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Abstract
In this paper, by using the symmetrical properties of the discrete Hartley transform

(DHT), an improved radix-2 fast Hartley transform (FHT) algorithm with arithmetic
complexity comparable to that of the real-valued fast Fourier transform (RFFT) is
developed. It has a simple and regular butterfly structure and possesses the in-place
computation property. Furthermore, using the same principles, the development can be
extended to more efficient radix-based FHT algorithms. An example for the improved
radix-4 FHT algorithm is given to show the validity of the presented method. The
arithmetic complexity for the new algorithms are computed and then compared with the
existing FHT algorithms. The results of these comparisons have shown that the
developed algorithms reduce the number of multiplications and additions considerably.

Keywords: Signal/Image processing, discrete Hartley transform (DHT), real-valued fast

Fourier transform, (RFFT), fast transform algorithms.
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Introduction

The discrete Hartley transform (DHT)
first introduced by Bracewell ™ plays an
important role in signal and image
processing applications. It is closely
related to the real-valued discrete Fourier
transform  (RDFT)E*! with  the
comparable  arithmetic ~ complexity.
However the advantage of DHT over the
RDFT is that the DHT is an involuntary
transform,  therefore  the  forward
transform is differing from the inverse
transform only by the scale factor.
Furthermore, for some applications such
as convolution and correlation that
required both the forward and the inverse
transforms. The inverse RDFT still needs
to deal with the complex values even for
real-input sequence, while this not the
case for the DHT. Therefore, the DHT
has been proved to be faster than RDFT
for these applications.

A lot of work has been done for the
development of the fast Hartley transform
(FHT) algorithms to reduce the arithmetic
complexity and implementation cost. The
first FHT algorithm was developed by
Bracewell ! that performs the DHT in a
complexity proportional to Nlog;N using
radix-2 approach. Sorenson et al © are
developing a complete set of decimation-
in-time (DIT) and in-frequency (DIF)
algorithms using the index mapping
approach, and verified that all (FFT)
algorithms can also be applied to the
computation of the FHT. Hou reported a
decomposition method of the DHT
computation!”. Chan described a different
algorithm by using the symmetric cosine
structure (SCS)®!. Other existing methods
using fast algorithm of the discrete
Fourier transform (DFT) ™ or the discrete
cosine transform (DCT)!'. All these
algorithms are requiring the same number
of multiplications although the twiddle
factor operations can be implemented by
using four multiplications and two
additions or three multiplications and
three additions.

In this paper, improved radix-based
FHT algorithms are developed based on
the symmetrical properties of the DHT
matrix, with better arithmetic complexity
than the existing algorithms. Next section
will review the radix-2 FHT DIT
algorithm and then an improved radix-2
algorithm will be proposed.
Subsequently, the development is
extended to the radix-4 improved
algorithm, and follows that the
development can be applied to any
higher-radix FHT algorithms. Afterward,
the performances of the developed
algorithms are examined by analysing
their  arithmetic  complexities  and
comparing them with the existing once.
Finally a conclusion is given in the last
section.

Proposed Algorithm

The DHT X(k) for a real data sequence
x(n) of length N is defined for
o<k<N-1,as

N-1
X (k) = > x(n)cas(onk) Q)
n=0
Where:
cas(0) = cos(0) + sin(6), 0 =2n/N
and the transform length N assumed to be
an integer power of two. Fast algorithms
may be developed for the DHT , they
include radix-2 ©® ' radix-4 ©!2 and
split-radix ™' algorithms, where the
decimation can be carried out either in
time or in frequency.
Improved radix-2 FHT algorithm
According to the decimation in time
radix-2 algorithm !, Eq. (1) can be
written as:
X (k) =X, (K)+X (k) cos(6k)

+X 5 (N —K)sin(ok)

X (k +8) =X, (k) =X 5,4 (k) cos(6k)
~X 54 (N —k)sin(ok)

Where
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Xy (K) = Nflx(zn +1)cas(20nk) (4)
n=0

For 1 =0,1. Xx(k) and Xans1(k) can be
recognized as the (N/2)-point DHT for
even x(2n) and odd x(2n+1) parts of x(n).
In order to ensure the in-place
computation, the retrograde indexing
scheme ™! must be applied for both kth
and (N/2-k)th terms, as follows:

X (NT—k):XQn(NT_k)"'XZrHl(k +N7)Sin(9k)
—X 5na (N k) cos(6k )

X (N =K) =X, (5 —k) = X,,4 (k + ) sin(ok)
+ Xonsa (N = k) cos(6k)

Therefore, four points are included in
each butterfly to aviod overwriting an
element that will be needed later .
Figure 1 shows the butterfly structure for
this algorithm.

Equations (2) - (6) can be recognized
as two separate DHTSs, each of length
(N/2)-point. Each of these can be further
decomposed into another two (N/4)-point
transforms which, in turn, can be
decomposed further until two-point
DHTs are obtained. Figure 2 illustrates,
using signal flow graph notation, the
processes involved in evaluating an
eight-point (N=8) DHT using two four-
point Hy(k) and Ha(k) transforms.

The first two stages of the transform
do not involve multiplication operations
by the twiddle factors, and can be fused
leading to a four-point butterfly which
can be implemented separately by the
following matrices:

H,(0) 1 1 1 170[x()
H,Q) 1 -1 1 -1{/x()
Hi@ | |1 1 -1 —1||x@)
H,(3) 1 -1 -1 1 ||x¢()

.............................................. )

H,o| [1 1 1 17[x@
H | [1 -1 1 -1|[x®|....(8)
H, | [1 1 -1 —1]xE
H,® | |1 -1 -1 1 |[x@

The next stage can be calculated by
introducing a new (N/2)-point
DHT,H,(k) that processing H,(k)
through the twiddle factor stage (sine and
cosine values) as shown in Figure 2 and

(jos) given by:

H, (k) = H, (k) cos(6k) + H, (N — k) sin(&k)

Therefore the output of H,(k) can be
%mputed by substituting (8) into (9) and
noting that 4 is equals to (z/4), we get:

H‘Z ) 1 1 1 1 X (1) (8)
H@| (V2 2 0 0 [[x®e
H, | | 1 1 -1 -1 ||x®
H, (@) 0 0 2 —2|lx™

Finally the desired DHT output is
obtained by comibing Hi(k) and H,(k)
transforms for 0 < k <3, in the last
stage that involvs additions/subtraction
only,

X (k) = Hy (k) + H, (k)
X (k+4) =Hy (k) - H,(K)

From (7) - (11), we obtain the signal flow
graph of the new algorithm as shown in
Figure 3.

It is abvious from Figure (3) that the
developed algorithm  requires  two
multiplications and 22 additions while for
the standard radix-2 DHT algorithms [6,
11] the operation counts for N=8 are four
multiplications and 26 additions. The
reductions in the operations are due to the
(fact that at (9=x/4) the twiddle factors are
identical i.e.  cos(f)=sin(d).  This
redundancy is clearly shown on zeros in
matrix (10) and it ocuurs at every stage
staisfying the condition:
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0=(%)i for odd i v (9)
Improved Higher-radix FHT algorithm
A view of this improvement is illustrated
by the structure shown in Figure 4, which
represents a partial signal flow graph
extracted from the whole DHT graph at a
specific length satisfying the condition
given by (9). It can be proved that both of
Figure 4a and Figure 4b are equivalents,
as follows:

From Figure 4a, we have:

PR A M

and from Figure 4b,

[Xl}_ 2oolx
X,] Lo V2%
Hence (13) is identical to (14), which

means that Figures 4a and 4b are also
identical.

Using these results, the improvement
of the FHT for any higher radix
algorithms can be extended straight
forward. As an example for this
development is shown in Figure 5 which
represents the 16-point signal flow graph
of the improved radix-4 FHT algorithm.

Arithmetic Complexities

As shown from Figure (3), the improved
radix-2 algorithm needs log,N stages of
butterfly computation. Each stage uses
(N—6) real multiplications and
(3N/2 — 6) real additions. In addition,
two (N/2) length DHTs have to be
calculated, thus the whole improved
radix-2 DHT complexity satisfies the
recurrences:

M(N)=2M()+N -6

A(N)=2A0) +3N -6

Where M(N)and A(N) are the number
of real multiplications and additions,
respectively, needed by the proposed
radix-2 algorithm for a length-N DHT,
The computational complexities in (15)
and (16) are recursive. To obtain the
equations in a closed form, the initial
values of these complexities are needed.
In this case, the initial values can be the
number of operations that are needed by
length-8 DHTs, which are equal to
M(8) =2 and A(8) = 22. Solving (15)
and (16) by repeated substitutions of the

(183itial values, we get:

M(N) = Nlog, N - 7N 16 (14)

A(N)=3R1og, N2 +6 (15)

(11) Based on (17) and (18), the number of

operations of radix-2 DHT algorithms for
different transform lengths N is shown in
Table 1, in comparsions with the existing
FHT algorithms. It should be noted that,
using the proposed algorithm the saving
in the arithmetic complexity are (N —
4)/2 multiplicationsand (N —-4)
additions.

In the same way, we can prove from
Figure 5 that the arithmetic complexity of
the improved radix-4 DHT algorithm
satisfies the recurrences:

M(N)=4m(H)+30 12 (16)
AN -aA+ o0 (47)
Solving (19) and (20) by repeated

substitutions of the initial values M(4) =
0 and A(4) = 8, we get the closed form
complexity of this algorithm, as follows:

M(N) = 1og, N 28N 1 4 (18)

A(N) =1 1og, N - 198 + 20 (19)
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Similarly, the arithmetic complexy
given by (21) and (22) are compared with
those of the radix-4 FHT algorithm 2
for different transform lengths N as
shown in Table (2). Clearly as shown
from this table, using the proposed
improved radix-4 FHT algorithm the
saving in the arithmetic complexity are
(N — 4)/6 multiplications and (N —4)/
3 additions respectively.

Conclusions

In this paper, an efficient radix-2 fast
Hartley transform algorithm based on
symmetrical properties of the DHT matrix
has been developed. The algorithm has
been extended to all power of two higher
radix FHT algorithms. The advantages of
the proposed algorithms are aimed that
the operation counts are reduced by
reducing the number of multiplications
and additions without increasing the
hardware complexity.

It should be noted that the developed

algorithms offer comparable
computational complexity with the
corresponding  real-FFT  algorithms.

Therefore, efficient hardware realization
of these algorithms should be superior to
current FHT/RFTT processors.
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x(k) ®

x(N/2-K)

X(N2+K)@e— =) g N0 X(N/2+K)

in (6k
X(N-K) O--z 5y~ "®-"--------- X(N-K)

Figure. (1) An in-plce butterfly structrure of the radix-2 DHT, where @ = 2m/N,
soild and dotted lines stand for additions and subtraction respectively.

K o—— " . 2X(0)
1
X(4) ¢——— X(1)
4
X(2) &————— PONT X2
DHT
X(6) ¢———— X3
X(1) ¢—— ik X(4)
goe——— --\--0X(5)
X(3) ¢———— PONT | N o  / _ __\._.. X(6)
DHT
X(7) ———— g€ X(7)

Figure. (2) Construction of an eight-point DHT from two four-point DHTS, where
soild and dotted lines stand for additions and subtraction respectively.

Xo

X4

X2

Xp

X1
X5

X3

X7

Figure.(3). Signal flow graph of 8-point improved radix-2 FHT algorithmsolid and
dot lines stand for addition and subtraction respectively
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X1 2 X1
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Xy o———e X,

Jz
(b)

Figure.(4) Partial signal flow graph for the (a) DHT algorithm and (b) Improved
DHT algorithm.

X13

Figure.(5) Signal flow graph of 16-
point improved radix-4 FHT
algorithmsolid and dot lines stand for
addition and subtraction respectively

and C = Cos(5), S = Sin(%) .
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Table (1)
comparison of radix-2 FHTs arithmetical complexities
Length RaQiX-ZFHT Proposed Ra_ldix-z
algorithms[5, 11] FHT algorithm
N M(N) | A(N) | Total | M(N) | A(N) | Total
8 4 26 30 2 22 24
16 20 74 94 14 62 76
32 68 194 262 54 166 220
64 196 482 678 166 422 588
128 516 | 1154 | 1670 454 | 1030 | 1484
256 1284 | 2690 | 3974 | 1158 | 2438 | 3596
512 | 3076 | 6146 | 9222 | 2822 | 5638 | 8460
1024 | 7172 | 13826 | 20998 | 6662 | 12806 | 19468
2048 | 16388 | 30722 | 47110 | 15366 | 28678 | 44044
4096 | 36868 | 67586 | 104454 | 34822 | 63494 | 98316

Table (2)
comparison of radix-4 FHTSs arithmetical complexities
Length Radi>_<-4 FHT Proposed Rgdix-4
algorithm [6] FHT algorithm
N M(N) | A(N) | Total | M(N) | A(N) | Total
4 0 8 8 0 8 8
16 14 70 84 12 66 78
64 142 450 594 132 430 562
256 942 | 2498 | 3440 | 900 | 2414 | 3314
1024 | 5294 | 12802 | 18096 | 5124 | 12462 | 17586
4096 | 27310 | 62466 | 89776 | 26628 | 61102 | 87730




