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Abstract 

        In this research a numerical investigation on a supersonic air intake was done. The aim of this 
work is to investigate a variable geometry of cross-section area for supersonic air intake at range 
(1.1-1.5) Mach number, to get a maximum pressure recovery. In this work, the flow starts with a 
normal shock attached to the intake cowl lip. The flow is assumed compressible, inviscid, two-
dimensional flow, unsteady, and axisymmetric. The equations (Continuity, Momentum, and Energy) 
were solved based on a finite volume method. The governing equations were solved iteratively 
using time marching technique. This part is analyzed for several Mach numbers, where the flow 
properties are determined from inlet of air intake to the diffuser exit. Results show that, the 
implementation of time marching scheme has succeeded in the prediction of the choked flow 
region, which is important in the study of the performance of convergent-divergent diffuser. Also the 
results indicated the absolute velocity increases along the convergent part and then start to 
decrease along divergent part independently on the values of free-stream Mach numbers. 

        
Keywords: Convergent-divergent diffuser, Supersonic air intake, Finite volume method, Time 
marching techniques. 
 

 
 

 (1.1-1.1لأرقام ماخ ) تية تعمل بمبدأ الانضغاط الداخليالتنبؤ بأداء آخذة هواء فوق صو

 
 الخلاصة

وتٌة تم فً هذا البحث التنبؤ العددي لأداء آخذة هواء فوق صوتٌة. الغرض من هذا البحث فحص آخذة هواء فوق ص        
( للحصول على أعلى ضغط إرجاعً. فً هذا العمل، ٌبدأ عمل 1.1-1.1متغٌرة فً مقطع المساحة لأرقام ماخ تتراوح ما بٌن )

الآخذة بموجة صدمة عمودٌة عند مدخل الآخذة وبالتالً فان الجرٌان ما بعد الصدمة العمودٌة هو جرٌان دون صوتً على طول 
لى انه جرٌان غٌر لزج، ثنائً البعد، غٌر مستقر، ومتناسق مع المحور.استخدمت الطرٌقة الناشر الملتم. تم فرض الجرٌان ع

العددٌة لحل معدلات )الاستمرارٌة، الزخم، والطاقة( معتمدا على طرٌقة الحجم المحدد. تم حل المعادلات السابقة حلا تكرارٌا 
من مدخل الآخذة )النشر الملتم( وحتى مخرج الناشر. بٌنت نتائج باستخدام آلٌة الزحف الزمنً. تم تحلٌل هذا الجزء لعدة قٌم ماخ 

البحث بان طرٌقة الزحف الزمنً كانت موفقة فً التنبؤ بموقع اختناق الجرٌان، كما بٌنت النتائج السلوك الطبٌعً للجرٌان دون 
لى زٌادة قٌمة السرعة المطلقة على طول المنفرج. كذلك أشارات النتائج إ-الصوتً ما بعد الموجة العمودٌة على طول النشر الملتم

 الجزء الملتم بٌنما تبدأ بالنقصان على طول الجزء المنفرج غٌر معتمدة على قٌم رقم ماخ الجرٌان الحر.
 

 المنفرج، آخذة الهواء فوق الصوتٌة، طرٌقة الحجم المحدد، تقنٌة الزحف الزمنً.    -الناشر الملتم :الكلمات الدالة
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Nomenclature 
Item                                       Symbol        Unit 
Absolute velocity                         c              m/s 
Altitude                                        H               m 
Area of cell in X-dir.                     Ax             m

2 

Area of cell in Y-dir.                     Ay             m
2 

Damping factor                            B              --- 
Damping term                              D              --- 
Diffuser height                             d               m 
Diffuser inlet section                    c               --- 
Diffuser exit section                     e               --- 
Downstream of Mach Number y                 --- 
Flux of mass                              F(i,j)            --- 
Flux of momentum in X-dir.       F(i,j)x           --- 
Flux of momentum in Y-dir.       F(i,j)y           --- 
Flux vector-tension in X-dir.        f                 --- 
Flux vector-tension in Y-dir.       g                 --- 
Flux vector-tension in t-dir.        U                 --- 
Length of diffuser                       L                 m 
Mach Number                            M                --- 
Node in X-dir.                             i                  --- 
Node in Y-dir.                             j                  --- 
Relaxation term                         CF               --- 
Relaxation factor                       RF               --- 
Speed of sound                         a                m/s 
Static pressure                          P              N/m

2 

Static temperature                    T                  K 
Temporal index                        n                 --- 
Time                                          t                 sec 
Total energy per unit mass       E               J/kg 
Velocity component in X-dir.     u                m/s 
Velocity component in Y-dir.     v                m/s 
Volume of cell                          vol.              m

3
 

Upstream of Mach Number      x                  --- 
 
Air density                                              kg/m

3
 

Specific heat ratio                                       --- 
Diffuser exit divergence angle  θ               deg. 

Diffuser inlet convergence angle            deg. 

Free stream Mach Number                      --- 
 

 
Introduction 
     The prediction of flow in air intake is of 
practical importance in the development and 
design of air intake. So a large number of 
studies has been done to analyze the 
characteristics of flow field. Some of these 
studies were concentrating on subsonic air 
intake. A large number of these studies were 
concentrating on supersonic air intake. 
        Conners et al.[1], presented design 
charts for Mach numbers up to 4, for single 

and double-oblique and conical-shock inlets 
and for isentropic axi-symmetric and two-
dimensional surfaces having theoretically 
focused Mach lines. Compression limits for 
isentropic inlets are presented. A comparison 
of optimum performance for various inlet 
configurations (normal shock, convergent-
divergent (internal compression), single cone, 
double cone, and isentropic) is presented. The 
geometric angles of the single and double 
cone inlets were optimized in terms of 
pressure recovery by using Taylor-Maccoll 
method.   
       Knight et al.[2], developed a numerical 
code to calculate the flow field in two-
dimensional high-speed inlets using the 
Navier-Stokes equations. The code has been 
applied to calculate the flow in a simulated 
high-speed inlet operating at a Mach number 
2.5 and Reynolds number of 1.4 10

7
 based 

on the inlet length. The computed results are 
compared with detailed measurements of the 
ramp and cowl static pressure. The agreement 
with the experimental data is good.  
        Shimabukuro et al.[3], conducted an 
analytical study on various inlet-engine 
combinations for a Mach 2.2, to select a 
preferred inlet type for single-engine pod 
installations. These types of inlets include two-
dimensional and axisymmetric with either 
mixed or internal compression. The results of 
the study indicated that the axisymmetric 
mixed compression inlet was preferred. 
Detailed design studies of single and double 
cone axisymmetric mixed compression inlets 
types are discussed.   
        Biringen et al.[4], outlined a time-
dependent, implicit, finite-volume solution 
procedure for the Euler equations, to calculate 
two-dimensional inlet flow fields. This work 
focuses on the calculation of inviscid inlet flow 
fields with uniform and non-uniform inflow 
boundary condition. All the calculations were 
performed at the design Mach number of the 
inlet 3.5. Results for a practical inlet 
configuration are presented. The method can 
be used for a flow field with both subsonic and 
supersonic regions and is found to converge 
rapidly for supercritical and sub critical inlet 
operations.  
        Walters et al.[5], presented a numerical 
method for solving the compressible Navier-
Stokes equations in conservative form. This 
method was tested on a number of numerical 
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examples, one of them was a supersonic inlet. 
The supersonic inlet results were presented 
for 5˚ wedge inlet at free stream Mach number 
equal to 3. The results were in a good 
agreement with these of other methods, 
and/or experiments. 
        Moretti et al.[6], presented an efficient 
Euler computational technique for two-
dimensional Euler equations at any number of 
shock of any shape and type, whose 
interaction can be treated by this technique. 
He presented the results for a number of 
examples, such as transonic airfoils, shock in 
ducts, intake flows, multiple Mach reflections. 
The results for intake were at free stream 
Mach number equal to 2, ended at outlet of 
duct of 0.3 Mach.  
       Mittal et al.[7], presented a numerical 
method to solve compressible Euler equations 
for two-dimension mixed compression 
supersonic inlet. A stabilized finite-element 
method is employed. The computations are 
capable of simulating the start-up problems 
associated with mixed compression 
supersonic inlets. If the diffuser throat is not 
large enough to allow the start-up normal 
shock wave to pass through the inlet it un 
starts.  
        The computation method is presented for 
design Mach number 3. The results were the 
start-up problem of inlet, which can be solved 
with either an increase of the throat area 
(variable geometry) or by increasing the free 
stream Mach number (fixed geometry).      
        In this work the supersonic air intake was 
investigated for a range of Mach numbers 

corresponding to ( 5.11.1 M ), and at 

specific altitude corresponding to 

( mH 5000 ). 

       The operation of the air intake at low 

supersonic Mach number ( M 1.5) is 

considered as a normal shock intake, when 
the normal shock wave stands at the cowl lip 
of the intake[8]. The mechanism that locates 
the normal shock wave at this position is the 
variable throat area, which is opened further to 
permit the normal shock attachment to the 
cowl lips. In this case the flow is choked at 

throat position ( tM =1.0) as shown in Figure 

(1). 

               

                         Shock wave position 

 

 

 

 

 

 
 

 

 
Fig. 1. Normal shock wave position during 

operation at low Mach numbers ( M 1.5) 

 
Mathematical Model 
     The supersonic air intake, that shown in 
Figure (2), was considered as a variable 
cross-sectional area of intake with two internal 
facing ramps. This type of air intake achieves 
compression though using the variable throat 
area to allow the normal shock attached the 
cowl lip at every free stream Mach number[9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
      
 
  Fig. 2. Convergent-divergent supersonic 
                      diffuser configurations 
   

       The design elements of the convergent 

diffuser are (L1, ) as shown in Figure (3). 

Where the convergent length of this diffuser 
may be optimized in terms of total pressure 
recovery, where all pressure recoveries are 
based on shock losses. While the second part 
of diffuser consists of diverging passage starts 
immediately downstream of the converging 
part. The length of the divergent diffuser (L2) is 
very important in design and it is optimized to 

M∞=Mx 

Mx=(1.1-1.5)  
Mt=

1 

 
My<1  
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avoid flow separation. The design elements of 
divergent diffuser are (L2,θe). These elements 
must be optimized to get intake with following 
characteristics, 1.Short enough to keep 
weights and drags to minimum, 2. Long 
enough to give Mach number range (0.2-0.5) 
at engine face[10]. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Convergent-divergent supersonic 

diffuser design parameters 
 

      The flow requirement of an existing 
turbojet engine is used to determine the 
ranges of entrance to throat area (contraction 
ratio) variations that are employed in the 
mechanical design of the model. These area 
ratios and the shock configuration for optimum 
pressure recovery at the design point 
determine the length of the converging part. 
The length of the rear part is selected so that 
the maximum divergence angle at the design 
condition does not exceed (7

o
), to avoid flow 

separation. This angle is considered to be a 
reasonable compromise between the 
requirements of minimum diffuser length and 
of maximum subsonic diffuser efficiency[11].   
      The performance of supersonic air intake 
has been predicted depending on design 
parameters that demonstrated at end of this 
paper. The air intake can be considered as a 
variable geometry convergent-divergent 
supersonic diffuser of two internal facing 
ramps. The compression that is happened at 
all free-stream Mach numbers will start with a 
normal shock wave attached to diffuser inlet 
cowl lips. The position of free stream Mach 
number in this case, is considered as attached 

to diffuser cowl lips, and it is equal to 

upstream Mach number ( xM ), while the Mach 

number that located after the normal shock 
wave is equal to  downstream Mach number 

( yM ). The time marching technique was used 

in this work to solve the flow equations along 
the whole diffuser (starting after a normal 
shock position with a subsonic Mach number) 
and continue until reach to diffuser end.  

 

Assumptions 
    The following assumptions are made for the 
present work:- 
1- The airflow was considered as a 

perfect gas. 
2- The flow was considered as two-

dimensional compressible along the whole 
diffuser. 

3- Inviscid flow. 
4- Unsteady flow. 
5- Zero angle of attack. 

 
Governing Equations 
       The mathematical behavior of the Euler 
partial differential equation is classified as 
elliptic in subsonic flow and hyperbolic in 
supersonic flow. If the time dependent terms 
are retained and a steady state is assumed as 
in current work the solution can be obtained 
using time marching procedure, by marching 
from some initial guessed flow field through 
time until a steady state is obtained, where all 
domains are expressed in hyperbolic 
differential equations. The governing 
equations for an inviscid, two-dimensional 
compressible flow expressed in a conservative 
form are[12]: 
- Continuity equation 

     
0















y

v

x

u

t


…………..………..(1) 

- Momentum equations 

    In X-direction 

     
0

2
















y

uv

x

Pu

t

u  …………..…(2) 

    In Y-direction 

Θ

e 

δ 
 

L1=110 cm L2=140 

cm 

d

c 

 

de 
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     
0

2
















y

Pv

x

vu

t

v  ………….…...(3) 

- Energy equation 

     
0















y

PEv

x

PEu

t

E 
..…….(4) 

where, E is given by the following equation: 

2

2

1

1
c

P
E 


 


……………………….....(5) 

where, c is given by the following equation: 

22 vuc  ………………………..…………(6) 

        It is convenient to combine the governing 
equations, into a compact vector before 
applying a finite volume algorithm to these 
equations. Euler Equations (1) through (4) in 
Cartesian coordinates may be written in a 
vector form[12]: 

0














y

g

x

f

t

U
 …………………………...(7) 

       The components f and g of the flux 
vector-tensor are defined in the following 
equations: 

 PEu

uv

pu

u

f













2

…………..…………..(8) 

 PEv

pv

vu

v

g














2

……………..………..(9) 

where, U  is the proper vector  which has the 

following components: 

E

v

u
U










………………….………..(10) 

By substituting Equations (8), (9), and (10) 
into Equation (7) it gives the following form:     

   

0
2

2























PEv

pv

vu

v

y

PEu

uv

pu

u

x

E

v

u

t

























     
……………………..………………………….(11) 

 
Finite Volume Method 
     The complicated computational domains 
are often discratized without using 
transformation of the domain. From this point 
of view the method takes full advantage of an 
arbitrary mesh, where a large number of 
options are open for the definition of the 
control volumes around which the 
conservation laws are expressed. So the finite 
volume has the same flexibility as finite 
element methods. The time derivative was 
discratized to gives finally the following 
discredited system, 







vol

ti
UU nn


1 (transport term)
n 

+ 

damping term …………………...…………..(12) 

where the transports term has to be taken as 
positive for transport into the element negative 
for a transport out of the element. The 
variables are stored at the center of the 
element and the Euler equations discratized 
on the finite volume in a conservation manner. 
The transport terms are computed at the cell 
faces assuming that they are linear between 
element centers.  

Time Marching Techniques 
       The main attraction of the time marching 
method arises from its ability to handle mixed 
subsonic-supersonic flow with automatic 
inclusion of shock waves in a single 
calculation. This technique works naturally 
with a prescribed pressure ratio rather than 
with a prescribed mass flow, thereby avoiding 
the problem of finding the choking mass flow. 
This method is represented a solution of the 
time dependent Euler equations for different 
diffuser geometry by using a finite volume 
method with the time marching technique 
converging to the steady state. The new 
density and velocity associated with each (i,j) 
cell center, are determined from the continuity 
and momentum equations respectively by 
using the old values of density, velocities, and 
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pressure on the right hand side of the 
equations. The new pressure can be found 
from the constant enthalpy relationship (total 
temperature constant) using the new values of 
density and velocities as shown in the 
following procedure: 

 
Continuity: (ρ

n
, u

n
, v

n
) ρ

n+1
 ……….…….(13) 

Momentum: (ρ
n
, u

n
, v

n
, P

n
)u

n+1
, v

n+1
 …..(14) 

Energy:  (ρ
n+1

, u
n+1

, v
n+1

)P
n+1

  ………….(15) 

 
Evaluation the Fluid Properties Using 
Finite Volume Method 
       The flow field is divided into a large 
number of arbitrary non-orthogonal finite 
element computational cells, as indicated in 
Figure (4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Fig. 4. Finite element technique with flow 

properties stored at center of cells 
 
      To solve the Euler equations, where the 
flow properties are stored at the centers of 
cells. The Euler equations can be written by 
using a summation of fluxes around the 
quadrilateral, and cell time differential can be 
written by a simple difference: 

 

 AyvAxuVol
ti facecell









.

                                                      

………………………………………………...(16) 

    AyuvAxpuVol
ti

u

facecell







 2

.

                                                 

………………………………………….……..(17) 

    AypvAxuvVol
ti

v

facecell




 2

.




                                                  

……………………………………….………..(18) 

      To compute the new values of the flow 
properties on the cell faces it is assumed that 
they change linearly between center of cells, 
so that the flux of mass into the (i,j)th cell 
across the face is:   

(i,j) → (i+1,j+1)  is: 

         jijiji AyyuujiF ,,1,
2

1
,                                    

     jijiji Axyvv ,,1,
2

1
   ………………(19) 

      Also, the fluxes of momentum in the         
x-direction into the (i,j)th cell across the face is 
equal to:     

       
 jijijix

AyxupupjiF ,,

2

1,

2

2

1
,                            

     jijiji Axxuvuv ,,1,
2

1
   …………...(20) 

       In the same way the fluxes of momentum 
across other faces can be written as follows:-  

1


 nFVol
t

U
 ………………...……..(21) 

where:  

 
 v

uU













 and   

1

1

1

1







 

n

y

n

x

n

n

F

F

F

F                                                   

…………………………………….…………..(22) 

      The final equation can be re-written as 
follows: 

Vol

ti
F nnn




  11   …………..………..(23) 

 

1

1

1





















n

n

x

n

n Vol

ti
Fu

u



…………….……(24) 

 

1

1

1





















n

n

y

n

n Vol

ti
Fv

v



……………......(25)                                            

Time Step 
      In general, for explicit methods, the value 
of Δt cannot be arbitrary, rather it must be less 
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than some maximum values for stability. The 
time dependent applications described above 
deal with governing flow equations that are 
hyperbolic with respect to time. Then, it is 
stated that Δt must obey the (CFL). The CFL 
criterion states that physically the explicit time 
step must be no greater than the time required 
for a sound wave to propagate from one grid 
to next. The maximum allowable value of CFL 
factor for stability in explicitly time dependent 
finite volume calculation can vary from 
approximately (0.5-1.0)[12]. On the other 
hand, the CFL is a function of fluid velocity 
and speed of sound and there is variation with 
the spatial coordinate, then the local value of 
Δt associated with each cell point will be 
different from one point to the next. Finally, the 
value of time step, which subjected to a 
stability criterion employed, should be 
minimum overall the cell points. To determine 
the value of time step, the following version of 
the CFL criterion is used. It is more practical to 
use the following simplified relation: 

  1
1

1







ti
ac


……………………………(26) 

Where, TRa   …………...………(27) 

 
Damping Terms 
       Damping terms ensure stability, without it 
the convergence will not take place at all. 
Introducing damping in the partial differential 
equations therefore ensures numerical 
stability[12]. A non-derivative term is added to 
the governing equations, so the second order 
accuracy damping term for the velocity in x-
direction can be written as follows[13]: 

       


jiujiu
B

jiD
n

u ,1,1
4

,
1                        

     jiujiujiu ,41,1,   ………..(28) 

where B is a damping factor generally less 
than one[13]. 
 

Relaxation Terms 
        The presence of the damping terms 

must not be allowed to contaminate the 
second order accuracy of the converged, time-

steady solution, so a correction term FC is 

added at the explicit time level to ensure this,   

  nnn DRFFCRFFC  11 ………(29) 

where, the relaxation term for the velocity in 
x-direction becomes: 

       nu

n

u

n

u jiDRFjiCFRFjiCF ,,1,
1




  
…………………………..…………………....(30) 

Now, the Equation (24) becomes: 
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 1

1
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1 1




……

………………………………………………...(31) 

      With the same procedure the final 
equations for other properties can be written 
similar to form of Equation (31).  
 

Results and Discussion 
        A finite volume method is employed to 
solve the equations of continuity, momentum 
and energy along a convergent-divergent 
diffuser. In this section, results of performance 
predicted in a convergent-divergent diffuser 
are presented. For each operating condition, 
there is a certain value of geometrical throat 
area corresponding to free-stream Mach 
number. This work is based on theoretical 
analysis only. But, the results of computational 
method is compared with analytical solution 
that based on oblique and normal shock 
relations (one dimensional flow) as shown in 
tables (1 through 3). 
      Figure (5) presents the Mach number 
distribution along a convergent-divergent 
diffuser length for different free-stream Mach 
number values. The value of each Mach 
number after normal shock starts to increase 
from the diffuser entrance position to the 
throat position (until reaching to choking 
condition at throat section). This is due to the 
subsonic expansion process across the 
convergent passage. Then it is starting to 
decrease along the divergent passage until 
reaching engine face position at a specified 
range (0.2-0.5)[13].  

Figure (6) shows the static pressure 
distribution along the whole diffuser length for 
different free-stream Mach number. The value 
of pressure start to decreases along the 
convergent passage, and start to increases 
along the divergent passage until reaching 
engine face at acceptable range.  
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Fig. 5. Mach number distribution after normal 

shock (My) along convergent-divergent 
diffuser for different free-stream Mach 

numbers Mx=(1.1-1.5) 

Fig. 6. Static pressure distribution along 

convergent-divergent diffuser for different  
free-stream Mach numbers Mx= (1.1-1.5) 

 
 

        Figures (7), (8), and (9) present the 
absolute velocity vector plot distribution along 
the supersonic air intake in off-design 
condition for Mach number 1.1,1.3 and 1.5 
respectively. In all figures, the velocity 
distribution has high value behind the normal 
shock wave and continues to increase until 
reach to maximum value at diffuser throat, 
then it drops gradually to acceptable values at 
the engine face.     
       Figures (10), (11), and (12) present the 
contour lines of Mach number distribution 
along the supersonic air intake at off-design 
condition. The Mach number distribution has 
subsonic values behind the normal shock 

wave and it starts to increase along the 
converging passage until reaching maximum 
value at diffuser throat, (corresponding to 
choking mass flow rate at throat), then it drops 
gradually to acceptable values at the engine 
face. 
 

Fig. 7. Absolute velocity vector distribution 
along convergent-divergent diffuser (M=11) 

 

Fig. 8. Absolute velocity vector distribution 
along convergent-divergent diffuser (M=13) 

 

 
Fig. 9. Absolute velocity vector distribution 
along convergent-divergent diffuser (M=15) 

 

M =1.1

H =5000 m

M =1.3

H =5000 m

M =1.5

H =5000 m
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Fig. 10. Mach number contour line distribution 
along convergent-divergent diffuser (M=1.1) 

Fig. 11. Mach number contour line distribution 
along convergent-divergent diffuser (M=1.3) 

 
Fig. 12. Mach number contour line distribution 

along convergent-divergent diffuser (M=1.5) 

Comparison of one dimensional flow with two 
dimensional flow results are done to show the 
accuracy of the time marching technique. The 
one dimensional flow was solved using normal 
shock wave relations and isentropic flow 
through the convergent-divergent diffuser.  
        The difference between one and two 
dimensional flow is due to neglected the 
velocity vector in y-direction ( v ) in one 

dimensional flow, and this difference in one 
and two dimensional flow can be observed in 
tables (1 through 3) as follows below. 
        Finally a computer program in Fortran-90 
was built to solve the above governing 
equations. 

 
Conclusions 
This part of study is associated with numerical 
solution which operates at low supersonic 

Mach number ( M 1.5), where the normal 

shock wave stands at inlet cowl lip of the 
intake. The following conclusions can be 
drawn:- 
1- Implementation of Time-Marching scheme 

has succeeded in the prediction of the 
choked flow region, which is important in the 
study of the performance of convergent-
divergent diffuser. 

2- Across the normal shock wave position, as 

the upstream shock Mach number  xM   

increases, the shock wave strength (effect) 
increases which cause to high loss in 
pressure recovery and decrease in 

downstream Mach number  
yM , and this 

situation may be causes increasing in the 
flow compression process along the 

convergent part.      
3- The change in aircraft altitude has no effect 

on the shock wave position or strength, 
therefore, the height changes does not 
consideration in this paper. 

4- The downstream shock wave Mach 

numbers  
yM  distribution along the 

convergent part of supersonic diffuser at 

different upstream Mach numbers  xM are 

increasing till reaching to maximum value at 
throat position (when flow is 

choking, 0.1tM ), then it is starting to 

reduce along divergent part independently 
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on the values of free-stream Mach number 
(1.1-1.5) as shown in Figure 5.   

5- The results from the finite volume method 
have been compared with analytical results 
from gas dynamics equations of one-
dimensional flow, for the same diffuser 
geometry, and the agreement between them 
is good.  

 

Geometry Data For Supersonic Air 
Intake 

       The performance prediction of supersonic 
air intake was made under design conditions. 
That means, the performance has been 
studied after design completion.  The 
elements of convergent-divergent supersonic 
diffuser are (convergent diffuser capture 
height, convergent diffuser length,  inlet cowl 
lip declination angle, divergent diffuser exit 
height, diffuser divergent angle, and divergent 
diffuser length). The geometry data for on-
design is found equal to:- 

Lc=110 cm, Le=140 cm, θe=0.65 deg. 

dc=46.7 cm,  de=51.8 cm,   =1.90 deg. 
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