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Abstract

In the present paper, Numerical simulation is performed to investigate the laminar force
convection of Al,Os/water Nanofluid in a flow channel with different constant heat flux
50, 90, 150 W/cm? respectively and two values of mass flow rate of fluid. The heat
sources are placed on the bottom wall of channel which produces much thermal energy
that must be discarded from the system. The remaining surfaces of channel are kept
adiabatic to exchange energy between Nanofluid and heat sources. The effects of
Reynolds number Re < 1000), the volume fraction of nanoparticles of nanofluid have
the percentages of 0, 1, 3 and 5%. on the average heat transfer coefficient (h) , pressure
drop (AP), surface Nusselt number and wall temperature (T, ) are evaluated. The use of

Nanofluid can produce an asymmetric velocity along the height of the channel. The
results show that the wall temperature decreases remarkably as Re and volume of
fraction increase. It is also observed that there is an enhancement of average heat
transfer coefficient and it's observed also that the use of Nanofluid improves MCHS
performance by reducing fin (conductive) thermal resistance.

Keywords: Nanofluid ; Laminar flow; Pressure drop; Heat transfer enhancement ;
Forced Convection .
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Introduction
In last decade, primary research begins
in the quest of using the nanoparticles in
the various fields of applications. In the
heat transfer problems values the quest
for a good heat extraction in various
ways of either using many fluids that
have  promising heat extraction
efficiency. The maximum of a base fluid
with Nano particle shows marked heat
transfer ~ enhancement!™.  Further
investigation regarding an increases in
the surface area of the radiative
I/convective surfaces for which a micro
channels being introduced in the
problems of that transfer
enhancement!?).
As far as contribution of the friction
factor and pressure drop for a laminar
flow in the range up to 2000 Reynold
number have a linearly variation in a
micro chanel hydraulic geometry 41,
Concerning the geometrical shape with
regarding its aspect ratio to the
hydraulic diameter where the friction
factor found to have some dependence
(567 and 8 and this aspect ratios has no
noticeable effect as far as the flow in
laminar !,
The Nanofluid can its maintained its
enhancement properties in the range of
up to 5% of nanoparticles to the base
fluid*®. While the channel geometrical
shape affect the heat conductive
properties by the geometrical size
criterion and its volume proposed by
the presence of thermal resistance
[11,12,13 and 14]
Gupta et al. ¥ studied fully developed
laminar flow and heat transfer in
equilateral triangular cross-sectional
ducts with constant heat flux. Limited
studies regarding the use nanofluids as
coolants in micro and minichannel heat
sinks exist in literature. Nguyen et al.
(8] have investigated the usage of
nanofluids in cooling electronic devices
with nanofluids as the coolant marked

reduction in the junction temperature
was observed, especially at higher flow
rates and higher particle loading
percentage.

Micro channel cooling is a promising
way to solve the cooling problem for
computer chips. In micro channel
cooling a fluid is flowing through a
micro channel in close contact with the
electronic chips . Due to the large area
to volume ratio of the micro channel,
the heat removal is larger than by
conventional air cooling. Heat transfer
by forced convection for gases is in the
range  25-250 KW/m?"  whereas
experimental micro channels with water
Eg]ve shown a heat flux of 500 KW/m?
The aim of this work is to study the heat
transfer enhancement for Al,O3 nano
particle with water of distinct intrinsic
thermal properties in a rectangular
micro channel that exposed to different
heat flux 50, 90 and 150 W/cm?
respectively  that  give  surface
temperature of near 80 degree. Two
mass flow rate of 1 x10® and 5.1 x107
kg/sec.

Numerical Solution and
Mathematical Modeling for the case
study

In this case study a micro channel heat
sink of silicon configured in the figure
l.a,b,c and the flowing nanofluid of
Al,Os/ water in the micro channel of
rectangular cross-sectional area. The
assumed flow of the nanofluid in
question has to have a laminar flow.
This configuration of the heat sink of
the fluid performs a 3D conjugate heat
transfer in the nanofluid. The channel
dimensions given in table.1

In this configuration the heat flux
subjected from the base and both
silicon fins in a uniform heat flux
which is dissipated in the nanofluid
coolant. In order to control the flow of
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the fluid a forced flow in the micro
duct with laminar flow being assumed
of up to 1000 Reynold. Thus fluid at 20
C were supplied to the duct with two
mass flow rate of 1 x10®° and 5.1 x10°
kg/sec and the heat flux assumed at
50,90 and 150 w/cm? exposed from the
lower surface.
In order to get the requirements of the
numerical solution, a discretization of
the system of governing equations are
given in apPendix 1. A mesh generation
in Gambit!"™® was performed as shown
in Figure 2.a,b,c and table (2). These
numbers were optimized after many
attempts to have a study solution and
reduction in the number of iteration
required for convergence.
1. Governing equations.
The Microchannel heat exchanger
(MCHE) considered in this case is
shown schematically in Figure(1). Heat
is transferred between the fluids through
the sink wall separating them. Several
assumptions were made on the
operating conditions:

1. The MCHE operates under steady-
state conditions with Constant heat
flux and negligible radiation heat
transfer.

2. The fluids remain in single phase
along the channel and the flow is
laminar.

3. Thermophysical properties of the
fluids and MCHE material are
temperature-independent.

4. Flow mis-distribution and external
heat transfer effects are neglected.

5. The outer walls of the MCHE are
considered insulated (adiabatic).
The system of equations with other
parametric  relations is in good

processing with fluent Code %!,

2. Thermo physical properties

The various thermal physical properties

of Nanofluids can be evaluated as

follows:

» Density and Viscosity

The base-fluid considered in this work
is water. Thermo-physical properties
were obtained as polynomial functions
of temperature found some were else 1?1
as:

P, =—357x107°T? +1.88T +753.2..(1)
while the water viscosity is given by :

2383
1, =2.591x107° x10 /“-1432).. )

The specific heat of water is considered
constant at Cp,, = 4200. The effective
density of the Nanofluid containing
suspended particles can be evaluated
through the following equation:

PoiV + 0,V
o zwz(l_wpbf +¢§0p"(3)
For typical Nanofluids with
Nanoparticles at a value of volume
fraction less than 1%, a- minor change
of less than 5% in the fluid density is
expected. With respect to viscosity : the
viscosity of mixture particles/fluid have
two model invalued in calculation the
Maxwell model which is introduced for
sub  millimitric size particles in
suspension in fluid and that of Enstien
Model for nano particles in suspension
in fluid with volume fraction less than
0.01, where the surface interaction
between particles and fluid bein
neglected. The Enstien Model %
expressed as :

tnt = Hpf +2.50) L 4)

However other correlated models for
Al,Os/water have been considered:

pint =(1236% + 3¢+ )t oo (231 (5)
fiof = (1+39.1$+53399% s 24 (6)
uns = 6202 425941y BN (7

tog ={15042 + 2541 P (8)
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This correlation adapted for the present
calculation as taking into consideration
the size of the particles of less than 36
nm which can accommodate the
agglomeration that can exist in real fluid
under investigation.

Specific Heat
The specific heat of Nanofluid can be
determined on assumption that a
thermal equilibrium  between the
Nanoparticles and base fluid
maintained as follows:

1- Cp; +do C
Cpnf :( ¢)pf pf @p pp (9)

pnf

Using this relation a prediction of small
decrement in specific heat for 3%
Al,O3water within a range of 7-8% to
that of water. Due the size dependent
that being noticed %! a relation
adapted of Yang and Zhang !

(L—¢)oCp)y +4(£Cp)
(1 - ¢)pbf +dp D

(Cp)bf = P .(10)

Thermal Conductivity

The effective thermal conductivity of

Nanofluids based on an empirical model

of . Maxwell BY on assumption that a

spherical particles shape dispersed a

supporting field:

ki=l+ 3(a-1)¢ o« K,

ki (@+2)—(a-D¢ K,
....(12)

And  k =k, (4.97¢4% +2.7¢4+1)

for Water / y-Al,03

For two other effecting physical
parameter the shape of the particles and
the effect of the particle motion in the
fluid. A brownian type random
movement  being  introduced by
Hamilton and Crosser®. The Maxwell
correlate becomes:

Ky o+ 0Dk -0 Dok, k) ]
ke K, +(n=Dk; +g(k, -k,) ]
Where the parameter n is the ‘shape

factor’ defined as : n=i , where

called the (Sphericity), is defined as the
ratio of the surface area of the sphere to
that of the particle for the same volume.
For spherical particles w = 1, and for the
cylinders w = 0.5. Jang and Choi B
found that the Brownian motion of
Nanoparticles at the molecular and
Nano scale level is a key mechanism
governing the thermal behavior of
Nanofluids .

3. Pure and Nanofluid Temperature
In The Nanofluid and pure fluid cooling
MCHS, the energy absorbed by the
working fluid can be written as :

Qu = (PCp)nf V;ﬂ (Tnfo —To ) = (PCp)nf Ve AT,
.(13)

Q; = (pCp)f V.f (Tfo -Ts ): (pCp)f Vlf AT,
.(14)

noting that the thermal capacity of the
Nanofluid is usually smaller than that
for the pure fluid because of the low
specific heat of Nanoparticles .

From Newton’s law of cooling, the
local heat transfer coefficient for both
Nanofluid and pure fluid cooled MCHS
can be written as:

q" =y (T () =Ty ()=
h, (X)(Tsf (x)-T; (X))

h_. (x) =
R )

...(16)

in order to established a heat transfer
enhancement by the Nanofluid If the ,
he X) > hy (x) and Qn >Q
conditionally V. =V, and Tpi = Tsi ,
we observed that :

q ,h (X): q
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(Tnfo _Tnfi)> (Tfo — T4 )

(T 00 =T, 00) < (T 00 =T, (0)) (28)
by Combining Egs. (27) and (28), it can
be found that :

e (A7)

Tsnf (X) < Tsf (X)

This result indicates that Nanofluid can
cool MCHS better that pure fluid.

Results and Discussions

The calculation being carried by using
the FLUENT code (Ansys 12) and the
mesh that has been established as
mentioned earlier. These calculations
established for two mass flow rates that
maintained a laminar flow through the
channel. Then three heat flux imposed
on the channel accordingly there
mixture of nanofluid and pure water
being used.

The temperature distribution across the
cross sectional area and respectively
with its length has been estimated as
shown in Figure (3) to (8) for are the
temperature contours of the outlet of the
channel a mentioned conditions. While
the profile along the channel presented
in Figure (9) and (10) and table (4). As
noted on each the related condition.

The contucted results from the contours
of the temperature distribution in
highest in contact with channel wall and
concaving toward the center of the
channel, while the temperature profile
along the channel decreasing with
respect to either increasing nanofluid
concentration or the increasing velocity.
Then the velocity profile for each at the
exit shown in figures ( 11-16).
Concerning the heat transfer coefficient
a three regions along the channel being
noticed for the pure water to that of the
mixture nanofluids so that a rapid slope
ends at 1 mm for water and the mixtures
but the intermediate range for water

ends at 6 mm while the mixtures ends at
7 mm, furthermore length being steady
sate meaning a better heat transfer
coefficient for the mixtures from that of
pure water Figure(17). similarly the
Nusselt number confirm this type of
behavior but Nusselt resolve very
clearly the transfer enhancement from
the lower concentration to the higher
one as shown in figure 18a,b,c. Never
the less, to confirm this results with 1%
shows that a close similarity in the
result concerning Nusselt number
Figure 19. In comparing to heat flux
with both Nusselt number and Reynold
number shows the higher the heat flux
have its highest and a linearly variation
with the increasing of both number and
shows a lower value for a lower heat
flux as given in figure(20).

Conclusions

The simulated flow inside a micro
channel for Al,Os/water mixture with
different concentration to conduct heat
flux exposed from bottom side of the
channel to be constant at 50 W/cm?,
90w/cm? and 200 W/cm?. The flow of
the fluid assumed laminar in range of
less than 1000 Reynold number, for
concentrations of 1%, 3% and 5%.
The outlet flow temperatures obtained
from the calculations for both of flow
rate which is mentioned previous and
heat fluxes (50 W/cm? and 90 W/cm?) is
less than 80 degree centigrade while
greater than 80 degree centigrade at 150
W/cm? for the same conditions. Also
From the review of the Nanofluid
thermal conductivity study in the
literatures, it is seen that there is a
significant discrepancy in experimental
data. This discrepancy may be due to
some specific parameters of Nanofluids
such is clustering of Nanoparticles,
particle size distribution of
Nanoparticles, duration and severity of
ultrasonic vibration applied to the
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Nanofluid, and pH value of the
Nanofluid.

The analysis performed, provides a-
fundamental understanding of the
combined flow and conjugate
convection—conduction heat transfer in
the three-dimensional Microchannel
heat sink. Therefore, the results of the
analysis as well as the conclusions can
be considered as quite general and
applicable to any three-dimensional
conjugate heat transfer problems.
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le—0p Figure(2)Schematic diagram of Single
S Microchannel in GAMBIT.
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Fig. 3 Temperature contour of Outlet at
@=0% and at 50W/cm?, m=1a0"5kg/s .
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®=5% and at 150w/cm? , m=1a0"kg/s .

Table (1): Dimensions of the of the designed cooling model

W 100um

w 57um

H 900um

h 180um

t 21.5um

St 450pm

Sh 270um

L, 10000um

Dy 86 um
Table(2).Volume and Node distribution
Volume | L-L | L-M L-R M-M | M-R
Node | 43416 | 188136 | 43416 | 109746 | 25326
Element | 35000 | 175000 | 35000 | 100000 | 20000
Volume | M-L | U-L U-M U-R
Node | 25326 | 61506 | 266526 | 61506
Element | 20000 | 50000 | 250000 | 50000

Table (3).Estimate Parameters for Nanofluid Concentration

m—1x105kg/s | Heat Flux=50 w/cm?
property =0 @=3 D=5
Temp.(K) 353 351 349
Re 83.57 | 62.83 | 49.95
V(m/sec) | 0.9764 | 0.8945 | 0.8482
f=5.21x10 kg5 Heat Flux=50 w/cm?
property =0 | @=3 | o=5
Temp.(K) | 325 | 324 | 323
Re 427.9 321.7 8255.
V(m/sec) 5 4.58 4.34
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m=1x10""kg/s

Heat Flux=90 w/cm?

property =0 @=3 @=5
Temp.(K) 401 397 395
Re 83.57 | 62.83 | 49.95
V(m/sec) 0.9764 | 0.8945 | 0.8482
h=512x10"%kg/s Heat Flux=90 w/cm?*
property =0 @=3 D=5
Temp.(K) 350 348 347
Re 4279 | 321.7 255.
4
V(m/sec) 5 4.58 431

| m-s12x105g/s | Heat Flux=150 w/cm®

property o=0| @=3| @=5
Temp.(K) 388 | 385 383
Re 427. | 321. 255,
V(m/sec) 5 4.5 4.3
=10x10Skg/s Heat Flux=150 w/cm?
Property =0 @=3 | @=5
Temp.(K) 473 467 462
Re 83.5 62.83 | 49.€
V(m/sec) 0.97 0.89 0.8
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Fig. 20 Variation of average Nu with
Re at different heat flux and

m=1x10"kg/s .



