point (xa, ya, za)
and end point (xb, yb, zb)
\
Calculate dx=|xb-xa|,dy=|yb-ya| and

JE T S|

v >

Ix>dy&dx>d

ye
ly>dx&dy>d
flan
1z>dy&dz>d;
flag=1 i . .
exchance dy by Flgl_Jre 4: Open_GL results tr_lat Dlspla)_/s
! dx a Series of 3D_Lines Fanned in a spherical
flag = 2 exchange xa by h
exchange dz by dx shape
xchange xa by za
exchange xb by 3w bedll
v v v s
\ 4
*)4 iy el _—"0.“'" -
b I prgall T
»)
n ye n &y Y n ye s e
zInc= ylnc= ylnc= ylnc=- xInc= xInc=-

TS e S e o Y N

* I * Rebesy
* Londoler

Whes ud
el=2dy-dx , e2=2dz-dx

X=xa,y=Yya,z=za, step= dx

in FPGA

=1

Store Store Store
pixel pixel pixel

y

y=y+yinc

el>0 el=el - 2dx

no

v
€S

dl

-
€s z=z+1zInc
@_’ e2=e2 - 2dx

[0]
gl

n

-
A\ 4
X =X+ xInc

el=el+
2dy

v

Step --

yes

Figure 3: the Modified 3D_Bresenham algorithm

el
1

Figure 5: Hardware graphic sub-system

46

Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

clk

reset x2 x1 y2 yl z2 71 clk reset x2 x1 y2 yl z2z1
v v v vy
IR * s
vy | vy (2 = 5
|subtracter| subtracter |subtracter | ‘L \ v +
|subtructer | |subtructer | |subtructer |
™ q [
dz Y
de dx l ‘ I
YvVY \ 4 y v]
|comparator | |comparator| |comparator| |c0mparat0r|
Zinc Yinc Xinc VVY
| comparator |
multiplexer
VV#V!V
Arithmetic
operation
Multiplexer
multiplexer
en2len3 Flag2| Flag]] Flagq
‘ | YVVY
)\ 4 VVY_ VvV | Exchange
|Adder | |Adder | |Adder | >
Z Y X d)i d)1 di x1x2y1ly2|z1|z2
Errorl . .
Perspective Perspective : Avrithmetic
projection projection Multiplexer Erfor2l - Operation
EnableZ Enablel
Ynew Xnew
A 4
IE— xinc (YYVYVVY
vY Yinc Comparator
Zia
Adder
'V V YV YV v VY
Address | adder | | adder | | adder |
R G B Z Y X
WwW VvV \ 4 \ 4
v Perspective projection
: Ynew Xnew
. R } \ 4
Figure 6: The designed hardware of graphic shifter
controller for 3D_Bresenham algorithm
- addrer
R G B
v

Figure 7: The designed hardware of graphic
controller for Modified 3D_Bresenham algorithm

47

Tikrit Journal of Engineering Sciences/VVol.20/No.2/March 2013, (37-47)

Horzontal Vemical

Counter

Table 1: Results of Example 1 and Example 2

Using OpenGL.

Figure 8: Designed Hardware Refresh

P
.5‘—‘

Controller 3D- Bresenham alaorithm unit
Type Resources Used Total Ratio
______________________ Resources | Resources
S U U UL UL L L)L e Number of Slices 397 4656 8%
:' - Number of Slices 548 9312 5%
i T Flip Flops
i W Number of 4 313 9312 3%
[) input LUTSs
'-3 L Number of 7 232 3%
o I i . Bounded 10Bs
YREBHEE0IDE0 % "Number of Block | 19 20 95%
) O N G 1
(CEDE DR E D, i RAMS
DL DT I T Number of 2 20 10%
) [MULT18X18SIOs
0 v Number of 2 24 8%
N GCLKs
HDDIEEEIDE® * Maximum 76.196 MHz
Figure 9: Simulation sample results of gperaﬂng
. requency
example 1 and example 2 using VHDL Minimum period 13124 ns

Counter X y z errl err2
10 25 10 4 0 -2
9 25 11 4 10 6
8 24 12 3 0 -6
7 24 13 3 10 2
6 23 14 2 0 -10
5 23 15 2 10 -2
4 22 16 2 0 6
3 22 17 1 10 -6
2 21 18 1 0 2
1 21 19 0 10 -10
0 20 20 0 0 -2
Table 2: Resources utilization for the

Figure 10: Hardware unit results using FPGA thi
displays a Series of 3D_ Lines using the 3D _
Bresenham?’s algorithm and the modified algoritt

Table 3: Resources utilization for the
3D- modified Bresenham alaorithm unit

Type Resources Used Total Ratio
Resources | Resources
Number of Slices 369 4656 7%
Number of Slices 541 9312 5%
Flip Flops
Number of 4 input 266 9312 2%
LUTs
Number of 7 232 3%
Bounded IOBs
Number of Block 19 20 95%
RAMS
Number of 2 20 10%
MULT18X18SI0s
Number of 2 24 8%
GCLKs
Maximum 68.334MHz
Operating
Frequency
Minimum period 14.634ns

