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eThe disaggregation models are considered important for the
planning and managing of large-scale water resources systems,
especially those parts of management requiring shorter periods
other than the based time steps in the available data.

e This research highlights the parametric approaches’ validity in
disaggregating river flow, especially those with tributaries.

o The study is considered temporal disaggregation (Lane model) and
spatial disaggregation (Valencia and Schaake, VS model; Mejia
and Rousselle, M&R model) in the sense that it explores the
strengths and the weaknesses of these models based on preserving
the observed data statistics.
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Abstract: Since Makhol dam is planned to be
constructed on Tigris River to the north of Baiji
discharge measurement station, it is essential to
study the nature of inflow into this reservoir. The
information concerning this inflow is of great help
in operating and management of the prospective
reservoir. From our point of view, it is necessary
to know how these inflows are distributed and
contributed to Tigris from different upstream
sources. Disaggregation flow models are
stochastic generation techniques, that used to
divided data into lower time scales from higher
time scales using parametric approaches with two
main categories: spatial and temporal. In the
streamflow disaggregation model, historical data
statistics (mean, skewness, standard deviation,
maximum, and minimum) can be preserved while
distributing single-site values to several sites in
space and time. In this study, the aggregated
streamflows data at a key station will be
disaggregated into a corresponding series of
discharges at sub-stations that are statistically
similar to those observed by applying Stochastic
Analysis Modeling and Simulation (SAMS 2010)
software. To investigate the appropriate the
disaggregation method for modeling monthly
flow data, we used the annual and monthly data
flow of five gauging stations in the Tigres River in
Irag (Mosul Dam station on Tigris river,
Asmawah on AlKhazir river, Eski Kalak on Upper
Zab, Dibs Dam on Lower Zab, and Baiji station on
Tigris river) for the duration 2000—2020. The
application approach's statistical outcomes were
contrasted with their historical counterparts and
the results showed that most years and months at
all stations were in good agreement with the
historical data. Therefore, we argue that this
method have ability to be used when making
decisions about water management strategies in
these regions which is essential for water resource
managers and decision makers.
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1. INTRODUCTION

Disaggregation streamflow models play a
significant role in the stochastic generation
technique. They succeeded in resolving the data
asymmetry problem. These models enable the
disaggregation of streamflow data at higher
temporal and spatial scales into lower-level
scales. Data on a short timescale are needed to
address many hydrologic designs and
operational concerns. The model's input data
can be yearly or the sum of annual flows at some
sites to break down processes into smaller
timescale values [1]. All independent time
series can be combined to form the main time
series and then disaggregated using the
disaggregation approach. Due to the necessity
of maintaining the statistical distributions for
all stations and the correlation coefficient and
the continuity between all the stations, a
detailed process for the disaggregation flow
data in multiple stations and short duration
must be considered. Proposed the parametric
disaggregation model in 1973 Valencia and
Schaake [2]. They created a seasonal flow from
annual flow using a linear structure and the
Autoregressive Moving Average (ARMA)
approach, frequently employed by hydrologists.
This method was expanded by Mejia and
Rousselle [3]. They included a term to maintain
the correlation of seasonal data throughout two
subsequent years. The issue of parameter
estimation in this model derives from its
inconsistent structure. The Mejia approach's
parameter estimation issues were then
addressed with several modifications. For
instance, Stedinger and Vogel [4] presupposed
that the approach's random component was
also autoregressive. Although these models did
not explicitly preserve many correlation

coefficients of the flow data, Lane and Lin (a, b)
[5-7] proposed an additional moment equation
procedure to make the set of moment equations
mathematically consistent. Indeed, various
disaggregation models were proposed to reduce
the number of parameters and overcome the
inconsistency problem of prior approaches [4,
8]. To avoid data transformation,
Koutsoyiannis [9, 10] introduced sequential
disaggregation methods that allow the use of
non-Gaussian  data  directly in  the
disaggregation scheme. Santos and Salas [11]
proposed using stepwise disaggregation to
overcome the matrix sizes’ and its parameters’
drawbacks. To replicate monthly flows, they
employed the lag one model for multiple sites
and the symmetric stepwise lag one and
nonsymmetric stepwise lag two models for
single sites. They demonstrated that combining
approaches outperforms other methods when
considering the matrix size and number of
parameters. Ismail et al. [12] simultaneously
applied Valencia Schaake, VS, and SPIGOT
models to Malaysia’s streamflow and rainfall
series. They concluded that the VS model was
the most effective disaggregation model. In
addition, the first- and second-moment
statistical values were successfully retained by
the two models. A periodic disaggregation
approach was applied by Mondal and Saleh [13]
to subdivide seasonal flows based on data
generated from a periodic autoregressive (PAR)
approach for orders larger than AR (1). This
approach preserved the first and second
moments and was used to create decadal every
(10-day) flows from monthly flows on the
Ganges River near Farakka in India. The
findings showed that the proposed strategy
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operated quite effectively and offered flexible
options for synthetic hydrology. Proietti [14]
described the state space of time-series
disaggregation approaches using regression
techniques. The author discovered that
logarithms were used to deal with temporal
disaggregation and recommended fitting an
autoregressive distribution lag model and
appropriate initial conditions. Saada [15]
employed ARMA and the PARMA temporal
disaggregation techniques to predict and
simulate rainfall in arid and semi-arid regions.
The analysis was performed in only one location
in the Kingdom of Saudi Arabia. The two
models maintained the seasonal statistics of the
observed data well. The ARMA model can
maintain the correlation structure of the
seasonal data; however , the PARMA model can
maintain the correlation structure of the annual
data. Kossieris et al. [16] used the Bartlett-
Lewis process, which creates rainfall events,
combined with adjusting procedures to change
the lower-level variables, i.e., hourly, so that
they are consistent with the higher-level ones,
i.e., daily, to disaggregate rainfall at fine time
scales. Amin and Lotfy [17] successfully
matched using the ARMA model to produce
future synthetic rainfall data. Then, the
monthly-based version of the forecasted data
was broken down into a daily time series. Then,
1000 realizations of the daily forecast rainfall
time series for the following 100 years were
available and ready to be used in hydrological
models to study the performance of the
upcoming flash floods. Saada et al. [18]
conducted  modeling and simulation
experiments to test the SAMS capabilities for
use in stochastic modeling and simulation in
the Middle East. The hydrologic data used in
this study consisted of historically observed
rainfall data of different lengths at various sites
in Jordan and Saudi Arabia. The models used
included ARMA, PARMA, CARMA, and
temporal disaggregation models. The results
indicated that SAMS can be used as a tool for
the stochastic modeling and simulation of
hydrologic data in this region. John et al. [19]
showed that the monthly hydrologic modeling
results with daily disaggregation were generally
better than those based on daily hydrological
modeling, especially for ecologically relevant
flow metrics. In addition, the disaggregation
approach fared better than the daily model
when extrapolating to the multi-year dry
period. According to the average values of the
evaluation indices for the two disaggregation
and reconstructions using the water data
package in R software methods [20], the RMSE
index was 0.3 and 1.1, and the NSE index was
0.99 and 0.89, respectively. These data showed
that the time disaggregation method performed
better. By comparing real and simulated hourly
time series, Bolouki and Fazeli [21] investigated

the efficacy of multivariate rainfall
disaggregation using the MuDRain model and
the impact of hourly correlation among
stations. They demonstrated that the model
appropriately assessed the daily precipitation
quantity, but usually, it simulated severe
amounts of precipitation smaller than the real
amounts. The present study used a parametric
technique to investigate the streamflow
spatially and temporally disaggregated from
annual data to monthly data for specific
stations in the Tigris River. The generated
streamflow simulations were used to analyze
how well these methods preserved the
statistical properties of the historical data for
multiple stations. Prior research has yet to
explore the use of streamflow disaggregation
with SAMS 2010 software in this region, nor
has any study examined the effect of these
models on periodic monthly data from the Iraq
region.

2. METHODOLOGY

Two basic parametric models were used: one
for temporal disaggregation of the annual flow
data to monthly data and the other for spatial
disaggregation of the annual or seasonal flow
data in the key station to the flow at the sub-
stations.

2.1.Temporal Disaggregation

The temporal Lane model [22, 23] is available
for disaggregation of the annual flow data from
N stations to seasonal flow data at the same N
stations. The following is a description of the
model:

Yo = Aw.Y, + By €0+ Cop.Yyur (1)
where Y, is a vector column with (n*1) historical
values in the year v at n key station, Yy, » is a
consistent column vector with (n*1) historical
values in the same year v monthly w, Yy, o1 is a
column vector (n*1) for prior month, &,, is the
vector (n*1) of standard normal noise for year v
and monthly w, and A,, B, and C, are the
(n*n) parameter matrixes calculated using the
moments (MOM) method. Multisite temporal
models were created to maintain lag-1 month-
to-month correlations through the matrix Cw
for each month and the matrix Aw for each
month between annual and monthly data in any
year.

2.2.Spatial Disaggregation

The first method available for spatial
disaggregation is the annual data of key stations
(N) to annual data at substations (M), namely
the Valencia and Schaake (VS) model [24].

Y, = AX, + Be, (2)
Mejia and Rousselle (M&R) model, the second
model, is expressed as [3]:

Y, = AX, + Ben +CXpy  (3)
where X, is the column vector (M*1) of
observed data in the n year at key stations, Yy is
the column vector (M*1) at substations, en is
the noise column vector (M*1), and A, B, and C
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are (M*N), (M*M), and (M*M) parameter
matrices, respectively, were calculated using
the moments (MOM) method. The
fundamental  premise  underlying  the
parametric technique is that the data X,, Yn,
and &, must come from a normal distribution.
Therefore, before fitting the model, any
transformation approach should be used to
guarantee this requirement. According to the
M&R model, monthly data are spatially
disaggregated from N Kkey station to M
substations as follows:

Yv,(u = A(u Xv,a) + B(u Evw + Ca) Yv,a)—l (4)

Where o is devoted to the month, X, is the
column vector (N*1) for observed value of year
v, season w at the N stations, Yy, , is the column
vector (N*1) for substations of the equivalent
monthly data for a month in the same year,
Yv0-1 18 (N*1) column vector of the prior month
in substations, and ¢, is the standard normal
noise vector(N*1). The monthly parameter
matrices Ay, By, and C, are the matrices that
correspond to those used in the spatial
disaggregation of annual data.

Data Analysis

(Transform Methods)
Logarithmic
Gamma
Power
Box-Cox

Transfonmation into normal

Yes

Model Fitting,

Disaggregation Model

Spatial Disaggregation Temporal Disaggregation

Mejia and Rousselle Valencia and Schaake
(M&R) model (VS) model

Generated Time Senes

Fig. 1 A Flow Chart Represents the Stages of
Disaggregation Streamflow Models.

3.STUDY AREA

The Makhol Dam is one of the most significant
projects on the Tigris River in Salah al-Din
Governorate, around 16 km north of Fatha
Bridge and 30 km northeast of Baiji City. The
Makhol dam site represents a prominent node
collecting almost all the water flowing in the
Tigris River after the two tributaries, i.e., the
upper Zap River and the lower Zap River, join
the outflow from the Mosul dam, in addition to
the contributions from other sources such as
rainfall and some other valleys located within
its catchment area. Five discharge gauging
stations on the Tigris River in the area above the
dam's location were chosen for this study. The
dam's axis is 3.67 kilometers long and has a
storage capacity of approximately 3.3 billion
cubic meters [25]. The dam is a convergence
point for discharges from the study's sites. The

Lane model

stations chosen include the Mosul Dam station,
which is situated in Mosul's northern region.
The two stations on the Khazar River, Eski
Kalak and Asmawah, are situated on the upper
Zab tributary, followed by the Dibis Dam
station on the same tributary, and finally, the
Baiji station, the alleged opening situated close
to Makhoul Dam. It must be noted that the
current study has assumed that the observed
flow at the Biji measuring discharge station
represents the inflow entering the Makhool
reservoir due to the lack of data at the dam site
and the relatively short distance between these
two points. The daily and monthly flows for the
five selected stations were obtained from the
National Center for Water Resources in Iraq
and the Department of Water Resources in the
Kurdistan Region for the 2000-2022 period.
Fig. 2 shows the measurement stations’
locations chosen for this study. Also, Table 1
contains information about the site, such as its
latitude, longitude [26], and observation
period.

N e

am —
* . Asmawa station

& SK kataks &i.s

Meeting point Y Dibs Dam "~
. /, & U
Makhoul Dam ~~ Megting point
. Baiji area —
\
et \ ]
2
L
ki'w 2~

» K

Fig. 2 The Location of Streamflow
Measurement Sites.

Table 1 The List of Site Information, Including
Latitude, Longitude, and Observation Period.

Station . g Historical
Name Lastadle  Lnunandde duration
Mosul e oo oot L an
Dam 4249' 23 36'37' 48 2000-2022
Asmawah  4331'49" 36'31'28" 2000-2022
Eski Kalak S aan o o

4334' 33 3610'43 2000-2022
and
Dibs Dam 4406'38" 3541'21" 2000-2022
Baiji 4329'35" 3455 45" 2000-2022

4. RESULTS AND DISCUSSION

The historical data of each station must be
converted into a normal distribution using
SAMS 2010 software, which is the fundamental
principle of the parametric method. Before
implementing the model, a logarithmic
converted method was used by putting the
transformed data on a normal probability paper
and using the skewness test to obtain the
skewness coefficient (gc) [27] to determine the
transformed data adequacy. The theoretical
distribution was compared based on log
transformation with a significance level of 10%
and the skewness test (gc), which was equal to
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0.7476, depending on the amount of data [28].
The test is accepted if ge is less than 0.7476, as
indicated in Table 2.

Table 2 Results of Skewness Test.

Stations Skewness test Result

Mosul Dam -0.0658 Accepted
Asmawah 0.1120 Accepted
Eski Kalak -0.2649 Accepted
Dibs Dam 0.1109 Accepted
Baiji -0.2602 Accepted

4.1.Temporal Disaggregation

Basic statistics, such as the mean, variance,
skew coefficient, maximum and minimum
discharge, and lag-1 autocorrelation coefficient,
were calculated from 100 generated traces, each
of 20 years (the same length of historical data),
and then displayed as boxplots and tables. The
whiskers on the hinges represent the 5th and
95th percentiles of simulated values, and the
box represents the interquartile range (IQR).
The triangle represents the relevant historical
statistical data. The box's horizontal line
denotes the median of generational data. Figs.
3-7 show the statistical findings from generated
data for each station. Due to the necessary
alteration of the data during the modeling
stage, the resulting mean values are expected to
preserve historical ones. The mean values of the
key series and random terms should be zero,
and even at the back-transformed stage, the
model coefficients are constants, which was
observed in the present study. As can be
observed, the generated data for each station
maintained the mean value of the original data.
The mean of the historical streamflow was
nearly identical to the median of the simulated
data for each month and station according to

tight box plots, which demonstrate the high
degree of agreement between simulations and
historical data, even though these agreements
appear to be violated in October, November,
and September, which correspond to the other
months. For skewness statistics, although there
were notable exceptions at the Dibs Dam
station in January, June, and August, the
disaggregation approach appears to have
underestimated the skewness statistics in
December and January for the other stations.
In contrast, the other months were seen as very
tightened boxes. The marginal density
transform should not work in these months
since the parametric approach creates a normal
distribution with zero skews. The standard
deviation statistics showed indisputably that
the median of the simulated data in the
boxplots closely resembled the historical data
for most months at all stations. The minimum
and maximum statistical values were
successfully replicated except for March and
April for the Eski Kalak station due to high flow
in these months. During low flow months at all
stations, the approach can produce values
outside the minimum historical data or very
little negative data (0.01%). Maximum flow
generation performed better than minimum
flow generation using parametric
disaggregation. Backward Lag-1 correlations
were also well captured through October-
September (the first month of the year and the
last month of the previous year), which were
overly correlated in all stations. The Lag-1
correlation values indicated how effectively the
model caught the temporal dependency.

—~ 1200 r 1200 - 4 -
3
E 900 900 [
~ a ; 2 | -
600 b 600 - R
%) 1+
300 - 300 - ot
e 3z
0 L L L L L L 0 i L L L L i 1 L L L L L L
0 2 4 6 8 1012 0 2 4 6 8 1012 0 2 4 6 8 10 12
Months Months Months
500 - 6000 1.2
400 |- 5000 - 09 %
300 - x 4000 8 06 |-
g 3000 —
L o L
200 2000 - Ag/g = 0.3
100 - L 0 r
1000 z
ob—- ol 03 -
0 2 4 6 8 10 12 0 2 4 6 81012 0 2 4 6 81012
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Fig. 3 Statistics of Observed and Simulated Streamflow (Mosul Dam Station), The Polygonal Line
Represents the Observed Values.
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Fig. 4 Statistics of Observed and Simulated Streamflow (Asmawah
Station), the Polygonal Line Represents the Observed Values.
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Fig. 6 Statistics of Observed and Simulated Streamflow (Dibs Dam
Station), the Polygonal Line Represents the Observed Values.
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Fig. 7 Statistics of Observed and Simulated Streamflow (Baiji
Station), the Polygonal Line Represents the Observed Values.

4.2.Spatial Disaggregation

Table 3 presents the annual statistics obtained
from the simulated data after applying the
spatial approach to disaggregate the annual
flow data from the key station (Baiji station) to
the annual flow at substations (Mosul Dam,
Asmawah, Eski Kalak, and Dibs Dam). The
annual statistics from the V.S. and M&R
approaches were then compared with observed
statistics for all stations. It is clear from Table 3
that the mean of the annual flow was accurately
captured at each station, and St.Dev statistic
values from the generated data were quite
comparable to those from the observed data.
Station Dibs Dam performed better than the
other stations in capturing the skewness
statistic. Additionally, the maximum and
minimum flow statistics were approximated

rather well. The minimum values, however,
were underestimated in certain locations and
overestimated at the Eski Kalak station.
Additionally, all stations except Asmawah
station overstated the data generated for

maximum  flows. The coefficient of
determination (R?) and Nash-Sutcliffe
efficiency (NS) are determined for the

validating goal of assessing the proposed
disaggregation approach effectiveness. The
formulas generated by the statistics in this
investigation can be seen in references [29- 31].
The VS model was the best in application, as
shown by comparing the R2 and (NS) values
between the observed data and the data derived
from Egs. (2), (3), which reached the following
values in Table 4.

Table 3 Comparison of Annual Values Between Historical and Disaggregated Data.

Mosul Dam station Asmawabh station

Statistics Disaggregate Disaggregate

Observed VS Model M&R Observed VS Model M&R

Model Model

Mean 434.9 439.6 438.7 12.21 12.24 12.22
St.Dev 116.9 111.6 119.7 3.375 3.303 3.324
Skew 0.235 -0.05 0.552 0.7601 0.0703 0.663
Min 266.0 219.4 251.3 7.523 5.901 7.156
Max 668.5 654.2 718.9 21.13 18.9 20.28

Eski Kalak station Dibs Dam station

e Disaggregate Disaggregate
Siztiitive Observed VS M&R Observed VS M&R
model model model model
Mean 280.0 282.4 286.2 71.70 71.27 75.43
St.Dev 90.71 88.14 97.09 54.33 51.24 59.06
Skew 0.484 -0.11 0.640 1.463 1.208 1.518
Min 124.4 133 141.7 16.96 28.43 16.86
Max 491.8 447.5 512.1 235.5 172.3 244.2
Table 4 Values of R? and NS Statistics Values between Historical and Annual Disaggregated Data by
VS and M&R Approach.
Station Name M&R model VS model
R? NS R? NS

Mosul Dam 0.815 0.971 0.9886 0.985
Asmawah 0.882 0.928 0.781 0.995
Eski Kalak 0.917 0.968 0.9967 0.997
Dibs Dam 0.892 0.839 0.9941 0.991
Baiji 0.813 0.881 0.8807 0.879
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Using the VS and M&R models, the monthly
generated data for spatial disaggregation
streamflows from the key station (Baiji) to the
substations (Mosul Dam, Asmawah, Eski Kalak,
and Dibs Dam) were computed. The
fundamental statistics set at all stations was
computed for comparison with the observed
data. Table 5 displays some of the statistical
values obtained for October,November, and
December. Table 5 indicates the used model’s
satisfactory performance in preserving the
mean and the standard deviation values.
However, the model failed to do so and
underestimated those parameters in Asmawah
station on Khazer River, particularly during
December. Additionally, there were some

disaggregated flows compared to the observed
values, which can be attributed to the
insufficient transformation process. In most
months, the minimum and maximum statistics
values obtained by generated data were lower
than the actual results, except for Mosul Dam
Station. The satisfactory outcomes for other
months were found in all stations (not shown
due to limited space). It can be concluded that
the proposed approach produced a good level of
agreement for most statistics. Despite the
convergence of the two models’ results, the
correlation coefficient R? and Nash coefficient
(NS) of the MR model values were the best, as
shown in Table 6.

deflations in the skew value of the
Table 5 Comparison Moment Values Between Historical and Disaggregated Data.
October November December
Statis Disaggregate Disaggregate Disaggregate
: Obs. VS M&R Obs. VS M&R Obs. VS M&R
model model model model model model

Mosul Dam station
Mean 406.4 408.3 408 384 387.2 386.7 304.6 307.6 307.7
St.Dev 82.3 89.26 89.13 92.2 99.89 99.02 88.32 92.81 95.49
Skew 0.202 0.2156 0.5153 0.23 0.252 0.5901 0.29 0.2961 0.6376
Min 214.5 266.6 266 219.8 230 231.1 155.5 168.3 163.7
Max 537.9 615.2 611.8 554 617.8 615.6 477.2 524.7 531.4
Asmawabh station
Mean 6.574 6.618 6.628 8.66 8.616 8.611 12.77 12.39 12.56
St.Dev 1.851 1.68 1.711 4.10 3.258 3.217 16.05 10.85 11.53
Skew 1.084 0.476 0.508 2.04 0.826 0.7994 3.992 1.582 1.61
Min 4.31 3.943 3.926 5.11 4.023 4.09 0.78 2.264 2.243
Max 11.66 10.41 10.54 22.8 16.66 16.46 84.36 44.28 46.37
Eski Kalak station
Mean 127.2 127.8 127.2 151.2 151.2 151.6 167.1 170.1 170.4
St.Dev 44.65 45.01 43.11 72.11 66.02 71.23 57.49 58.9 55.17
Skew 0.577 0.7107 0.63 1.407 0.85 0.89 0.120 0.6867 0.170
Min 66 61.56 41.35 70.6 60.49 51.37 74.61 82.91 59.76
Max 221.3 236.1 210.8 375.7 314.9 289.2 265 311.2 227.2
Dibs Dam station
Mean 62.59 58.29 60.21 64.5 64.71 63.78 78.17 76.51 78.19
St.Dev 59.8 49.9 53.24 65.01 71.04 64.25 86.87 78.92 83.44
Skew 1.612 1.522 1.542 1.821 1.747 1.667 2.207 1.713 1.607
Min 13.0 11.25 11.15 9.8 7.886 9.005 6.00 9.638 11.09
Max 230.4 200.2 209.6 276 273.9 247 370 307 303.4

Table 6 Values of R? and NS Statistics Values 5.CONCLUSIONS

between Historical and Monthly Disaggregated
Data by VS and M&R Approach.

Station M&R Model VS Model

IWENTG R NS R? NS

Mosul Dam  0.9954 0.995 0.9991 0.999
Asmawah 0.9997  0.999 0.9994 0.998
Eski Kalak 0.9869 0.985 0.8829 0.995
Dibs Dam 0.9691 0.968 0.8356 0.995
Baiji 0.9971  0.996 0.9453 0.927

It can be seen that the model can preserve
historical data in the time and space domains,
particularly for the two moments (mean and
St.Dev); however, there is a limitation in
capturing the higher moments, i.e., the
skewness coefficient. One additional finding of
this paper is that using the spatial approach
results in acceptable outcomes for all the
stations considered in the present study.

In the present study, data on streamflow at five
stations along the Tigris River in Iraq were
disaggregated using a parametric
disaggregation model. The streamflow data
were temporarily disaggregated from annual
data at the key station to monthly data at the
same station and to substations by spatial
disaggregation. Various test statistics were
calculated from the historical and generated
data. A comparison of these statistics revealed
each approach’s performance in the
disaggregation model. From the comparison, it
is concluded that the temporal disaggregation
by the VS approach preserved the monthly
statistics spatially for the moments (mean and
St.Dev), while the skewness coefficient limited
the capturing of the higher moments. In
addition, spatial disaggregation was the best to
preserve monthly statistics by the M&R
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approach and the VS approach for annually
generated data. The spatial disaggregation
approach has the benefit of being able to
provide accurate streamflow data and realistic
spatial structures at each time step, easily
adaptable to different regions, and more
attractive for users who need to find flow at the
upstream stations from the downstream ones in
the fields. In conclusion, the results showed
that the parametric disaggregation model was
effective and provided a flexible choice for
generating synthetic streamflow series, which
can assist in the future operation and
management of the Makhol reservoir in the
sense that the operator would be quite aware of
how the different tributaries contributed to
Tigris inflow to Makhol. Additionally, if the
reservoirs’ operation was integrated into a
single system, one could control the releases
from different components of the reservoir
system until an optimal operating policy for this
reservoir is achieved.
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