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Abstract 

In this paper, by using the symmetrical properties of the discrete Hartley transform 

(DHT), an improved radix-2 fast Hartley transform (FHT) algorithm with arithmetic 

complexity comparable to that of the real-valued fast Fourier transform (RFFT) is 

developed. It has a simple and regular butterfly structure and possesses the in-place 

computation property. Furthermore, using the same principles, the development can be 

extended to more efficient radix-based FHT algorithms. An example for the improved 

radix-4 FHT algorithm is given to show the validity of the presented method. The 

arithmetic complexity for the new algorithms are computed and then compared with the 

existing FHT algorithms. The results of these comparisons have shown that the 

developed algorithms reduce the number of multiplications and additions considerably. 

 

Keywords: Signal/Image processing, discrete Hartley transform (DHT), real-valued fast 
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  وارزميات جديدة لمحساب السريع لتحويل هارتمي المنفصلتطوير خ
  

 الخلاصة
( لمحصول عمى خوارزمية THDتم في هذا البحث, الاستفادة من الخصائص التناظرية لتحويل هارتمي المنفصل )

لتحويل فورير ذو  المطموبة العمميات سريعة جديدة من الجذر الثاني والتي تحتاج الى عمميات رياضية تساوي تمك
بسهولة التركيب ولها هيكل منتظم ويمكن تنفيذها باستخدام (. تتميز الخوارزمية المقترحة TFFDالقيمة الحقيقة )

 الحد الأدنى من الذاكرة.
تم تعميم الفكرة في الجزء الثاني من البحث لتشمل جميع الخوارزميات ذوات الجذور الأعمى, وقد قدمت خوارزمية 

ضية المطموبة لتنفيذ الخوارزميات الجذر الرابع كمثال عممي لتقييم كفاءة الطريقة المطورة. تم حساب العمميات الريا
في هذا  الجديدة وبعد ذلك تمت مقارنتها مع نظيراتها المعروفة وقد أظهرت نتيجة المقارنة بأن الخوارزميات المقدمة

 البحث تقمص العمميات الرياضية بشكل ممحوظ.
حقيقة, خوارزميات التحويل تحويل فورير ذو القيمة المعالجة الأشارة والصور, تحويل هارتمي, :الكممات الدالة

 السريعة.
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Introduction 
The discrete Hartley transform (DHT) 
first introduced by Bracewell 

[1,2]
 plays an  

important role in signal and image 
processing applications. It is closely 
related to the real-valued discrete Fourier 
transform (RDFT)

[3,4]
  with the 

comparable arithmetic complexity. 
However the advantage of DHT over the 
RDFT is that the DHT is an involuntary 
transform, therefore the forward 
transform is differing from the inverse 
transform only by the scale factor. 
Furthermore, for some applications such 
as convolution and correlation that 
required both the forward and the inverse 
transforms. The inverse RDFT still needs 
to deal with the complex values even for 
real-input sequence, while this not the 
case for the DHT. Therefore, the DHT 
has been proved to be faster than RDFT 
for these applications.  

A lot of work has been done for the 
development of the fast Hartley transform 
(FHT) algorithms to reduce the arithmetic 
complexity and implementation cost. The 
first FHT algorithm was developed by 
Bracewell 

[5]
 that performs the DHT in a 

complexity proportional to Nlog2N using 
radix-2 approach. Sorenson et al 

[6]
 are 

developing a complete set of decimation-
in-time (DIT) and in-frequency (DIF) 
algorithms using the index mapping 
approach, and verified that all (FFT) 
algorithms can also be applied to the 
computation of the FHT. Hou reported a 
decomposition method of the DHT 
computation

[7]
. Chan described a different 

algorithm by using the symmetric cosine 
structure (SCS)

[8]
. Other existing methods 

using fast algorithm of the discrete 
Fourier transform (DFT)

 [9]
 or the discrete 

cosine transform (DCT)
[10]

. All these 
algorithms are requiring the same number 
of multiplications although the twiddle 
factor operations can be implemented by 
using four multiplications and two 
additions or three multiplications and 
three additions. 

In this paper, improved radix-based 

FHT algorithms are developed based on 

the symmetrical properties of the DHT 

matrix, with better arithmetic complexity 

than the existing algorithms. Next section 

will review the radix-2 FHT DIT 

algorithm and then an improved radix-2 

algorithm will be proposed. 

Subsequently, the development is 

extended to the radix-4 improved 

algorithm, and follows that the 

development can be applied to any 

higher-radix FHT algorithms. Afterward, 

the performances of the developed 

algorithms are examined by analysing 

their arithmetic complexities and 

comparing them with the existing once. 

Finally a conclusion is given in the last 

section. 

 

Proposed Algorithm 

The DHT X(k) for a real data sequence 

x(n) of length N is defined for  

0 1k N   , as 
[1]

: 

1

0

( ) ( ) ( )
N

n

X k x n nkcas 




                      (1) 

Where: 

   ( )     ( )     ( ),        

and the transform length N assumed to be 

an integer power of two. Fast algorithms 

may be developed for the DHT , they 

include radix-2 
[5, 11]

, radix-4 
[6,12]

 and 

split-radix 
[13,14] 

algorithms, where the 

decimation can be carried out either in 

time or in frequency.  
Improved radix-2 FHT algorithm 

According to the decimation in time 

radix-2 algorithm 
[5]

, Eq. (1) can be 

written as:  
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Where 
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For      . X2n(k) and X2n+1(k) can be 

recognized as the (N/2)-point DHT for 

even x(2n) and odd x(2n+1) parts of x(n). 

In order to ensure the in-place 

computation, the retrograde indexing 

scheme 
[15]

 must be applied for both kth 

and (N/2-k)th terms, as follows: 
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……………………………………..(6) 

Therefore, four points are included in 
each butterfly to aviod overwriting an 
element that will be needed later 

[6]
. 

Figure 1 shows the butterfly structure for  
this algorithm. 

Equations (2) - (6) can be recognized 

as two separate DHTs, each of length 

(N/2)-point. Each of these can be further 

decomposed into another two (N/4)-point 

transforms which, in turn, can be 

decomposed further until two-point 

DHTs are obtained. Figure 2 illustrates, 

using signal flow graph notation, the 

processes involved in evaluating an 

eight-point (N=8) DHT using two four-

point H1(k) and  H2(k) transforms. 

The first two stages of the transform 

do not involve multiplication operations 

by the twiddle factors, and can be fused 

leading to a four-point butterfly which 

can be implemented separately by the 

following matrices: 

1

1

1

1

0 0

1 4

2 2

3 6

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

H x

H x

H x

H x



     
     

 
     
      
     

     

 (7) 

……………………………………....(7) 
 

2

2

2

2

0 1

1 5

2 3

3 7

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

H x

H x

H x

H x



     
     

 
     
      
     

     

….(8) 

The next stage can be calculated by 

introducing a new (N/2)-point 

DHT, ̌ ( ) that processing   ( ) 
through the twiddle factor stage (sine and 

cosine values) as shown in Figure 2 and 

is given by: 

2 2 2( ) ( ) ( )sincos( ) ( )NH k H k k H k k    

………………………..……………..(9) 

Therefore the output of  ̌ ( ) can be 

computed by substituting (8) into (9) and 

noting that θ is equals to (π/4), we get: 
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Finally the desired DHT output is 

obtained by comibing H1(k) and  ̌ ( ) 
transforms for      , in the last 

stage that involvs additions/subtraction 

only,  

1 2

1 22

( ) ( ) ( )

( ) ( ) ( )N

X k H k H k

X k H k H k

 

  
       ……(11) 

From (7) - (11), we obtain the signal flow 

graph of the new algorithm as shown in 

Figure 3. 

It is abvious from Figure (3) that the 

developed algorithm requires two 

multiplications and 22 additions while for 

the standard radix-2 DHT algorithms [6, 

11] the operation counts for N=8 are four 

multiplications and 26 additions.  The 

reductions in the operations are due to the 

fact that at (θ=π/4) the twiddle factors are 

identical i.e. cos(θ)=sin(θ). This 

redundancy is clearly shown on zeros in 

matrix (10) and it ocuurs at every stage 

staisfying the condition: 
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 4
for odd            ii          …..     (9) 

Improved Higher-radix FHT algorithm 

A view of this improvement is illustrated 

by the structure shown in Figure 4, which 

represents a partial signal flow graph 

extracted from the whole DHT graph at a 

specific length satisfying the condition 

given by (9). It can be proved that both of 

Figure 4a and Figure 4b are equivalents, 

as follows: 

From Figure 4a, we have: 
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and from Figure 4b,  

1 1

2 2

2

2

0

0

X x

X x

    
     

         ………….(14) 

 (11) 

 

Hence (13) is identical to (14), which 

means that Figures 4a and 4b are also 

identical. 

Using these results, the improvement 

of the FHT for any higher radix 

algorithms can be extended straight 

forward. As an example for this 

development is shown in Figure 5 which 

represents the 16-point signal flow graph 

of the improved radix-4 FHT algorithm. 

 

Arithmetic Complexities 

As shown from Figure (3), the improved 

radix-2 algorithm needs       stages of 

butterfly computation. Each stage uses 

(   ) real multiplications and 
(      ) real additions. In addition, 

two (   ) length DHTs have to be 

calculated, thus the whole improved 

radix-2 DHT complexity satisfies the 

recurrences: 

22( ) ( ) 6NM N M N                ……(12) 

3
2 2

2( ) ( ) 6N NA N A        ……(13) 

Where  ( )and  ( ) are the number 

of real multiplications and additions, 

respectively, needed by the proposed 

radix-2 algorithm for a length-N DHT, 

The computational complexities in (15) 

and (16) are recursive. To obtain the 

equations in a closed form, the initial 

values of these complexities are needed. 

In this case, the initial values can be the 

number of operations that are needed by 

length-8 DHTs, which are equal to 

 ( )    and  ( )    . Solving (15) 

and (16) by repeated substitutions of the 

initial values, we get: 

2
7
2

log( ) 6NNM N N                  (14) 

2
3 5
2 2

log( ) 6N NN NA   
  
            (15) 

Based on (17) and (18), the number of 

operations of radix-2 DHT algorithms for 

different transform lengths N is shown in 

Table 1,  in comparsions with the existing 

FHT algorithms. It should be noted that, 

using the proposed algorithm the saving 

in the arithmetic complexity are (  
 )   multiplicationsand (   ) 
additions. 

In the same way, we can prove from 

Figure 5 that the arithmetic complexity of 

the improved radix-4 DHT algorithm 

satisfies the recurrences: 

4
3
2

4( ) ( ) 12N NM N M                  (16) 

4
11

4
4( ) ( ) 10N NA N A                 (17) 

Solving (19) and (20) by repeated 

substitutions of the initial values  ( )  
  and  ( )   , we get the closed form 

complexity of this algorithm, as follows: 

4
15

6
3
2

log( ) 4NNM N N  
 
                    (18) 

4
19 10
12 3

11
4

log( ) NNN NA                      (19) 
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Similarly, the arithmetic complexy 

given by (21) and (22) are compared with 

those of  the radix-4 FHT algorithm 
[6, 12]

 

for different transform lengths N as 

shown in Table (2). Clearly as shown 

from this table, using the proposed 

improved radix-4 FHT algorithm  the 

saving in the arithmetic complexity are 

(   )   multiplications and  (   ) 
  additions respectively. 

Conclusions 
In this paper, an efficient radix-2 fast 
Hartley transform algorithm based on 
symmetrical properties of the DHT matrix 
has been developed. The algorithm has 
been extended to all power of two higher 
radix FHT algorithms. The advantages of 
the proposed algorithms are aimed that 
the operation counts are reduced by 
reducing the number of multiplications 
and additions without increasing the 
hardware complexity.  

It should be noted that the developed 

algorithms offer comparable 

computational complexity with the 

corresponding real-FFT algorithms. 

Therefore, efficient hardware realization 

of these algorithms should be superior to 

current FHT/RFTT processors. 
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Figure. (1)  An in-plce butterfly structrure of the radix-2 DHT, where       , 

soild and dotted lines stand for additions and subtraction respectively. 

 

Figure. (2)  Construction of an eight-point DHT from two four-point DHTs, where 

soild and dotted lines stand for additions and subtraction respectively. 

 
Figure.(3).  Signal flow graph of  8-point improved radix-2 FHT algorithmsolid and 

dot lines stand for addition and subtraction respectively 
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Figure.(4) Partial signal flow graph for the (a) DHT algorithm and (b) Improved 

DHT algorithm. 

 

 

 
Figure.(5) Signal flow graph of  16-

point improved radix-4 FHT 

algorithmsolid and dot lines stand for 

addition and subtraction respectively 
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Table (1) 
comparison of radix-2 FHTs arithmetical complexities 

Length 
Radix-2FHT 

algorithms[5, 11] 

Proposed Radix-2 

FHT algorithm 

N M(N) A(N) Total M(N) A(N) Total 

8 4 26 30 2 22 24 

16 20 74 94 14 62 76 

32 68 194 262 54 166 220 

64 196 482 678 166 422 588 

128 516 1154 1670 454 1030 1484 

256 1284 2690 3974 1158 2438 3596 

512 3076 6146 9222 2822 5638 8460 

1024 7172 13826 20998 6662 12806 19468 

2048 16388 30722 47110 15366 28678 44044 

4096 36868 67586 104454 34822 63494 98316 

  

 

Table (2) 
comparison of radix-4 FHTs arithmetical complexities 

Length 
Radix-4 FHT 

algorithm [6] 

Proposed Radix-4 

FHT algorithm 

N M(N) A(N) Total M(N) A(N) Total 

4 0 8 8 0 8 8 

16 14 70 84 12 66 78 

64 142 450 594 132 430 562 

256 942 2498 3440 900 2414 3314 

1024 5294 12802 18096 5124 12462 17586 

4096 27310 62466 89776 26628 61102 87730 
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