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Abstract: The displacement of battered piles is 

one of the most critical parameters in the 

design of a pile foundation. In this study, an 

Artificial Neural Network (ANN) algorithm was 

utilized to predict the displacement of piles in 

sandy soils subjected to pullout loading. A finite 

element analysis (FEA) in three dimensions, 

performed with the PLAXIS 3D program, was 

utilized to gather 2380 databases, including the 

length/ diameter of pile, pullout, batter angle, 

Poisson ratio, friction angle, dilatancy angle, 

relative density, and Young’s modulus as input 

variables, whereas the displacement of battered 

piles was considered an output variable. The 

dataset was divided into three parts: training 

(80%), validation (10%), and testing (10%). The 

performance of the Artificial Neural Network 

(ANN) algorithm was evaluated using the Mean 

Squared Error (MSE) and the Coefficient of 

Determination (R2). This study applied a 

procedure known as a backpropagation neural 

network. According to the analysis of relative 

significance, the pullout load (Pu) and the pile 

length to its diameter (L/D) were the most 

effective characteristics among the other 

inputs. The R-values of the ANN model for the 

displacement of the battered piles dataset were 

0.99 across all three phases of testing, 

validation, and training. The findings 

substantiated the viability of employing 

Artificial Neural Networks as a successful 

method for obtaining the displacement values 

of a single battered pile in sandy soil when 

subjected to pullout loading. 
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التنبؤ بإزاحة الركيزة المفردة المائلة في التربة الرملية تحت تحميل السحب بإستخدام  
 الشبكة العصبية الاصطناعية 

   احمد محمد نجم الدين
 . العراق - مركز البحوث / جامعة عقرة للعلوم التطبيقية / دهوك

 الخلاصة 
هذه   في  الركائز.  أسس  في تصميم  العوامل  أهم  أحد  المائلة  الركائز  إزاحة  العصبية  يعد  الشبكة  بخوارزمية  تعرف  استخدام طريقة  تم  الدراسة 

( ثلاثية  FEA( للتنبؤ بإزاحة الركائز في التربة الرملية المعرضة لأحمال السحب. تم استخدام تحليل العناصر المحدودة )ANNالاصطناعية )
قاعدة بيانات. وكانت متغيرات الإدخال عبارة عن طول / قطر الركيزة،    2380، لجمع  PLAXIS 3Dالأبعاد، والذي تم إجراؤه باستخدام برنامج  

ومعامل يونغ، في حين تم أخذ إزاحة الركائز المائلة    النسبية، حمل السحب، زاوية الخليط، نسبة بواسون، زاوية الاحتكاك، زاوية التمدد، والكثافة  
(.  %10(، وجزء الاختبار )%10(، وجزء التحقق )%80بعين الاعتبار كمتغير مخرجات. تم تقسيم مجموعة البيانات إلى ثلاثة أجزاء: جزء التدريب )

ولغرض هذه  (.  R2( ومعامل التحديد )MSE( باستخدام متوسط الخطأ التربيعي )ANNتم تقييم أداء خوارزمية الشبكة العصبية الاصطناعية )
( وطول  Puالدراسة، تم تطبيق إجراء يعرف باسم الشبكة العصبية للانتشار العكسي. وفقا لنتائج التحليل ذات الأهمية النسبية، فإن حمل السحب ) 

لإزاحة مجموعة    ANNلنموذج    R( كانت الخصائص الأكثر فعالية بين المدخلات الأخرى. تم الحصول على قيم  L/Dالركيزة بالنسبة لقطرها )
عبر المراحل الثلاث للاختبار والتحقق والتدريب. أثبتت النتائج جدوى استخدام الشبكات العصبية الاصطناعية   0.99بيانات الركائز المائلة لتكون 

 كوسيلة مثمرة للحصول على قيم إزاحة الركيزة المفردة في التربة الرملية عند تعرضها لأحمال السحب. 

 .، الدراسة البارامترية، تحليل الحساسية PLAXIS 3Dالشبكة العصبية الاصطناعية، الركائز المائلة، تحليل العناصر المحدودة،   كلمات الدالة:ال
 

1.INTRODUCTION
Batter piles are driven into the ground at an 
angle to the vertical to bear massive horizontal 
loads or side stresses. Batter piles are 
frequently employed to support bridges, tall 
buildings, and offshore structures. These 
structures are a concern due to their 
vulnerability to overturning and moments 
brought on by ship impact, waves, and winds. 
Normally, piles' displacement can be estimated 
via one of five methods: in-situ testing, dynamic 
testing, dynamic analysis, static analysis, and 
pile load testing [1]. In-situ testing is regarded 
as the way that performs the best overall 
compared to other options to determine the 
displacement of battered piles. Nevertheless, 
this method takes a significant amount of time 
and cost. In contrast, alternative methods have 
a lesser level of accuracy. As a direct 
consequence, several strategies have been 
devised to either predict the displacement of 
battered piles or improve the accuracy of such 
predictions. These methodologies, by their very 
nature, incorporated some assumptions, 
empirical approaches, or simplifications 
regarding the distribution of soil resistance 
along the pile, interactions between the soil and 
the pile structure, and soil stratification. In 
these kinds of research, the findings of the tests 
were employed as complementary elements to 
further enhance the accuracy of the forecast. 
Lopes and Laprovitera [2] suggested a formula 
for estimating the pile's bearing capacity and 
displacement for various soil types, including 
sand and silt. An empirical formula was 
published by Decourt [3], who considered the 
different adjusting variables for clayey and 
sandy soils. Finally, an experimental formula 
that considered the impacts of soil type was 
advocated by the Architectural Institute of 
Japan (AIJ) [4]. In general, the empirical 
equations or traditional methods have sought 
to involve a few important parameters to 
forecast the strength and displacement of the 

pile. However, if the input parameters of soil 
characteristics and pile geometry were 
increased, it was impossible to employ these 
approaches. A substantial expansion in utilizing 
information technology in civil engineering 
recently has prepared the way for numerous 
promising applications, particularly employing 
machine learning (ML) methodologies for 
solving complex engineering problems [5-15]. 
In addition, various methods that utilize 
machine learning, such as adaptive neuro-fuzzy 
inference systems (ANFIS) [16, 17], hybrid 
artificial intelligence approaches [18-20], 
decision trees [21], support vector machines 
(SVM) [22], and artificial neural networks 
(ANN) [23-28], have been utilized in the 
process of finding solutions to a wide variety 
real-world challenges, involving the estimation 
of the characteristics of piles. To be more 
specific, Kumar et al. [29] proposed a K-nearest 
neighbors (KNN) simulation to estimate the 
soil characteristics necessary for foundation 
construction. In addition, Refs. [30-33] built an 
ANN model for drilled shafts and driven piles 
using several on-site load tests in conjunction 
with the findings of the cone penetration test 
CPT. To estimate the friction capacity of driven 
piles in clays, an artificial neural network 
(ANN) model that was generated by on-field 
data recordings was published by Goh [34] and 
Goh et al. [35]. Additionally, Nejad et al. [36] 
created a model based on the SPT dataset with 
12 input parameters to forecast the pile 
displacement using ANN. Also, Momeni et al. 
[37] demonstrated an ANN model that can 
estimate the tip and shaft resistance of 
concrete piles. Last but not least, Nawari et al. 
[38] designed an ANN technique that uses SPT 
data and shaft geometry to estimate the 
displacement of drilled shafts. Generally, the 
ML approach could potentially be regarded as a 
valuable tool for forecasting the mechanical 
characteristics of piles. On the other hand, there 
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has not yet been a consensus established over 
the choice of the model that will be the most 
accurate in predicting the displacement of piles. 
In addition, the database is a significant 
component that significantly impacts the 
precision of machine learning algorithms and is 
essential for delivering a trustworthy modeling 
instrument. Consequently, the primary purpose 
of this research is to investigate the forecast 
capability of ANN, considering all possible 
factors that could influence the displacement of 
battered piles subjected to uplift loading. To 
achieve this goal, a significant amount of effort 
was put into collecting 2380 displacement of 
battered piles cases from the PLAXIS 3D, 
which, as far as the authors know, is the biggest 
database of its kind in the currently available 
literature. After that, the database was 
segmented into the training, validation, and 
testing subgroups, specifically created for the 
learning and validation phases of the suggested 
machine learning model. The ability of the 
algorithms to make accurate predictions was 
evaluated using several performance 
indicators, the most prominent of which were 
the Mean square error (MSE) and the 
coefficient of determination (R2). Furthermore, 
the feature relative importance analysis was 
suggested to specify the percentage influence of 
each input variable on the displacement of 
battered piles subjected to uplift loading. 
2.IMPORTANCE OF THE RESEARCH 
STUDY 
Accurately forecasting the displacement of 
battered piles subjected to uplift loads is critical 
due to the numerous possible benefits and 
contributions to foundation engineering. In the 
currently available literature, numerical or 
experimental strategies still have some 
limitations, such as the scarcity of dataset 
samples, i.e., Teh et al. [39] had 37 samples, 
Bagi'nska and Srokosz [40] had 50 samples, 
and Momeni et al. [37] had 36 samples; the 
improvement and evaluation of the accuracy of 
the ML algorithms; or comparisons with 
traditional prediction methodologies. 
Consequently, the contribution of this work 
may be highlighted by the following four ideas: 
(i) To the best of the author's knowledge, the 
largest dataset, consisting of 2380 cases, was 
employed to create ML models. (ii) The 
effectiveness of ML algorithms was tested with 
a randomly divided dataset, which was the best 
way to determine how well the ML algorithms 
work. (iii) Through parametric tests, alterations 
in the values of some parameters enable the 
model's performance to be validated in 
simulating the physical behavior of battered 

pile displacement under uplift loading; and (iv) 
A sensitivity analysis was conducted to 
determine the importance of each input 
parameter in forecasting the displacement of 
battered piles subjected to uplift loading. 
3.DATA PREPARATION AND 
COLLECTION 
The displacement of battered piles subjected to 
uplift loading was calculated with PLAXIS 3D 
software, which employs the finite element 
method. This application may be used in three 
dimensions to solve problems involving the 
nonlinear soil and rock properties in addition to 
the soil-structure interaction problems. Many 
researchers found a high correspondence 
between the results of this application and the 
corresponding practical results [41-43]. The 
pile used in this study was a concrete pile with 
specifications indicated in Table 1. An uplift 
loading was applied axially on the pile, as 
shown in Fig. 1. An elastic model was applied to 
the pile, where the elastic model was used to 
specify the pile material. Based upon the 
surface roughness of the pile, the strength 
reduction factor Rinter varied from (0.8 to 1.0) 
[44]; therefore, Rinter was assumed to be 0.9 
according to the interaction between concrete 
and sand. Besides, the Elastic-perfectly plastic 
Mohr-Coulomb model was adopted to model 
soil behavior. Also, tetrahedral 10-node 
elements were considered as the type and 
number of the elements. The testing box's 
geometry was designed with dimensions of 60 
m by 60 m along the x- and y-axes. After 
determining that the top boundary of the soil 
layer was at a depth of z = zero, and the bottom 
boundary was at a depth of z = 50 meters, the 
soil characteristics were determined to be those 
of the soil block. The simulation was run 
assuming drained settings with the phreatic 
level maintained at the soil's base. 

 
Fig. 1 3D FE Mesh for Soil and Pile.

Table 1 Characteristics of Model Pile. 
Length 

(m) 
Diameter 

(m) 
Unit weight 

(kN/m3) 
Young’s modulus, E (kN/m2) Poisson’s ratio 

10-20-30 0.3-0.4-0.5 24 25x106 0.21 
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To make reliable forecasts of the displacement 
of battered piles, it is necessary to have a 
detailed understanding of the variables 
influencing battered piles' displacement. Most 
traditional displacement of battered piles' 
determination approaches involved the 
following factors: pile geometry, properties of 
pile material, the inclination of the pile, and soil 
properties [45-47]. As a result, the variables 
employed in ML simulation were (i) length/ 
diameter of the pile (L/D); (ii) Pullout Load Pu 
(kN); (iii) Batter angle, (α°); (iv) Poisson ratio, 

(ⱱ); (v) the Friction angle, (ϕ°); (vi) Dilatancy 
angle, (ψ°); (vii) relative Density (RD %); and 
(viii) Young’s modulus, (E) kN/m². The 
displacement (S) of battered piles was the only 
variable used as an output in the present 
investigation. Since the amount of data is huge 
(2380 samples), the dataset utilized in this 
investigation is partially presented and 
summarized in Table 2, which also includes 
statistical information regarding the input and 
output variables. In the present research, the 
obtained dataset was segmented into three 
datasets: training, validating, and testing. The 
ML models were trained using the training 

portion, which made up about 80% of the entire 
data; the performance of the ML models was 
validated using 10%; and the model was tested 
using the testing portion, which made up about 
10% of the remaining dataset. With respect to 
the original data, the scale of the training 
dataset, which consisted of eight inputs and one 
output, was set to the range [-1; 1], Table 3. By 
putting all factors in the same range, the bias 
between inputs could be kept to a minimum in 
the dataset. The range [-1; 1] was chosen for the 
present investigation to represent the non-
Gaussian distribution of the input data more 
accurately. Scaling parameters, like the lowest 
and highest values of the training data, were 
also utilized to scale the testing dataset. 
Equation (1) was utilized to apply the scaling 
procedure to the input and output variables. 
Besides, the histograms of all the data, 
including 8 inputs and 1 output, are presented 
in Fig. 2. 

𝝌𝒔𝒄𝒂𝒍𝒆𝒅 =
𝟐(𝝌−𝜶)

𝜷−𝜶
− 𝟏  (1) 

where α and β stand for the lowest and highest 
values of the associated variables, respectively, 
and χ stands for the value of the input variable 
chosen to be scaled. 

Table 2 The Inputs and Outputs of the Current Research. 

No. L/D Pu (kN) α° ⱱ ϕ° ψ° RD % (E) kN/m² (S)  mm 

1 20 0 0 0.1 30 2 20 10000 0 
2 20 750 0 0.1 30 2 20 10000 41 
3 20 1500 0 0.1 30 2 20 10000 121 
. - - - - - - - - - 
. - - - - - - - - - 
. - - - - - - - - - 
2378 75 1500 40 0.4 40 10 85 30000 6.67 
2379 75 2250 40 0.4 40 10 85 30000 16.82 
2380 75 3000 40 0.4 40 10 85 30000 29 
          
Min. 20 0 0 0.1 30 2 20 10000 0 
mean value 44 1855 20 0.25 35 6 42 12930 130 
Max. 75 3000 40 0.4 40 10 85 30000 551 
SD 23.08 880.86 14.00 0.15 4.42 3.28 27.17 6317.52 144.32 

SD = Standard deviation. 

Table 3 Statistical Values of the Training Dataset After the Normalization Process. 

No. L/D Pu (kN) α° ⱱ ϕ° ψ° RD   % (E) kN/m² (S) mm 

Min. -1 -1 -1 -1 -1 -1 -1 -1 -1 
mean value -0.14 0.24 -0.01 -0.02 -0.08 0.01 -0.32 -0.71 -0.53 
Max. 1 1 1 1 1 1 1 1 1 
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Fig. 2 Histograms of the Dataset in the Study: (a) L/D; (b) Pu; (c) α°; (d) ⱱ; (e) ϕ°; (f) ψ°; (g) RD; 

(h) E; (i) S. 
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4.ARTIFICIAL NEURAL NETWORK 
(ANN) 
The term "artificial neural network" (ANN) 
refers to a strong and multipurpose algorithmic 
tool that has arisen as a means of organizing 
and linking knowledge [48]. Many problems, 
typically challenging to solve using traditional 
numerical and statistical methodologies, have 
been successfully predicted using ANN [49]. 
Mathematician McCulloch and neuroscientist 
Pitts [50] were the first scientists to develop the 
concept of ANN. It has been demonstrated that 
the ANN possesses a powerful capacity to deal 
with complicated issues in which the 
interactions between the input(s) and output(s) 
are either nonlinear or complex [51], which is 
primarily due to its many interconnected 
neurons that can handle a lot of information at 
once [49]. The architecture of an artificial 
neural network (ANN) comprises multiple 
layers, i.e., input, hidden, and output layers, 
interconnected together by various link weights 
throughout hidden nodes [51]. The activation 
function is performed in each node of the 
network. The link weights and a bias are added 
to obtain the node net input [37]. Among the 
several learning algorithms, backpropagation is 
the most used technique for training ANNs 
[52]. Moreover, numerous additional study 
concepts have been inserted and expanded to 
the present time [53, 54]. The above 
information demonstrates that ANN has 
numerous benefits and is employed extensively 
across a variety of fields, particularly in the 
domain of construction technology [55, 56]. In 

addition, numerous studies have been 
conducted to estimate bearing capacity 
employing ANN [49, 51, 53, 54, 56]. In light of 
the findings, it can be deduced that the 
prediction performance provided by ANN 
appeared more trustworthy than that offered by 
supporting vector machines (SVM). 
Furthermore, various studies on the bearing 
behavior of piles employing ANN revealed 
superior prediction ability when contrasted 
with numerical and empirical methodologies 
[49, 56-58]. Figure 2 illustrates a schematic 
representation of the neural network. In the 
ANN algorithm, it has been demonstrated that 
the multi-layer network functions most 
effectively since it can mimic nonlinear 
processes. The fundamental idea behind neural 
computing is to break down the connection 
between inputs and output into a number of 
stages that can be linearly segmented from one 
another by benefiting from hidden layers. There 
are three distinct processes for developing an 
ANN-based answer, which can be summed up 
as [59]: 
Step 1: Data transformation or scaling; 
Step 2: Network design is described in terms of 
the number of hidden layers, the number of 
neurons in each layer, and the connectivity of 
the neurons. Figure 3 shows how the network 
design choice was made. 
Step 3: This stage is regarded as the evolution 
of the neural network since it involves training 
the network to react appropriately to a 
particular set of inputs (Fig. 4).  

 
Fig. 3 Choosing an Appropriate Network Architecture. 

 
Fig. 4 The Typical Procedures for Developing Neural Networks [60]. 
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5.RESULTS AND DISCUSSION 
5.1.Performance Evaluation 
In this section, the performance of the ANN 
model is analyzed and evaluated. The amounts 
of the battered piles' displacement were 
predicted using a multilayered feed-forward 
neural network using a backpropagation 
technique. The well-known software package 
[MATLAB 2020] was utilized during the 
development of ANN [61]. The Levenberg–
Marquardt (LM) backpropagation algorithm is 
a potent enhancement approach adopted into 
the neural network research because it gave 
ways that speed up the algorithm's training and 
convergence processes. Since the mean square 
error (MSE) was employed as an indicator of 
performance for the training of neural 
networks, the (LM) technique is the most suited 
one that may be employed [62] and [63]. As a 
result, it was decided to include this technique 
as part of the research. Convergence in the 

training process is reached by lowering the 
mean squared error (MSE) within each training 
iteration and monitoring the overall 
performance of the trained stages by comparing 
the results. This procedure is repeated until the 
MSE is reduced to an acceptable level. The 
parameters of ANN applied in this investigation 
are tabulated in Table 4. Figure 5 compares the 
results of displacement of the battered pile sand 
to the neural network prediction for training, 
validation, testing, and all datasets, using a 
model of ANN with eight hidden nodes. This 
comparison, as shown in the figure, 
demonstrates an excellent match between the 
ANN and the battered piles' displacement 
results. The ANN model's correlation 
coefficient R values determined for the battered 
pile's displacement dataset were 0.998 for each 
training, validation, and testing phase. Also, the 
mean square error (MSE) was 0.0005, which is 
an excellent value. 

Table 4 ANN Parameters. 
Parameters Value and Description 
Number of neurons in the input layer 8 
Number of hidden layers 1 
Number of neurons in the hidden layer 8 
Number of neurons in the output layer 1 
Activation function for the hidden layer  Tan sigmoid 
Activation function for the output layer Linear 
Training algorithm Levenberg-Marquardt (LM) 
Mean Square Error (MSE) 0.0005 

 
Fig. 5 Regression Graphs Comparing Measured S and Predicted S for the (a) Training, (b) Validation, 

(c) Testing, and (d) All Datasets. 
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5.2.Sensitivity Analysis 
An operation known as sensitivity analysis 
investigates the cause-and-effect relationships 
between a data set's inputs and outcomes [64]. 
When the neural network has been trained, it is 
vital to identify the impact and understand how 
each input parameter individually affects the 
outcome. If any input pathway yields a small 
sensitivity value, it can be presumed 
unnecessary. It can be eliminated, reducing the 
amount of difficulty and time needed for the 
training, which will, in turn, improve the 
performance of the network and vice versa 
since the backpropagation neural network 
(BPNN) weight is not straightforward and 
directly understandable in the form of a 
digital system. So, it will be turned into a 
percentage value by dividing the weight of every 
input variable by the total sum of all the weights 
of the input variables [65], producing the 
relative importance of each input parameter to 
the output parameter. Figure 6 depicts the 
relative importance of each input parameter 
obtained. Amongst the 8 introduced 

parameters to obtain the displacement of the 
battered piles under pullout loading, the 
Pullout Load (Pu) was the most significant 
parameter, as seen by a 39% rise in relative 
importance, Fig. 6. Indeed, Pu is a substantial 
indicator of obtaining the displacement of the 
battered piles. The length/ diameter of the pile 
(L/D) was the second significant parameter, 
confirmed by the relative importance value, 
equal to 18%. The variable RD was ranked as 
the third significant parameter, with a relative 
importance of 12%. According to soil 
mechanics, this meant that with a slight 
alteration in the properties of the soil, the 
relative density significantly impacted the 
displacement of the battered piles; such a 
parameter is involved in the resistance of the 
pile. The parameters ϕ°, E, and α° were rated as 
the fourth to the sixth significant variables, with 
relative importance ranging from 6% to 9%, Fig. 
6. Other parameters in the model (ψ°, and ⱱ) 
showed a relative importance of less or equal 
than 5%. 

 
Fig. 6 The Significance of 8 Factors Utilized in this Investigation. 

5.3.Parametric Analysis 
To obtain how the input parameters 
individually change the response of the model, 
a set of parametric studies has been done. The 
parametric study can be conducted by adjusting 
just one of the input variables while holding the 
values of the rest of the input parameters as 
constant, i.e., all input variables, except one, 
were fixed to particular values. A set of 
synthetic data between the maximum and 
minimum values was generated for the input 
not installed to a fixed value. The response of 
the model was then examined. This method is 
returned utilizing another input variable and so 
on until the model response is tested for all 
input variables. Through a parametric study, 
the model efficiency can be validated by 

mimicking the physical behavior of the 
displacement of battered piles under 
pullout loading due to varying other parameter 
values. 
5.4.The Influence of Axial Pullout Load 
The relationship between axial pullout load and 
displacement is depicted in Figs. 7 - 9 for piles 
with various length-to-diameter ratios and 
batter angles in soils with varying relative 
densities. The domain of battered angle values 
was 0 – 40, whereas the axial pullout load 
values range was (0 to 3000) kN. Of course, as 
presented in such figures, the displacement of 
battered piles increased with the pullout load, 
keeping other parameters constant. The 
findings obtained are near the conclusion Al-
Tememy et al. predicted [41]. 
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Fig. 7 The Load-Displacement Curve for Vertical and Batter Piles under Different Embedment Ratios 

in Loose Sand RD = 20%. 
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Fig. 8 The Load-Displacement Curve for Vertical and Batter Piles under Different Embedment Ratios 

in Medium Sand RD = 55%. 
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Fig. 9 The Load-Displacement Curve for Vertical and Batter Piles under Different Embedment Ratios 

in Dense Sand RD = 85%. 
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5.4.The Influence of Pile Batter Angle 
The impact of battered angle (α) on the 
displacement of battered piles under pullout 
loading was studied using a selection of vertical 
and inclined piles with angles of (0°, 10°, 20°, 
30°, and 40°). These piles were installed in 
loose, medium, and dense sand at embedment 
ratios of 20, 50, and 75. The batter angle affects 
the displacement of battered piles, as shown in 
Fig. 10. It can be seen that as the batter angle 
increased, the displacement of battered piles 
reduced until it reached a minimal value, at 
which point it started to rise. For all L/D ratios, 
the minimum value was reached at a batter 
angle of 20°, and it was between 6.1 and 20.8% 
lower than the value for the vertical pile placed 
in loose sand when RD = 20%. The minimal 
value was between 15 and 50 % less for piles 
placed in medium and dense sand than for 
vertical piles. The findings obtained were quite 
near to the conclusion predicted by Mohanty et 
al. [63] and Al-Tememy et al. [41]. 
5.5.Influence of the Pile Embedment 
Ratio 
To examine the impact of the pile embedment 
ratio of vertical and inclined piles, three L/D 
ratios, i.e., 20, 50, and 75, were employed. The 
link between the displacement of battered piles 
and their embedment ratios L/D at relative 
densities of 20%, 55%, and 85% is depicted in 

Fig. 11. Additionally, the batter angles employed 
in this illustration are also shown. Regarding 
the displacement of battered single piles, the 
embedment ratio is also a crucial factor to 
consider. As the embedment ratio increased, 
the displacement of battered single piles 
subjected to pullout loading considerably 
increased. The findings obtained are near the 
conclusion predicted by Gaaver [66]. 
5.6.Influence of Sand Relative Density 
Variation in battered pile displacement as a 
function of batter angle and sand density is 
depicted in Fig. 12. The graph confirmed that 
for all L/D values, a rise in relative density 
reduced the displacement of vertical and batter 
piles. When the relative density of sand 
increased from 20% to 55%, the displacement 
of battered piles decreased by about 9-29% for 
vertical piles and by approximately 17-39% for 
inclined piles at an angle of 20°. If the RD of 
sand increased from 55% to 85%, the 
displacement of battered piles reduced by 14-
49% for vertical piles and 14-66% for piles at a 
20° angle. As a result of increasing the L/D, the 
angle of friction between the soil and the pile 
increased. Hence, effective stress and skin 
friction also increased, decreasing the buttered 
pile's displacement when subjected to uplift 
loading. These findings are consistent with 
predictions by Al-Neami et al. [67]. 
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Fig. 10 The Displacement Variation with Batter Angle under Different Embedment Ratios. 
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Fig. 11 Variation in the Battered Piles' Displacement with a Length-to-Diameter Ratio under Different 

Batter Angles. 

0

20

40

60

80

0 10 20 30 40 50 60 70 80

D
is

p
la

ce
m

en
t 

(m
m

)

Length to Diameter Ratio L/D

α= 0°
α= 10°
α= 20°
α= 30°
α= 40°

RD= 20 %

0

20

40

60

0 10 20 30 40 50 60 70 80

D
is

p
la

ce
m

en
t 

(m
m

)

Length to Diameter Ratio L/D

α= 0°
α= 10°
α= 20°
α= 30°
α= 40°

RD= 55 %

0

20

40

60

0 10 20 30 40 50 60 70 80

D
is

p
la

ce
m

en
t 

(m
m

)

Length to Diameter Ratio L/D

α= 0°
α= 10°
α= 20°
α= 30°
α= 40°

RD= 85 %

https://tj-es.com/


 

 

Ahmed Mohammed Najemalden / Tikrit Journal of Engineering Sciences 2025; 32(2): 1866. 

Tikrit Journal of Engineering Sciences │Volume 32│No. 2│2025  15 Page 

 

 

 
Fig. 12 Variation in the Pile Displacement with Batter Angle under Different Relative Densities.
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6.CONCLUSIONS 
The ANN algorithm was employed in the 
present work to test its ability to anticipate the 
displacement of battered piles when subjected 
to pullout loading. The proposed machine 
learning models were developed and evaluated 
using an unparalleled set of 2380 examples 
from PLAXIS 3D. The proposed ANN with the 
8-8-1 architecture predicted the real value of 
the displacement of battered piles under 
pullout loading based on the following data: 
length/ diameter of the pile, pullout load, batter 
angle, Poisson ratio, friction angle, dilatancy 
angle, relative density, and young’s modulus. 
The presented ANN estimates the displacement 
of battered piles under pullout loading with 
values of determination coefficient R2 = 0.998, 
and the mean square error (MSE) was 0.0005. 
Also, from the present investigation of the 
displacement of battered piles in sand, the 
following conclusions can be summarized: 

1- As the batter angle α° increased, the 
displacement of a single battered pile 
reduced until it reached its minimal value 
at α =20°, after which it increased. 

2- The displacement of battered piles 
decreased as the L/D ratio and relative 
density increased due to the increased 
skin friction resistance between the pile 
and the soil. 

3- The input variables can be arranged 
according to their relative importance: 
pullout load, length/ diameter of the pile, 
relative density, friction angle, Young’s 
modulus, batter angle, dilatancy angle, 
and Poisson ratio. 

In the end, as with many other machine 
learning techniques, the ANN technique offers 
an additional benefit over more traditional 
approaches: after the model is built, it can be 
applied as a fast, precise numerical tool for 
calculating the displacement of battered piles 
subjected to pullout loading. As a result, the 
accuracy of this kind of numerical tool is 
essential in the field of foundation engineering. 
Thus, one aspect of the present effort is to 
improve prediction accuracy by employing deep 
neural networks or hybrid machine learning 
techniques to anticipate the displacement of 
battered piles. 
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