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1. INTRODUCTION

Squat-reinforced concrete (RC) shear walls
with an aspect ratio less than or equal to two are
essential to constructing commercial and
residential buildings and nuclear construction.
They play a vital role in withstanding seismic-
shock lateral loads and high winds lateral loads
[1]. Shear capacity is a concept addressed in
present-day construction requirements and is
known to be beneficial [2]. Studies have shown
that the European Committee for the Study of
Provisions for Shear Walls (Eurocode 8)
provides an overly cautious estimate of shear
strength, and the American Concrete Institute
(ACI) 318-19 does not address high-strength
concrete shear walls and employs a low safety
factor. An appropriate method for evaluating
shear wall strength can replace these
conclusions [3]. However, because rational
techniques need an iterative computation to
find the peak strengths of shear walls, using
them may be challenging for structural
engineers [4]. In recent decades, efforts have
been made to develop mechanics of shear
strength models for squat walls, such as the
strut and tie (STM) model or the softened truss
model [5]. These models' estimations contain
some dispersion and bias because they simplify
the complicated nonlinear responses of
concrete [6]. New research avenues have arisen
as an alternate remedy in structural and seismic
engineering due to recent advancements in
Machine Learning (ML) and deep learning
techniques, increasing the breadth of structural
and seismic engineering investigations [7, 8].
Due to the rapid and accurate ML algorithms
being developed as well as the abundance of
reliable experimental data [9, 10], these
methods have been used in numerous studies
recently throughout the structural engineering

and optimization phases [11, 12]. Feng et al. [13]
created a forecasting technique to anticipate the
shear strength of squat walls made of reinforced
concrete. Studies show that the XGBoost model
resulted in an approximately 97% validation
accuracy, which well exceeds current
semiempirical models to predict shear strength
and offers a respectable forecast. Moradi and
Hariri Ardebili [14] employed an ANN model,
and a library of shear wall datasets was created.
In this database, they included thin-walled
squats, in addition to rectangles and flanged
cross-section shapes. Although their results
demonstrated the ANN model's accuracy, the
test and validation dispersion were still
relatively large. Nguyen et al. [15] collected 369
test results of squat flanged RC walls from the
literature. They used these results to develop an
effective machine learning model, namely an
artificial neural network (ANN), to predict the
shear strength of squat flanged RC walls.
Predictive models have been developed by
Zhang et al. [16], employing a database of 429
RC wall trial data and various ML techniques to
predict the seismic performance of reinforced
concrete (RC) walls. The findings showed that
the XGBoost and GB algorithms accurately
predicted the failure modes of RC walls with an
accuracy of 97%. The gradient boosting and
random forest algorithms performed best in
predicting the lateral strength and ultimate
drift ratio of RC walls, with a mean predicted-
to-tested strength ratio of 1.01 and a predicted-
to-tested ultimate drift ratio of 1.08. In a study
cited by Hemn Ahmed et al. [17]; using
contemporary modeling techniques like Multi-
Expression  Programming (MEP), Full
Quadratic (FQ), and ANN; it was possible to
forecast the compressive strength (CS) of

jTikrit Journal of Engineering Sciences | Volume 32 | No. 2! 2025

Ty -



https://tj-es.com/

j Badie H. Sulaiman, Amer M. Ibrahim, Hadeel J. Imran / Tikrit Journal of Engineering Sciences 2025; 32(2): 1850. :‘

geopolymer concrete (GPC) reinforced with
nanoparticles. Other ML techniques were also
used to predict the CS of GPC. One variable was
used as an output, and eleven significant
variables were used as input model parameters;
they were applied to 207 tested CS values. Due
to the limited quantity of data and inputs, even
though the ANN model was demonstrated to be
more accurate than other models considering
the CS of the GPC, more information about
prediction and the influence of design factors
needed to be gathered. A comprehensive
dataset containing 558 samples of squat shear
walls was used by Farzinpour et al. [6] to
estimate the shear strength using three hybrid
models: XGBoost, CatBoost, and LightGBM.
These models combined genetic algorithms and
boosting-based ensemble learning techniques.
High prediction accuracy was demonstrated,
with each of the three models having a
coefficient of determination of at least 98.6%.
Moreover, three models outperformed the
semiempirical model and other genetic
programming (GP)-based models in terms of
performance. Lastly, to show that the models
could determine the key factors that
significantly affect shear strength, parametric
and sensitivity analyses were conducted. Al-
Bayati [18] used a large-scale database
containing the results of 487 walls with a wide
range of test parameters to forecast the ultimate
shear strength of squat walls using an artificial
neural network (ANN), the strut and tie (STM)
method, and existing models. The ANN models
provided the best correlation (R) with the
considered database compared to the proposed
(STM) model and those in existence. The
results showed high prediction accuracy, with a
correlation (R) of at least 98% for the walls with
and without boundary elements. Similarly,
sensitivity analysis using Garson's method
revealed that horizontal reinforcement
contributes the least to the ultimate shear
strength of shear walls, while concrete strength
is the most. The aforementioned studies
showed how machine learning approaches may
flourish in a variety of circumstances while
overcoming obstacles, such as a lack of
experimental data and an inability to expand
the model. However, the shear strength of RC
squat shear walls was not predicted by earlier
studies using Keras deep learning models. In
the present study, the Keras learning networks
methodologies are used to estimate the shear
strength of the RC squat shear walls.
Additionally, it has not been investigated if
input factors, such as reinforcement ratio,
geometrical characteristics, concrete strength,
and axial load, are relevant. The objective of this
study is to test the effectiveness of the ensemble
deep neural network models for determining
the shear strength of the RC shear walls and to
study the applicability of the key factors and

their relationships with shear strength. To build
the deep learning model, 1424 experimental
tests were meticulously compiled considering
25 input variables to calculate the shear
strength of squat RC walls, obtained after
preprocessing the total data of 3159 samples
and 45 design parameters, which included
missing data, duplicate data, and outlier values.
The data is then randomly split into training
and testing sets using the traditional 80%-20%
split. Deep learning networks (Keras), a highly
efficient model, are employed to train a shear
strength prediction model. The Keras deep
learning model's results are then evaluated
using the testing datasets. Its predictions are
compared with those made by other
conventional ML methods, including a Linear
Regression (LR), an individual ML model as an
Artificial Neural Network (ANN), and an
ensemble ML model, a Random Forest (RF).
The performances of models are assessed using
four measuring metrics methods. The datasets
of correlation matrix and statistical analysis are
also generated. After performing sensitivity
analysis to identify and explore the element
most likely to affect shear strength, several
results are drawn.

2, EXPERIMENTAL DATABASE FOR
SQUAT RC WALLS

To create an optimum shear strength model for
RC walls, a sizable experimental database is
required. Due to this, data collected from 1424
tests from the literature of RC squat wall tests
were utilized in this study [4, 13, 19-22]. 25
essential input factors must be considered to
forecast the shear strength of the walls. A wide
range of squat wall characteristics was included
in the final database, improving the trained
Keras model's prediction accuracy. The
database's squat RC wall testing is shown in Fig.
1in a conventional diagram with three distinct
cross-section groupings: Walls might be
rectangular, barbell-shaped, or flanged. The
four types of input parameters, geometric
dimensions, reinforcing configurations,
material characteristics, and applied loads, are
depicted in these figures. The main importance
of this study is to use the artificial intelligence
system (Keras deep learning algorithm) to
estimate the shear strength of squat shear walls,
which is considered the main factor in the
design of these walls, as well as to study the
effect and sensitivity of the factors that effect on
it with high accuracy and to save time and cost
compared to experimental, theoretical and
laboratory equations that were characterized by
high dispersion and inaccurate. The particular
25 input variables are the concrete strength f”c,
vertical reinforcement ratio pvbe and strength
fyv be, horizontal reinforcement ratio phbe and
strength fyh be, vertical web reinforcement
ratio pv, and strength fyv, horizontal web
reinforcement ratio ph and strength fyh,
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ultimate strengths of the vertical fuv, and
horizontal fuh web reinforcement, the spacing
of the wvertical and horizontal web
reinforcement Sv and Sh, longitudinal, and
horizontal boundary diameter reinforcement
DI be and Dh be, vertical and horizontal web
diameter reinforcement Dwv and Dwh, height
hw, length lw, web thickness tw, flange height
bf, flange thickness tf, and the applied axial load
P. Simply expressed, the output is the actual
shear strength Vn. The input variables are
described in Table 1 along with their statistical
features, which show how each variable is
distributed using statistical functions including

minimum, maximum, average, standard
deviation (SD), and coefficient of variation
(COV). It is important to remember that the
abbreviations for these two concepts are
standard deviation (SD) and coefficient of
variation (COV). After data cleaning by
conducting preprocessing data that included
(removing duplicates, outliers, and missing
data), 1424 experimental data were selected
from 3159 total test samples from previous
researchers and used to generate the
histogram's distribution of 25 input variables,

as illustrated in Fig. 2.

I Axial Load (P
Rectangular
Section b
Lateral Load (7) > :| Loading Beamn |:' |
Barbell-shaped T ] : : =P
Section by — —H— s
T L
£ ] L
ff = — ““\. T ,ol
f— _"h\\-'pl
Flanged = |
Section L O e — L
Foundation
— — |
(a) Cross Section shape of walls (b) Reinforcement details of walls

Fig. 1 Squat Walls' Geometric Cross-Section Shape.

Table 1 Statistical Properties of the Experiment Collection's Input Parameters.

Variable Unit Minimum  Maximum Mean SD Cov Type
Sfc MPa 10 56 25.07 8.38 0.33 Input 1
Jyv be MPa 208.90 585 375.05 73.83 0.20 Input 2
Jyh be MPa 160.87 529.60 364.22 54.64 0.15 Input 3
Jyv MPa 224 667.00 385.45 87.97 0.23 Input 4
Jyh MPa 222.10 667 386.61 89.10 0.23 Input 5
Juh MPa 484.61 726.26 634.79 38.00 0.06 Input 6
Juv MPa 509.09 699.51 635.90 33.77 0.05 Input 7
pvbe % o} 8.90 3.09 1.93 0.62 Input 8
phbe % o o} o o o Input 9
PV % o} 1.63 0.52 0.34 0.66 Input 10
ph % o 1.63 0.54 0.36 0.66 Input 11
poall % 0.30 0.30 0.30 o o Input 12
sv mm 229 229 229 0 o Input 13
sh mm 203 203 203 0 o Input 14
Dl be mm 9.5 9.5 9.5 o o Input 15
Dh be mm 4.95 4.95 4.95 o o Input 16
Dwv mm 6.35 6.35 6.35 o o Input 17
Dwh mm 6.35 6.35 6.35 o o Input 18
hw mm 254 3329.50 1223.55 611.65 0.50 Input 19
hw mm 150 2760 918.43 535.08 0.58 Input 20
tw mm 20 203 107.38 20.48 0.27 Input 21
tf mm 30 260 120.97 58.05 0.48 Input 22
bf mm 30 610 144.53 98.31 0.68 Input 23
tweb mm 16 160 69.31 36.93 0.53 Input 24
P kN 0 830 125.62 197.04 1.57 Input 25
Vn kN 0 2668 354.85 373.73 1.05 Output
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The linear correlation between two variables is
usually identified utilizing the Pearson
correlation coefficient [4]. Whose value ranges
from -1 to +1. Whereas 0 means no linear
correlation, +1 denotes a perfect linear positive
correlation, and -1 suggests a perfect linear
negative correlation. A coefficient value
between +0.50 and +1 is assumed to indicate a
significant association. A heatmap of the
correlation coefficient between the variables in
pairs is shown in Fig. 3. It shows that although
certain parameters have strong relationships,
others have poor correlations. For example, the
correlation factor between (ph) and (pv) was
0.794, indicating that the relation is positive
and strong with each other. The correlation
between (fyv) and (fyh) was 0.807; the
correlation between (P) and (fweb) was 0.588.
As for the shear strength (Vn), it was revealed
that there was a substantial correlation with

(Iw) only; it was 0.704. Yet, there was a weak
association between it and the other factors,
such as (hw), (fyh be), (sv), (bf), and (fL1c) were
0.251, -0.112, N/A, 0.415, and 0.254,
respectively. The statistical analysis of data,
histograms, and relationships between
variables is known as data exploration, often
referred to as exploratory data analysis. It is the
method of comprehending and evaluating data
via statistical and visual techniques. This
technique aids in identifying trends in a dataset.
Finding patterns in data distributions,
identifying the features of individual variables,
and identifying correlations between variables
are the three fundamental aims of data
exploration. Histograms and charts are used to
visually represent data as part of visualization
techniques, making it easier to comprehend the
data's many connections and structures, an
action above.
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0.273 | 0.010 | 0.250 1 Suy

18| fuv 0.082 | 0.063 | 0.017 |-0.198 | -0.144 | 0.179 | 0.053 | 0.274 | -0.106 | 0.144 | 0.195 (-0.123 | 0.059 | 0.300 | 0.030 | 0.273 | 0.941 1 v
19 s N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1 sh
20 sh N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1 DL be

[}

DLbe | NIA NA N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A N/A N/A 1 Dt be

22 | Dibe | N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1 Dy
23 | Dwy | NA | NA | NA | NA | NA | NA | NA | NA | WA | NA | NA | NA | NA | NA | NA | VA | NA | NA | NA | NA | NA | NA | 1 | Dwa
2% | Dwh | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 1 | pra
25 | pvall N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 1 Vn
26 | Vn 0.2547 [ 0.1248 (0.1883 | 0.2611 | -0.075 | 0.301 | 0.7043 | 0.2514 | 0.422 | 0.287 | 0.2934 | 0.4153 | 0.3482| N/A [0.1872-0.112 [0.0599 | 0.0587 | N/A N/A N/A N/A N/A N/A N/A 1
Correlation
Coefficient {
2 05 04 03 01 0 02 03 04 05 1

Fig. 3 Correlation Analysis Matrix.

jTikrit Journal of Engineering Sciences | Volume 32 | No. 2! 2025 Page E



https://tj-es.com/

? Badie H. Sulaiman, Amer M. Ibrahim, Hadeel J. Imran / Tikrit Journal of Engineering Sciences 2025; 32(2): 1850. :‘

3.KERAS DEEP LEARNING MODEL FOR
SHEAR STRENGTH OF RC WALLS

Artificial neural networks provide the
foundation for learning models in deep
learning, a subset of machine learning and
artificial intelligence. The number of layers in a
neural network is referred to as the "deep" in
deep learning. The structure and function of the
human brain were modeled for a series of
algorithms collectively referred to as "deep
learning." Using a massive amount of
structured and unstructured data, it
successfully trains computers and makes
predictions. Where machine learning and deep
learning technologies vary most in how the data
is presented. As one of the deep learning
programming interfaces that can handle huge
amounts of data and several layers, Keras is
used in the present study. High-level deep
learning Application Programming Interface
(API) Keras was developed with people in mind

and is easy to use. It is created in Python and
may be used to create any type of neural
network. Only two of many deep learning
frameworks are TensorFlow and Theano, and
Keras is built on top of both of them. It
emphasizes being fundamental, modular, and
expandable to speed up experimenting with
creating deep neural networks and provides
comprehensive, expert-level  knowledge
regarding deep learning [23]. The baseline
models are built using separate deep neural
networks. Keras describes a model as a set of
layers. Each layer's nodes are neurons. The
learning rate, activation functions, optimizer,
and number of neurons per layer are selected
using the Keras-Tuner package, which also
assists in choosing the best set of deep neural
network hyperparameters. A streamlined
version of the deep learning workflow is shown
in Fig. 4.

o

z
a2
=
=]

4—»- Neuron

Calculation of
accuracy metrics |

No ) Stopping

criteria

Yes |
End

Fig. 4 Keras Deep Learning Network model process.

The Keras tuner considers six activation
functions: Sigmoid, Relu, Softplus, Tanh, Selu,
and Elu. Regressions should only make use of
Relu. The optimizer is a critical component of
the training process. The optimizer function
aids the network in determining how to change
the weights to lessen the loss. The eight
optimization algorithms used are Adaptive
Moment Estimation (Adam), Adaptive Delta
(Adadelta), Stochastic Gradient Descent (SGD),
Root Mean Square Prop (RMSProp), Nadam
(Adam with Nesterov momentum), and Follow-
the Regularized Leader (Ftrl). Adamax is an
Adam variant based on the infinity norm. When
setting up a Keras learning network,
(RMSProp) and (Adam) are used for regression.
Based on the test results, each fundamental
model's efficacy will be determined for this

study. Reliance is put on the more precise final
base model (sub-model) data. There are five
fundamental methods and strategies for
creating deep learning models using Keras [24].
The breakdown of each method is shown below.

1- Describe the Keras network learner.
This step should include the number of
layers, neurons, and connections
between each layer, as well as any
regularization strategies that can be
utilized to avoid overfitting.

2- Building the model network learner
involves describing the metrics for
measuring the correctness of the
model, the optimizer that reduces loss,
and the loss function that determines
losses in a model.
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3- Introducing the batch size, epoch size,
and validation split are required to fit
the model network learner. Make a
model out of this that matches the data,
then train it with the data.

4- Evaluating the Keras model network
Executor: To assess the model using
the test data set and show the plots, one
must first ascertain and analyze the
model's level of accuracy once it has
been fitted to data.

5- Make forecasts: Predict the probability
for the test data set using the model
prediction Executor (Keras) [25].

4.VALIDATION CRITERIA

In this study, the coefficient of determination
(R2), root mean square error (RMSE), mean
absolute percentage error (MAPE), and scatter
index (SI) were utilized as metrics to assess the
effectiveness of the proposed prediction
models. Egs.1-4 give form to these indications.

nYilyiyi — Y1 yiXYie, Ji

RZ = ( ) ®
@I Y2 — O YD) I, 5 — (190D

RMSE = [-31,(yi - yi)? (2)
_100% «p  |Gi-9i
MAPE = -\ e 3)
SI = %Z{;lyi @)
where n is the number of datasets, yi is the 5.2.The Keras Network Model's

actual value of the ith dataset, and §i is the
predicted value of the ith dataset. The value of
R2 was used to measure the variation between
predicted and experimental data. Meanwhile,
the RMSE value represents the mean of errors.
Moreover, the MAPE is a percentage residual
error between the actual and forecasted values,
and SI, i.e., the percentage of error, measures
how dispersion the error is relative to the mean
of the dataset. In general, better accuracy and
effective performance of the model are
indicated by higher R2, lower RMSE, and lower
MAPE values. Concerning the SI parameter, it
may be claimed that a model performs poorly
when SI > 0.3, fairly well when 0.2 < SI < 0.3,
good performance when 0.1< SI < 0.2, and
excellent performance when SI < 0.1 [26].
5.RESULTS AND DISCUSSIONS
5.1.Model Implementation

Four phases generally structure the execution
of the proposed deep learning model. The
collected database were split into training
(80%) and testing (20%) data sets as the first
phase [27]. All inputs were normalized to lie
inside the same range to prevent the scaling
effect. A 10-fold cross-validation (CV) strategy
was used throughout the training phase to
decrease the bias introduced by the training
set's random selection, and the grid search
method was used to find the ideal
hyperparameters. The four metrics tools
mentioned above were used to evaluate the
model's performance on the testing set (20%),
used to determine the model's efficacy. The
KNIME Analytics platform, version 4.7.7, a
programming tool recognized as one of the
most recent data science and artificial
intelligence programs that support the Python
and R languages, was used in the present study.

Prediction Results

The subsequent steps will explain the shear
strength results for squat shear walls as
predicted by the Keras model. To maximize the
forecast accuracy of the shear strength value
and reduce the error rate by achieving the
maximum R2 and lowest RMSE values,
numerous attempts were made to adjust the
model's hyperparameters. Table 2 shows the set
hyperparameters and the highest values
obtained.

Table 2 Keras Network Package Tunning of

Hyperparameters.
Model Parameter Value
Epochs 270
Training batch size 60
E Loss functions Mean
5 Square
=t Error
4 Activation functions- Denes ReLU
4 Hidden layer
3] Activation functions- Output layer ~ Linear
%) Optimizer functions Adam
N Learning rate 0.01
& Keras Denes Layer- Hidden layer 2
No. units (Nodes) of each Denes 150
Layer
The Keras model has been assessed using the
testing set after identifying the

hyperparameters. More specifically, the
model's other three statistical metrics were R2 =
0.973, MAPE = 17.6%, and SI = o0.171,
demonstrating a high level of precision in
predicting the shear strength based on the
highest R2 value and the lowest RMSE. Figure 5
compares the results of the measured shear
strengths to what the model predicted for the
test sets. The ideal line (y=x) is represented by
the dashed line, while the solid line depicts the
linear regression of the scatterplots. The
outcome is predicted more precisely the more
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closely the dispersion follows the ideal line y=x.
It has been shown that the suggested deep
learning model in this work significantly
reduced dispersion. The data's linear regression
line also had the lowest MAPE score of 17.6%,
almost equal to the ideal line y=x. It should be
mentioned that the model, in this instance, is

assessed based on the outcomes of the
program's training. Figure 6 displays a
flowchart of every data processing step,
including preprocessing, normalization, and
partitions. The algorithm is then given the
dataset to produce the results.

3000
© Testing set

2500

2000 Linear (Testing sef)

————— Linear Fitting (y=x)

1500

1000

Predicted Shear Strength (kN)

0 500 1000

1500 2000 2500 3000

Tested Shear Strength (kN) |
Fig. 5 Tested Values Versus Predicted Values by the Keras Model.
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Fig. 6 Flowchart Diagram of Every Operation Performed on the Keras Model Data.

5.3.Comparison with Other ML Models

To further emphasize the better performance of
the Keras-based prediction model, three
popular ML models, RF, ANN, and LR, were
also employed as comparisons. One of the most
well-known machine learning methods, ANN
employs linked nodes or neurons in a layered
structure modeled after the way the human
brain processes information. A dependent
variable and one or more independent variables
can be correlated linearly using the supervised
machine learning model LR. Upon being
trained on labeled datasets, it maps data into
the most efficient linear formulae. RF is a
machine learning technique that uses ensemble
learning techniques to merge several distinct
ML models, often Decision trees. An approach
to machine learning called RF uses ensemble
learning methods to combine various ML
models, most frequently a Decision tree. A
member of the bagging crew is RF. RF develops
each distinct model in parallel using the
bootstrap technique before averaging them all.
Similar methods were used to determine the

best hyperparameters for different models,
such as partitioning the dataset into training
(80%) and testing (20%), normalization scale
[0,1], grid search, and the tenfold CV [13]. After
preprocessing, the dataset goes through all
these steps, such as addressing missing values,
duplicate values, and outliers, before being fed
into an algorithm. Obtaining the outcome of the
forecast, Fig. 7 shows the results of the
proposed machine learning models. Table 3
provides the precise metrics values
demonstrating the models' performance. It has
been revealed that the Keras model performed
the best, while the LR model performed the
worst. Additionally, it should be emphasized
that RF and ANN all outperform LR since these
techniques are ensemble learning techniques,
which are more accurate and dependable than
individual learning approaches (like LR).
Figure 8 displays the SI assessment parameter
values for the tested versions of the generated
models. As shown in Fig. 8, the values for SI for
LR, RF, Keras, and ANN are 0.382, 0.287,
0.171, and 0.365, respectively. Under this
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statistical assessment tool, the Keras model had
good precision for the testing dataset, whereas
the ANN and LR models had poor performance.
While the RF model's performance was fair.
Compared to the LR, RF, and ANN models, the
SI values of the Keras model were 123%, 68%,
and 113% lower, respectively. The outcomes of
the scatter interval for residual errors of all
developed models are displayed in Fig. 9.
Furthermore, Keras outperforms LR, RF, and
ANN, whose MPEs were (45%), (24%), and

(26%), respectively, to attain the lowest error
ratio (MAPE) of 17.6%. Figure 10 shows a
histogram that compares the MAPEs of the
suggested models. In terms of expected
accuracy, the Keras model performs better than
the other three models. Figures 8 - 10
demonstrate that the predicted and actual
shear strength values for the Keras model are
closer to one another, indicating the Keras
model's superior performance than that of the
other three models.

3000 7
O  Testing set -
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Fig. 7 Outcomes of Shear Strength Estimation via ML Models LR, ANN, RF, RF, and Keras.

Table 3 Comparison Results for Different Proposed Models.

Measures
R Sets R RMSE (kN) MAPE (%) SI
Keras Testing 0.973 61.01 17.6 0.171
RF Testing 0.934 103.13 24 0.287
ANN Testing 0.891 142.59 26 0.365
LR Testing 0.83 146.35 45 0.382
@ 1000
0.4 ¢ 0382 800 :
035 F 600 = : =
03 f 400 : o 8 =
o 8 2
025 | %I 200 8 8 g 2
H & ——
0.2
015 | ’ *:- -:I + =4
=200 o
01 . M : 3 2
E -400 - -
0.05 ¢ i
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LR RF Kerns ANN ORF @ Keras MANN OLR |

Fig. 8 The SI Performance Parameters of Various
Developed Models Comparison.

Fig. 9 The Developed Models' Residual Errors'
Scatter Interval.
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Fig. 10 MAPEs of the Developed Proposed
Models.

5.4.Sensitivity Analysis
In this part, to identify the effects of input
factors on the shear strength of the walls, a
sensitivity analysis study was performed. Based
on Keras' most accurate results predictions, the
way the model reacts to changes in the input
data reveals how well it is doing and,
consequently, how well it can correctly reflect
reality. Various sets of training data from
multiple sources were employed in the
sensitivity analysis. When the model was
trained, just one variable from each set was
omitted, and the RMSE was calculated
separately for each training dataset. The
omitted variable in the experiment with the
highest RMSE for the set has the most impact
on forecasting shear strength [28]. Table 4
summarizes the outcomes of the sensitivity
analysis for the most crucial variables.
Table 4 Parametric Analysis Employing Keras-
Based Model.

Sr.no llfemoved R} RMSE Ranking
arameter

None 0.973 61.01 —
1 f'c 0.953 82.55 5
2 Jyv be 0.977  59.99 23
3 Jyh be 0.969 61.22 22
4 Jyv 0.974 5867 24
5 Jyh 0.964  69.38 8
6 Juh 0.962 69.61 7
7 Juv 0.971 62.48 20
8 pvbe 0.942 87.37 4
9 phbe 0.959 65.70 15
10 pv 0975 5845 25
11 ph 0.971 68.43 10
12 puall 0.972 62.36 21
13 sv 0.968 66.38 13
14 sh 0.968 65.59 16
15 Dl be 0.968 65.71 14
16 Dh be 0.97 64.11 18
17 Dwv 0.97 63.11 19
18 Dwh 0.967 66.80 12
19 hw 0.947 89.85 2
20 hw 0.885 112.01 1
21 tw 0.958 71.56 6
22 tf 0.964 87.42 3
23 bf 0.957 68.14 11
24 tweb 0.969 65.57 17
25 P 0.966 68.60 9

It is clear from the results that the geometric
properties were the most sensitive and
influential in predicting the shear strength of

shear walls, represented by the wall height
(hw), which is considered one of the design
parameters that most influence the shear
strength; however, its effect is inverse, and it is
located in the twentieth row in bold line,
followed by wall length (lw), flange thickness
(tf), and wall thickness (tw). The material
properties after wall dimensions represented by
compressive  strength  (fc) significantly
impacted the shear strength, afterward its
reinforcement ratio (ph), and yield strength
(fyh) of the horizontal web in terms of impact
and sensitivity. Figure 11 displays the results of
the sensitivity evaluation based on the optimal
Keras model, which shows the proportion of
model input parameter contribution computed
following sensitivity analysis.
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Fig. 11 Sensitivity Analysis Employing Keras-
Based Model.
According to the proportionality results,
derived from the most effective model (Keras
deep learning) are evident in the figure. The
geometric dimensions of the wall have the most
significant influence on shear strength,
followed by compressive force, details, and
reinforcement properties. These variables are
the most sensitive in predicting shear strength.
This result aligns with other experimental
investigations and earlier studies that have
been concluded and disseminated in the
literature [19, 29-31].
6.CONCLUSIONS
The present investigation's data set was
assembled from 1424 tests and experimental
results. In this study, the shear strength of
squat reinforced concrete walls was effectively
predicted using the deep learning model
embodied by Keras. 80% and 20% of the data
were randomly selected for training and testing
in the grid search method to find the optimal
Keras hyperparameters. The prediction
outcomes of the recommended model were
compared with those of other well-known
machine learning models. The present study
allows for deducting the following conclusions:
e When comparing the outcomes of the
numerical and experimental programs,

o
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there was a noticeable level of convergence.
The result was the KNIME Analytics
Platform. It may be used in the fields of
machine learning and data science because
of its vital role in precise computing
processes, simplicity of handling without
the need for codes, support from the
Python and R languages, and capacity to
keep up with new techniques for handling
and analyzing data.

Using the largest shear wall database,
which included 3159 test specimens, in this
work is novel compared to previous studies.
When designing the wall, consider the 25
most important and influential design
parameters and shear strength as a
parameter that has not been previously
used in previous studies in terms of
number.

Estimating the wall shear strength using
deep learning instead of traditional
machine learning algorithms, obtaining
high accuracy, reaching 97% and an error
rate of 17.6, which has not been achieved
yet.

The established Keras predicted the shear
strength of squat-RC walls with the lowest
error and the highest accuracy. The
performance measurement standards for
the testing set were R2 = 0.973, RMSE
=62.01 kN, MAPE = 17.6%, and SI = 0.171.
The Keras model was compared with the
ANN, LR, and RF ML models. Ensemble
learning techniques (Keras and RF)
significantly  outperformed individual
learning strategies (ANN and LR), with
Keras attaining the best overall
performance.

As a consequence of 0.1< 0.171<0.2, it can
be said that a model performs well (Good).
The results for Keras showed that the
predicted and actual shear strength values
were very close, indicating that the degree
of scattering of the test data around the
ideal line (y = x) was lowest based on the
scatter index value, which was (SI=0.171).
The height of the wall was the factor that
most influences the peak shear strength of
the squat shear wall as a ratio (6.36%),
according to the results of the sensitivity
analysis, followed by the wall length
(5.10%), the flange thickness (4.96%), the
concrete strength (4.69%), the wall
thickness (4.06%), the yield strength of the
web as a ratio (3.94%), and the
reinforcement ratio information (3.89%).
This result consents with the findings of the
previous experiments.

The shear strength of squat walls can be
predicted faster and more precisely using a
machine-learning approach than with
experimental or theoretical models. This

method considers all the necessary
variables for designing shear walls in
buildings and constructions, and its results
can be used to save time and money on
current design work.
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NOMENCLATURE
ACI American Concrete Institute
Adadelta  Adaptive Delta
Adam Adaptive Moment Estimation
Adamax  Adam variant based on the infinity norm
ANN Artificial Neural Network
API Application Programming Interface
bf flange height
cov coefficient of variation
CS compressive strength
Dh be horizontal boundary diameter
reinforcement
Dl be longitudinal boundary diameter
reinforcement
Dwv vertical web diameter reinforcement
Dwh horizontal web diameter reinforcement
fc concrete strength
FQ Full Quadratic
Ftrl Follow-the Regularized Leader
fuh Ultimate Strength of the Horizontal Web
fuv ultimate strengths of the vertical
fyh Yield Strength of the Horizontal Web
fyh be Yield Strength of Horizontal Boundary
Element
fyv be Yield Strength of Vertical Boundary
Element
fyv Yield Strength of the Vertical Web
GB gradient boosting
GPC geopolymer concrete
hw Wall height
LR Linear Regression
lw Wall length
MAPE mean absolute percentage error
MEP Multi-Expression Programming
ML Machine Learning
n number of datasets
Nadam Adam with Nesterov momentum
P applied axial load
Rz coefficient of determination
RC Squat-reinforced concrete
RF Random Forest
RMSE root mean square error
RMSProp Root Mean Square Prop
SD standard deviation
SGD Stochastic Gradient Descent
Sh the spacing of the horizontal web
reinforcement
SI scatter index
Sv the spacing of the wvertical web
reinforcement
tf flange thickness
tw Wall thickness
Vn actual shear strength
yi actual value of the ith dataset
Ui predicted the value of the it dataset
Greek symbols
ph horizontal web reinforcement ratio
phbe horizontal reinforcement ratio
pv vertical web reinforcement ratio
pube vertical reinforcement ratio
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