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Abstract 

      The present work deals with studying the dynamic behavior of a batch distillation column and 
implemented two types of control strategies for the separation different types of binary systems. The 
model was derived and then simulated using "MATLAB" program. The experimental data of 
dynamic behavior were to tune the parameters of PID controller and developed the training of 
neural networks controller by using supervised learning algorithms. The simulation results show a 
qualitatively acceptable behavior. This study shows also that the response of PID controller was 
oscillatory behavior with high offset value while neural network controller gave less offset value and 
less time to reach the steady state. In general, a good improvement is achieved when the neural 
network controller is used compared with PID control. 
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 برج التقطير الدفعي علىسيطرة الشبكة العصبية 
 

 الخلاصة

البحث دراسة السلوك الديناميكي لبرج التقطير الدفعي وتطبيق نوعين من طرق السيطرة لعملية فصل أنواع تناول         
م التجارب العملية في تم استخدا.م اشتقاق  أنموذج رياضي ومحاكاته  باستخدام برنامج ماتلابت .مختلفة من الأنظمة الثنائية

( وكذلك تطوير مسيطر الشبكة العصبية. كانت نتائج المحاكاة ضمن الحدود PIDحساب معاملات المسيطر التقليدي )
المقبولة. وكذلك بينت النتائج إن استجابة المسيطر التقليدي متذبذب وقيمة الحيد عالية بينما كان مسيطر الشبكة العصبية اقل 

على نتائج أفضل عند استخدام مسيطر الشبكة العصبية  ول إلى حالة الاستقرار. وبشكل عام تم الحصولحيد واقل زمن للوص
 .بالمقارنة مع المسيطر التقليدي

 

 مسيطر  الماتلاب، برنامج باستخدام محاكاةال ـ،العصبية الشبكة مسيطر دفعي، تقطير برج ،الرياضية النمذجة الدالة: الكلمات
 ضلي.تفا -تكاملي-تناسبي

 

Nomenclature 

 
b: Bias  value. 
D: Distillate molar flow rate (mol/s) 

 : Actual output of the process 

H : Vapor mixture enthalpy (J/mol) 
h : Liquid mixture enthalpy (J/mol) 

L: Liquid molar flow rate (mol/s) 

: Liquid molar flow rate input to the 

condenser (mol/s) 
M: Molar liquid holdup (mol) 

: Still holdup (mol) 

: Packed section holdup (mol) 
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: Reflux drum holdup (mol) 

 : Still heat load (J/mole.s) 

: Condenser heat load (J/mol .s) 

R: Reflux ratio 

: Neural Network temperature (  

t: Time (s) 
V: Vapor molar flow rate (mol/s) 

: Vapor molar flow rate input to the 

condenser (mol/s) 

: Weight value between input                     

and hidden layer 

 Weight value between output and hidden 

layer.   
x: Liquid mole fraction (mol/mol) 
y: Vapor mole fraction (mol/mol) 

 Activity coefficient 

 : Fugacity coefficient of species (i) in liquid 

: Momentum rate 

: Learning rate 

 

Introduction 
     Batch Distillation is one of the most 
commonly used separation  processes in 
chemical and petroleum  industries  and it is a 
process in which miscible liquids are 
separated based on their physical properties, 
specifically, relative volatilities. The boiling of 
the more volatile components of the mixture 
drives the distillation process [1]. The 
distillation process can be carried out in a 
continuous, batch or in semi-batch (or semi 
continuous) mode. The choice of the type of 
operation of distillation, as batch or continuous 
depends on the feed amount and on the 
characteristics of the feed components. The 
batch distillation is more commonly used due 
to its convenience for low volume, fine 
chemicals and bio chemicals [2], and its 
advantages like “flexibility, high product purity 
and possibility of multiple fraction operation 
[3]. 
    The main objectives of distillation control 
are maintaining product purity and quality, 
constraint satisfaction, and energy reduction. 
Distillation control is a complex due to the 
inherent nonlinearity of distillation, 
multivariable interaction, non-stationary 
behavior and severity of disturbances. 
Mohanad and Ramasamy (2009)[4] developed 
a neural network based soft sensor to be used 

in an inferential control scheme of a pilot-scale 
binary distillation column. The performance of 
different networks is discussed and developed 
soft sensor can be utilized in an inferential 
control scheme on the distillation column. 
Almıla and Canan (2010)[5] designed an 
Artificial Neural Network (ANN) estimator 
system, which utilizes the use of several ANN 
estimators, to predict the product composition 
values of the distillation column from 
temperature measurements inferentially. It is 
found that, it is possible to control the 
compositions in this dynamically complex 
system by using the designed ANN estimator 
system with error refinement whenever 
necessary. Feng (2011)[6] designed a 
dynamic neural network (DNN) to control the 
top and bottom compositions of a distillation 
column. The effectiveness of the control 
strategy is demonstrated using simulation 
results.  
     In this paper a dynamic model for batch 
distillation column is developed. Thus, both 
theoretical and experimental studies are 
carried out.  Two control methods, neural 
network and PID controllers were applied to 
control the top product temperature of the 
batch distillation column. The simulation of 
control methods and dynamic model of the 
batch distillation process are built by using 
"MATLAB" program to study the response of 
the process. 
 

Dynamic Modeling 
    Modeling of batch distillation systems is 
complex due to the unsteady state nature of 
the system. The dynamic behavior of the 
batch distillation has been modeled by the 
following set of nonlinear equations based on 
the mass and energy balances for the batch 
distillation sections. A schematic view of the 
studied batch packed distillation column is 
shown in Figure (1). In this figure the packed 
column with its still, condenser, reflux drum 
are shown. The parameter (i) defines the 
differential element starting with i = 1 at still to 
i=NT+2 at reflux drum and condenser. 
 In the proposed packed distillation column 
model the following assumptions are 
considered [7]: 
1. Negligible vapor holdup throughout the 

system. 
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2. Equimolar counter diffusion between the 
phases. 

3. Constant volume of reflux drum and packed 
section liquid holdup. 

4. Negligible fluid dynamics lags. 
5. Adiabatic column operation. 
6. Constant flow rate for the liquid and the 

vapor. 

7. Total condensation.  
8. Negligible effect of maldistribution of liquid 

and vapor flow rates. 
9. Packed section divided into segments. Each 

of these segments can be looked at as a 
“stage”. 

 
 

                  

Fig. 1. Schematic View of Studied Batch Packed Distillation Column 
 
 
Total material balance equation for still: 
 

 
 
Material balance on component (j) gives: 

 

 
 

A heat balance can be written as:  

 

 
 
If the assumption of divided the packed section 
into stages is employed then total material 
balance equations can be written as: 

 

 

 
Material balance on component (j) gives: 

 
A heat balance across can be written as: 

 

 
 
Total material balance equation of reflux drum 
and condenser gives: 
 

 
 
Material balance on component (j) gives: 
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A heat balance can be written as: 

 

 

 
Extracting left- side (L.S.) of eq. (2) 
 

 
 
And inserting Eq.(1) 
 

 

 
 
Rearranging eq.(12) gives time derivative of 
the compositions in the still as: 
 

 
Combining Eq. (4) and Eq. (5) gives the time 
derivative of the compositions at the stages 
as: 

 

 

 
 
If the assumption of Constant flow rate for the 
liquid and the vapor is employed. 
 

 
 
If the assumption of constant molar liquid 
holdup in the reflux drum and condenser is 
employed, Eq. (7) becomes: 
 

 
 
and inserting Eq. (16) to Eq. (8) gives state 
equation for compositions at the distillate 
compositions. 
 

 
 
The equilibrium temperature and the 
composition of vapor phase at equilibrium with 
the liquid phase is represented by: 
 

 
 

 
 

 
 

 
 

 
 
Then eq. (21) simplified to: 
 

 
 

the activity of a species in a liquid which 

computed in this paper using Van Laar, model 
 

Neural Network Controller 
     The “neural network” referred to in this 
research is a "Artificial Neural Network", which 
is collections of mathematical models that 
emulate the real neural structure of the brain. 
In general, ANN is made up of individual 
interconnected simple processing elements 
called neurons, arranged in a layered structure 
to form a network. There are a wide variety of 
neural network structures, but each type 
consists of the same basic features which are, 
neurons, layers and weighted connections. 
The basic element of the network is a neuron. 
Each neuron has an input, a body and an 
output.These neuron, organized in three layers 
which are, Input layer, Hidden layers and 
Output layer. These layers are interconnected 
and produce a final output for the whole 
network .An example of artificial neuron is 
illustrated in Figure (2).  
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                                                            Fig. 2. Artificial Neuron 

 
The neuron input, xi, is multiplied by the 
corresponding weight factor, wi, before being 
sent to the neuron. This is followed by 
performing summation of all input in the neuron 
body. An internal bias, b is also introduced to 
enhance performance of the network. The 
result is passed through a nonlinear activation 
transfer function to obtain the output y: 
 

 
 
   Typical activation transfer functions include 
sigmoidal function, hyperbolic tangent function, 
sine or cosine function. So far, there are no 
rules for the selection of transfer function but 
the sigmoidal function is the most popular 
choice. Therefore we used it in this study. 
Neural networks can be broadly classified as 
feed forward networks where the signal flows 
only in the forward direction, recurrent 
networks where the signal flows in both the 
forward and backward directions and self-
organizing network. In this study feed forward 
neural network was applied with three inputs 
and single output (MISO) to control the 
temperature of the top product temperature in 
the batch distillation column. Figure (3) show 
schematic diagram of the control system. 
 

Training of Neural Networks 
    Training is a systematic adjustment of 
weights to get a chosen neural network to 
predict a desired output and the algorithm used 
for training is called a “learning algorithm”. Two 
types of learning algorithms exist as 

supervised and unsupervised learning 
algorithms [8]. 

Learning Algorithm 
    Learning algorithm is a mathematical tool 
that outlines the methodology and the speed 
for NN to reach the steady state of its 
parameters, weights and thresholds 
successfully. It starts with an error function 
(energy function), which is expressed in terms 
of weights. The objective is to minimize the 
error in the set of weights. The decrease may 
be accomplished with different optimization 
techniques such as the Delta rule, Boltzman’s 
algorithm, the Backpropagation learning 
algorithm and simulation annealing. 
Backpropagation learning algorithm [8], which 
is used in this paper, is the basic learning 
mechanism and it is very popular in the 
literature. The algorithm of the error back-
propagation training for training the studied 
network shown in Figure (3) is given below. 
Step1: Initialize network weight value randomly 
in the range of (-1,1). 
Step2: sum weighted input and apply activation 
function to compute output of hidden layer. 

 
: output of hidden neuron j. 

 Input signals which are reflux ratio, the 

past value of the controlled temperature 

and still temperature.   

f : The activation function.  

i : Number of input layer neuron =3. 

j : Number of hidden layer neuron  
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Step3: sum weighted output of hidden 

layer and apply activation function. 

 
: The actual output of output neuron k 

which represent controlled temperature 

(top product temperature). 

k : number of output layer neuron =1. 

Step4: compute back propagation error. 

Error (E)=  

Step 5: calculate weight correction term. 

 

 
Step 6: update weights. 

 

 

 
 
.  
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Schematic Diagram of the Control System 
 

Experimental Work 
   The experiments were carried out in a 
laboratory scale batch distillation column 
consists of a still pot, packed column and 
condenser as shown in Figure (1). 
     The still pot of a (5L) volume, made from 
glass, equipped with mixer and heated using 
an electrical heater to supply energy to the 
system. The 0.4m height and 0.05m diameter 
glass packed column was located above the 
still pot and made of glass. Column was filled 
with 0.01m diameter glass rasching rings .At 
the top of the packed column, the condenser 
was connected. Three thermocouples with 

measuring range of (-210-1200)  was 

located at the still pot (T1), packed section 
(T2) and the top product (T3) to measuring the  
 
temperature. Each of these thermocouples 
was connected to the ADC by means of an 
amplifier to make the signal larger before it 
was sent to the interface unit (ADC).The 
amplifier receive an analog signal from the 
thermocouple in the range of (-0.02 to 2.4)V 
and  make the signal larger (0 to +10)V before 
it was sent to the interface unit. The interface 
unit receives an analog signal from the 
amplifier and converts it to a digital signal 
through an ADC then sends it to the computer. 
The ADC channels have been set to give (0V 
to 10V) voltage range. The computer receives 
a digital voltage signal from ADC and it has 
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been provided with supervision software "LAB 
VIEW" which is used to reading voltage signal 
received from ADC and convert it to 
temperature signal.  
The experimental work was performed by 
measuring the temperatures in the still pot, 

packed section and the top product. 
Seventeen runs were carried out for the batch 
distillation system using four systems (Acetic 
acid-water, Acetone-water, Ethanol-water and 
Benzene-toluene) as shown in Table (1). 

 
Table 1. Experimental Runs for the Batch distillation Process dynamic 

MSE 
at bottom 

MSE 
at top 

Reflux 
ratio 

Mole fraction of 
more volatile 
component 

Systems 
Run 
No. 

133.77 57.055 0.5 0.4 Benzene-toluene 1 

89.045 70.94 0.5 0.6 Benzene-toluene 2 

102.09 23.38 0.5 0.8 Benzene-toluene 3 

133.045 26.055 0.75 0.4 Benzene-toluene 4 

115.95 59.5 1 0.4 Benzene-toluene 5 

67.86 35.125 0.3 0.3 Acetone-Water 6 

122.9 72.09 0.3 0.5 Acetone-Water 7 

99.44 41.37 0.3 0.7 Acetone-Water 8 

127.54 13.31 0.5 0.3 Acetone-Water 9 

88.88 33.27 0.8 0.3 Acetone-Water 10 

127.86 57.05 1.5 0.2 Acetic Acid-Water 11 

202.03 71.5 1.5 0.4 Acetic Acid-Water 12 

229.55 47.04 0.1 0.4 Ethanol-Water 13 

185.5 39.31 0.1 0.6 Ethanol-Water 14 

140.64 11.72 0.1 0.8 Ethanol-Water 15 

87.94 18.77 0.3 0.4 Ethanol-Water 16 

117.16 12.70 0.5 0.4 Ethanol-Water 17 

 

Results and Discussion 
    In this section the experimental results of 
the open –loop response in the top and still 
temperature of batch distillation column for our 
runs which are shown in Table (1) were 
compared with simulated top and still 
temperature response which were extracted 
from (MATLAB simulator) of the batch 
distillation. 
     Figures (4) to (7) show the comparison for 
top and bottom temperature for (benzene-
toluene) system. It can be seen that mole 
fraction of benzene increase from 0.4 to 0.6 
the top and still temperatures also increase 
because the boiling point of benzene is lower 
than boiling point of toluene then lead to 
decrease the boiling point of mixture. Also it 
can be seen that the time delay of the    
response for temperature of top product 
decrease from 15 to 10 minutes at the same 
reasons. From Table (1) it can be seen that 
under all conditions and all systems that the 

mean square error (MSE) for top product 
temperature is smaller than  mean square error 
(MSE) for still temperature and this due to the 
assumption of considering the column is 
packed do not effect on the temperature of the 
top product temperature. But in the packed 
column change all stages temperature in the 
packed section and the still temperature is 
depend on the temperature of stages in 
packed section. Also it can be seen that (MSE) 
for top and still temperature for (acetic acid -
water) systems is higher than (MSE) for other 
systems. Mean square error for all runs is 
listed in Table (1). 

 

 
 

     The present work also includes application 
of neural network and PID controllers for the 
control of the top product temperature of the 
batch distillation column. The Cohen &Coon 
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and Internal model setting were applied for 
tuning of the PID controller. The resulting 
values for controller parameters are given in 
Table (2). From Table (2) it can be seen that 
for all studied systems the mean square error 
(MSE) using Cohen & Coon setting is smaller 
than mean square error (MSE) when using 
Internal model setting, Also in this section a 
comparison was made between the two 
control methods results which were extracted 
from "MATLAB" simulators shown in  Figures 
(8) to (11). From these results, it is clear that 
neural controller is the best and gives better 
results than PID controller because neural 
controller has less offset value and oscillation, 
more suitable, the temperature response 
reach the steady state value in less time and it 
has lower over-shoot. 

 

 

Fig. 4. Comparison of simulation and 
experimental of response of top product 

temperature for (benzene-toluene) system at 
mole fraction of benzene=0.4 & R=0.5 

 

 

 

Fig. 5. Comparison of simulation and 
experimental of response of still temperature 
for (benzene-toluene) system at mole fraction 

of benzene=0.4 & R=0.5 

 

 

Fig. 6 Comparison of simulation and 
experimental of response of top product 

temperature for (benzene-toluene) system at 
mole fraction of benzene=0.6 & R=0.5 

 

 

Fig. 7. Comparison of simulation and 
experimental of response of still temperature 
for (benzene-toluene) system at mole fraction 

of benzene=0.6& R=0.5 
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Table  2. Controller Setting for Top Temperature of Batch Distillation 

MSE using 
Internal model 

MSE using 
Cohen & Coon Internal model 

Cohen & 
Coon 

Controlle
r action 

system 

C°70 C°60 C°70 C°60 

   
 
 

 KC= 0.082 P 
 

Benzen
e& 

Toluene 
 

    
KC= 0.048 

= 7.8min 

KC= 0.0724 

=1.468min 
PI 

10.1 
 

12.1 
 

6.21 5.69 

KC= 0.0708 

= 8.05min 

= 0.242min 

KC= 0.108 

= 1.12min 

= 0.18min 

PID 

     KC= 0.135 P 

 
Acetone

& 
Water 

    
KC= 0.08 

=11.2min 

KC= 0.1205 

=1.383 min 
PI 

16.3 13.7 5.15 8.23 

KC= 0.117 
=11.425min 

=0.221 min 

KC= 0.18 
=1.09 min 

=0.163 min 
PID 

     KC= 0.0514 P 

 
Acetic 
Acid  

&Water 

    
KC= 0.03 

=4.8 min 

KC= 0.045 

=1.134 min 
PI 

12.6 9.38 8.53 4.46 

KC= 0.044 

=5 min 

=0.192 min 

KC= 0.067 

= 0.951min 

= 0.143min 

PID 

     KC= 0.268 P 

 
Ethanol

& 
Water 

    
KC=0.16 

=17.8 min 

KC= 0.24 

= 0.97min 
PI 

11.3 12.8 9 2.92 

KC= 0.23 
=17.95 min 

=0.148 min 

KC= 0.356 
=0.733min 

=0.108 min 
PID 

 
 

 

Fig. 9. Comparison between Neural Network 
and PID controller setting by Internal model 

setting method for (benzene-toluene) system, 

(KC= 0.0708, = 8.05 min and = 0.242 min), 

Set point=60  

 
Fig.10. Comparison between Neural Network 
and PID controller setting by Cohen & Coon 

setting method for (benzene-toluene) system, 

(KC=0.108, = 1.12 min and = 0.18min),  

Set point=70  
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Fig. 11. Comparison between Neural Network 
and PID controller setting by Internal model 

setting method for (benzene-toluene) system 

(KC=0.0708, = 8.05 min and = 0.242 min), 

Set point=70  

 
Conclusions 
   Based on the results obtained in this study, 
the main conclusions of this project are as 
follows: 
1.  From the dynamic behavior study of the 

batch distillation column it can be seen that 
the more effected variables on the batch 
distillation column were mole fraction of the 
feed, reflux ratio.  

2. The comparison between the experimental 
data and simulation results gave some 
agreements. 

3. Setting of PID controller parameters was 
carried out using Cohen –coon & Internal 
model tuning methods. From the response 
of the PID controller, it can be seen that 

Cohen –coon method give better response 
than internal method. 

4. Neural network gave better response than 
PID controller. 
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