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Abstract: This paper introduces the 

mathematical model of the leader-follower 

electric vehicle (EV). Consequently, the 

system was analyzed to obtain stability and 

performance. Model Predictive Control 

(MPC) is also proposed to fix the EV system 

issues. Moreover, two optimization 

algorithms are applied to optimize the 

performance of the MPC: electrically charged 

particle optimization (ECPO) and improved 

chaotic electromagnetic field optimization 

(ICEFO). The MPC scheme is based on the 

Adaptive Cruise Control System (ACCS), 

applied to two vehicles: the leader and 

follower. In this context, the simulation 

results of both optimization methods with the 

MPC scheme are presented in the result 

section. Finally, a comparison is made to 

show the proposed controller’s effectiveness 

with the improved optimization algorithms. 

Also, the ACC electric vehicle tracking system 

was achieved at 98% with the reference input. 

 

 

 

http://doi.org/10.25130/tjes.30.4.12
mailto:Mustafa.Alkreem1502M@coeng.uobaghdad.edu.iq
mailto:dr.nizar.hadi@coeng.uobaghdad.edu.iq
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.25130/tjes.30.4.12
https://orcid.org/0000-0001-5469-6478/
https://orcid.org/0000-0002-3034-8783
mailto:Mustafa.Alkreem1502M@coeng.uobaghdad.edu.iq


 

 

M.S. Alkreem, N.H. Abbas / Tikrit Journal of Engineering Sciences 2023; 30(4): 118-126. 

Tikrit Journal of Engineering Sciences Volume 30 No. 4 2023  119 Page 

 نمذجة وتصمیم مسیطر بالطرق المثلى لمنظومة السیطرة على السرعة المكیفة 
 نزار ھادي عباس  ، الكریمعبد ید ع مصطفى س

 العراق.  – قسم الھندسة الكھربائیة / كلیة الھندسة / جامعة بغداد / بغداد 

 الخلاصة
الحصول على    البحث، في ھذا   أجل  النظام من  تحلیل  تم  وبالتالي  والقائد).  (المتابع  الكھربائیة  للمركبة  الریاضي  النموذج  تقدیم  تم 

  ذلك، . علاوة على EV) لإصلاح المشكلات في نظام MPCتم اقتراح نموذج التحكم التنبئي ( ذلك،الاستقرار والأداء. بالإضافة إلى 
أداء   لتحسین  خوارزمیتین  تطبیق  (  MPCیتم  الكھربائیة  المشحونة  الجسیمات  تحسین  المجال  ECPOوھما  وتحسین   (

) الذي یتم  ACCSعلى نظام التحكم التكیفي في التطواف (  MPC). یعتمد مخطط ICEFOالكھرومغناطیسي الفوضوي المحسن ( 
في    MPCالتحسین باستخدام مخطط    یتم عرض نتائج المحاكاة لكل من طرق   السیاق،تطبیقھ على مركبتین (القائد والتابع). في ھذا  

تم تحقیق تتبع    أیضًا، تم إجراء مقارنة لإظھار فعالیة وحدة التحكم المقترحة مع خوارزمیات التحسین المحسّنة.    ، أخیراً قسم النتائج.  
 ٪ مع الإدخال المرجعي. 98بنسبة  ACCنظام السیارة الكھربائیة 

نظام التحكم التكیفي في السرعة؛ تحسین الجسیمات المشحونة بالكھرباء؛ تحسین المجال الكھرومغناطیسي الفوضوي؛   الكلمات الدالة:
 .التابع؛ نموذج التحكم التنبؤيوالقائد 

1.INTRODUCTION
Electric vehicles (EVs) are vehicles powered by 
an electric motor and a rechargeable battery 
instead of an internal combustion engine. EVs 
have gained popularity in recent years due to 
their lower environmental impact and 
decreased dependence on fossil fuels. Adaptive 
cruise control (ACC) is an advanced driver 
assistance system that uses sensors and 
cameras to maintain a safe distance between 
the vehicle and the car in front of it. ACC can 
automatically adjust the vehicle's speed to 
maintain a safe following distance and even 
bring the car to a complete stop if necessary [1-
3]. Model-predictive control (MPC) is a control 
strategy that uses mathematical models to 
predict a system’s behavior and optimize its 
performance. MPC can be applied to electric 
vehicles and adaptive cruise control systems to 
improve energy efficiency and driving 
performance. MPC can predict the behavior of 
an electric vehicle's battery and optimize its 
charging and discharging patterns to maximize 
battery life and range. Using predictive models, 
MPC can estimate the state of charge (SOC) of 
the battery and adjust the vehicle's driving 
behavior to maintain the desired SOC level, 
which reduces the risk of battery depletion and 
extends the vehicle's range, which is a key 
concern for many electric vehicle drivers [4–7]. 
In the case of ACC systems, MPC can be used to 
optimize the vehicle’s driving behavior and 
reduce fuel consumption. Using predictive 
models to estimate the distance to the next 
vehicle, the optimal speed, and acceleration 
profiles; MPC can adjust the vehicle's driving 
behavior to maintain a safe following distance 
while minimizing energy consumption, which 
reduces fuel costs and improves the overall 
efficiency of the vehicle. Furthermore, 
integrating MPC with electric vehicles and ACC 
systems can result in more intelligent and 
efficient driving behavior. MPC considers 
factors; such as traffic conditions, road 
gradients, and weather conditions; and 
optimizes the vehicle's driving behavior 

accordingly, resulting in smoother and more 
comfortable driving, as well as reduced energy 
consumption and emissions. In summary, 
integrating model predictive control with 
electric vehicles and adaptive cruise control 
systems results in more intelligent and efficient 
driving behavior, improved energy efficiency, 
and extended battery life and range. As 
technology advances, advancements in MPC-
based control strategies for electric vehicles and 
ACC systems can be expected, improving the 
driving experience and contributing to a more 
sustainable transportation system [8-10]. In 
this regard, many recent works showed the 
efforts and contributions of other researchers. 
A dual-mode ACC strategy that combines MPC 
and NN was proposed based on a neural 
network (NN) using data about driver behavior 
to create an intelligent ACC system [11]. A new 
method of managing energy usage has been 
proposed, which involved creating a model of 
the driver's behavior using real-time data and a 
Markov chain, which was then used in a 
stochastic MPC algorithm [12]. A new type of 
adaptive cruise control (ACC) algorithm, which 
combines model predictive control (MPC) and 
active disturbance rejection control (ADRC), 
was presented. The upper controller of the ACC 
system utilizes the MPC algorithm [13]. A 
feature called Energy-Optimal Adaptive Cruise 
Control (EACC) was designed for electric 
vehicles. This function was based on Model 
Predictive Control (MPC) and aimed to improve 
the energy efficiency of the vehicle by utilizing 
real-time information on traffic and road 
conditions to plan the optimal speed trajectory 
of the car [14-17]. Moreover, a model predictive 
control (MPC) algorithm was used to develop 
an adaptive cruise control (ACC) system that 
was tailored to eco-driving and optimized for 
four objectives: comfort, tracking capability, 
safety, and eco-friendliness [18]. A fractional 
order model reference adaptive control 
(FOMRAC) system was proposed for the cruise 
control of a DC motor-driven electric vehicle. 

https://tj-es.com/
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The powertrain model of the vehicle was 
disclosed, and the control design was 
elaborated. The contribution of the work was 
utilizing fractional-order reference adaptive 
controllers for the two-layer control loop [19]. A 
new adaptive cruise control (ACC) algorithm, 
combined model predictive control (MPC) and 
active disturbance rejection control (ADRC) 
methods was presented to improve control 
accuracy and address the fluctuation in vehicle 
acceleration [20-23]. In this paper, MPC with 
ACC property is implemented to compensate 
for a leader-follower EV system. An MPC 
controller is also applied to control the velocity 
and distance between the leader and follower 
vehicles. Moreover, two optimization 
algorithms (ICEFO and ECPO) are used to tune 
the parameters of the MPC controller. 
Eventually, the results of ICEFO and ECPO are 
compared and presented with a detailed 
discussion to validate this controlling scheme. 
The rest of the paper is organized as follows: 
The mathematical model of EV is introduced in 
Section 2. The MPC method is explained in 
Section 3 to present and discuss its principle 
operation with the ACC concept. The 
optimization methods are presented in Section 
4. The simulation results and discussion of the 
results with a comparison table are explained in 
Section 5. Eventually, the conclusion is 
presented in Section 6. 
2. EXPERIMENTAL PROGRAM 
2.1. Apparatus 
2.1.1.The Mathematical Model of 
Electric Vehicle 
As the electric machine or motor is the sole 
source of propulsion for an electric vehicle 
(EV), controlling EV motion can be simplified 
to controlling the motion of the electric 
machine. For optimal performance, the driving 
motor must have a high power output at high 
speeds to ensure rapid acceleration and an 
applicable torque output at low speeds with 
high overload capacity. Various mathematical 
models of EV motors were developed to 
describe the characteristics of the EV system 
that must be controlled. The selection of a 
motor for a specific EV depends on various 
factors, including the intended use of the EV, 
permissible speed and torque variations, and 
ease of control. Assuming that the motor is an 
armature-controlled DC motor, the open-loop 
transfer function for a DC motor with no load 
attached can be expressed using Eq. (1) [24]: 

𝑮𝑮𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(𝒔𝒔) = 𝝎𝝎(𝒔𝒔)
𝑽𝑽𝒊𝒊𝒊𝒊(𝒔𝒔)

=
𝑲𝑲𝒕𝒕

�(𝑳𝑳𝒂𝒂𝑱𝑱𝒎𝒎)𝒔𝒔𝟐𝟐+(𝑹𝑹𝒂𝒂𝑱𝑱𝒎𝒎+𝒃𝒃𝒎𝒎𝑳𝑳𝒂𝒂)𝒔𝒔+(𝑹𝑹𝒂𝒂𝒃𝒃𝒎𝒎+𝑲𝑲𝒕𝒕𝑲𝑲𝒃𝒃)�     
     (1) 

Eq. (2) presents a simplified open loop transfer 
(GF (s)) function for the EV model based on all 
of the computed force/torque equations, 
armature input voltage (𝑉𝑉𝑖𝑖𝑖𝑖), and tachometer 

output voltage (𝑉𝑉𝑡𝑡𝑡𝑡ℎ), as well as all of the 
combined load characteristics [21]. 
𝑮𝑮 𝑭𝑭(𝒔𝒔)

=
𝟐𝟐𝒌𝒌𝒕𝒕𝒂𝒂𝒕𝒕 ∗ 𝑲𝑲𝒕𝒕

[(𝒔𝒔𝑳𝑳𝒂𝒂  +𝑹𝑹𝒂𝒂)(𝟐𝟐𝑱𝑱𝒔𝒔 + 𝟐𝟐𝑩𝑩𝒔𝒔𝒔𝒔 + 𝒄𝒄𝒓𝒓) + 𝒔𝒔(𝑳𝑳𝒂𝒂 +𝑹𝑹𝒂𝒂)𝒓𝒓𝟐𝟐𝑴𝑴𝒄𝒄 + (𝟐𝟐𝑲𝑲𝒕𝒕𝑲𝑲𝒃𝒃)] 
(2) 

where  𝐿𝐿𝑡𝑡 is the armature inductance, 𝑅𝑅𝑡𝑡 refers 
to the armature resistance,  𝑀𝑀𝐶𝐶  is the mass of 
the car (kg), 𝐶𝐶𝑟𝑟 is the rolling coefficient of EV, 
𝑟𝑟2  is the radius of the wheel, 𝑘𝑘𝑡𝑡𝑡𝑡ℎ the 
tachometer gain, 𝐽𝐽𝑒𝑒 is the total equivalent 
inertia of the rotor, 𝐾𝐾𝑡𝑡 is the torque constant, 𝐾𝐾𝑏𝑏 
refers to the electromotive force constant, and 
𝐵𝐵𝑒𝑒 is total equivalent damping friction. 
2.1.2.Model Predictive Control 
Model-predictive control (MPC) is a popular 
control strategy widely applied in process 
control, electric vehicles, aerospace, robotics, 
and many other fields. MPC has been applied to 
control electric vehicles (EVs) due to its ability 
to handle constraints and optimize the control 
inputs over a finite time horizon. Fig. 1 shows 
the default block diagram of the MPC with the 
system used in this study. 

 
Fig. 1 Overall Black Diagram of MPC with the 

System. 

In this paper, the MPC algorithm predicts the 
future behavior of the EV using a dynamic 
model and optimizes the control inputs to 
achieve the desired performance while 
considering the constraints of the EV's 
components, such as battery voltage and 
current limits. MPC has been successfully 
applied to adaptive cruise control (ACC) 
systems in automotive applications. An ACC 
system maintains a desired distance from the 
lead vehicle by adjusting the throttle and brake 
inputs of the following vehicle. Using MPC in 
ACC systems improves the system performance 
and reduces the risk of collisions. The dynamic 
model used in the MPC algorithm can be 
represented in Eq. (3) [25]: 

𝒙𝒙(𝒌𝒌 + 𝟏𝟏) =  𝒇𝒇�𝒙𝒙(𝒌𝒌),𝒖𝒖(𝒌𝒌)�     (3) 
where 𝑥𝑥(𝑘𝑘) is the state of the EV at time 𝑘𝑘,𝑢𝑢(𝑘𝑘) 
is the control input at time 𝑘𝑘, and 𝑓𝑓() is the 
dynamic model that describes how the state 
evolves over time. The state of the EV includes 
variables such as the vehicle speed, battery state 
of charge, and motor torque. 
2.1.3.Optimization Algorithms 
In this section, two types of optimization 
methods are applied to optimize the MPC. 
Additionally, these optimization methods are 

https://tj-es.com/
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new to the control literature and were 
contributed by Bouchekara [26, 27]. 
A-Electric Charged Particles 
Optimization Algorithm 
Electric Charged Particle Optimization (ECPO) 
is a physics-inspired optimization algorithm 
based on the behavior of charged particles in an 
electric field. The ECPO algorithm starts by 
randomly initializing a population of charged 
particles, where each particle represents a 
candidate solution to the optimization problem. 
The fitness of each particle is evaluated using 
the objective function of the problem. The 
particles are then sorted based on their fitness, 
and the best particle is selected as the global 
best solution. In ECPO, each particle is assigned 
a charge that represents its fitness value, and an 
electric field is generated based on the charges 
of the particles. The electric field exerts a force 
on each particle, which moves them towards the 
best global solution. The movement of the 
particles is modeled using Newton's laws of 
motion. The ECPO algorithm has certain steps 
for each iteration: initialization, pool archiving, 
selection, interaction, checking bounds, 
diversification, updating population, criteria of 
termination, and handling constraints. ECPO 
solves various optimization problems, such as 
function optimization, parameter estimation, 
feature selection, and pattern recognition. Its 
effectiveness stems from its ability to efficiently 
explore the search space and overcome local 
optima, resulting in improved convergence and 
the possibility of finding better solutions than 
traditional optimization techniques. Overall, 
ECPO provides a versatile and powerful 
optimization approach that applies 
electromagnetism principles to complex 
optimization problems in various domains 
[26]. The following is the main equation to 
compute the next ECP [26]: 
𝑬𝑬𝑬𝑬𝑬𝑬𝑵𝑵𝒔𝒔𝑵𝑵 = 𝑬𝑬𝑬𝑬𝑬𝑬 + 𝜷𝜷 × (𝑬𝑬𝑬𝑬𝑬𝑬𝑩𝑩𝒔𝒔𝒔𝒔𝒕𝒕 − 𝑬𝑬𝑬𝑬𝑬𝑬𝟏𝟏)

+ 𝜷𝜷 × (𝑬𝑬𝑬𝑬𝑬𝑬𝟏𝟏 − 𝑬𝑬𝑬𝑬𝑬𝑬𝟐𝟐) (4) 

B-Improved Chaotic Electromagnetic 
Field Optimization 
The Improved Chaotic Electromagnetic Field 
Optimization (ICEFO) algorithm is a 
computational optimization technique inspired 
by the principles of chaotic systems and 
electromagnetic fields. Additionally, this 
algorithm was proposed to solve optimal power 
flow after its first version, Chaotic 
Electromagnetic Field Optimization (CEFO). 
The ICEFO algorithm is based on simulating 
the behavior of charged particles in an 
electromagnetic field. The ICEFO algorithm 
introduced a new approach to generating the 
electromagnetic field using chaotic maps, 
which improved the convergence rate and 
global search capability of the EMO algorithm. 
After that, the chaotic maps used in the ICEFO 
algorithm were deterministic and nonlinear, 

which exhibit complex and unpredictable 
behavior that can help the algorithm escape 
local optima. Moreover, the ICEFO algorithm 
had several advantages over other optimization 
techniques, including its ability to handle non-
convex, nonlinear, and multi-modal problems. 
Furthermore, the algorithm is highly scalable 
and can be easily parallelized to solve large-
scale optimization problems. The original EFO 
uses the neutral field's EMP to generate a new 
candidate solution with positive feedback from 
the positive field and negative feedback from 
the negative field. In the ICEFO, the following 
new search equation is proposed: 

𝑬𝑬𝑴𝑴𝑬𝑬𝒋𝒋𝑵𝑵𝒔𝒔𝑵𝑵

=

⎩
⎪
⎨

⎪
⎧ 𝑬𝑬𝑴𝑴𝑬𝑬𝒋𝒋

𝑬𝑬𝒋𝒋 ,   𝒊𝒊𝒇𝒇 𝒓𝒓𝒂𝒂𝒊𝒊𝒔𝒔 < 𝑬𝑬𝒔𝒔_𝒓𝒓𝒂𝒂𝒕𝒕𝒔𝒔

𝑬𝑬𝑴𝑴𝑬𝑬𝒋𝒋
𝑹𝑹𝑹𝑹𝒋𝒋 + (𝝋𝝋 ∗ 𝒓𝒓𝒂𝒂𝒊𝒊𝒔𝒔) �𝑬𝑬𝑴𝑴𝑬𝑬𝒋𝒋

𝑬𝑬𝒋𝒋 −  𝑬𝑬𝑴𝑴𝑬𝑬𝒋𝒋
𝑲𝑲𝒋𝒋�

−𝒓𝒓𝒂𝒂𝒊𝒊𝒔𝒔 �𝑬𝑬𝑴𝑴𝑬𝑬𝒋𝒋
𝑵𝑵𝒋𝒋 −  𝑬𝑬𝑴𝑴𝑬𝑬𝒋𝒋

𝑲𝑲𝒋𝒋�
, 𝒐𝒐𝒕𝒕𝒕𝒕𝒔𝒔𝒓𝒓𝑵𝑵𝒊𝒊𝒔𝒔𝒔𝒔, 𝒋𝒋 = 𝟏𝟏, … ,𝑵𝑵𝒗𝒗𝒂𝒂𝒓𝒓.  

 (5) 

where 𝑃𝑃𝑗𝑗  , 𝑁𝑁𝑗𝑗, and 𝐾𝐾𝑗𝑗 are the indexes of the 
selected EMPs from positive, negative, and 
neutral parts, respectively. 𝜑𝜑 is the golden ratio 
constant to guide the candidate solutions 
towards the positive part. 𝑅𝑅𝑅𝑅𝑗𝑗  depicts the 
selected EMP using the roulette wheel method 
instead of 𝑃𝑃𝑗𝑗, 𝑁𝑁𝑗𝑗, and 𝐾𝐾𝑗𝑗. In other words, the 
ICEFO constructs the candidate EMP. As 
shown in Eq. (7), candidate solutions around 
the neutral field and around positive and 
negative fields, with better EMPs having a 
higher probability of selection, can be 
generated. The EFO exploitation ability will be 
improved if 𝑅𝑅𝑅𝑅𝑗𝑗  guides the search. An adaptive 
mechanism is then used to improve the 
exploitation performance of ICEFO even 
further. Integrating adaptive control 
mechanisms into meta-heuristic algorithms is a 
widely used technique. In ICEFO, two main 
control parameters, 𝑃𝑃𝑠𝑠𝑟𝑟𝑡𝑡𝑡𝑡𝑒𝑒   and R rate, are 
adaptively controlled throughout a run. As 
mentioned in the previous section, 𝑃𝑃𝑠𝑠𝑟𝑟𝑡𝑡𝑡𝑡𝑒𝑒  
determines the probability of copying the EMP 
index from the positive field, whereas R rate 
determines the probability of the 
randomization procedure. 𝑃𝑃𝑠𝑠𝑟𝑟𝑡𝑡𝑡𝑡𝑒𝑒 and R rate in 
the ICEFO are updated at the end of each 
iteration, as follows: 

𝑬𝑬𝒔𝒔𝒓𝒓𝒂𝒂𝒕𝒕𝒔𝒔 =  𝑬𝑬𝒔𝒔𝑹𝑹𝑴𝑴𝒊𝒊𝒊𝒊 + 𝑰𝑰𝒕𝒕𝒔𝒔𝒓𝒓 ×(𝑬𝑬𝒔𝒔𝑹𝑹𝑴𝑴𝒂𝒂𝒙𝒙− 𝑬𝑬𝒔𝒔𝑹𝑹𝑴𝑴𝒊𝒊𝒊𝒊 )
𝑴𝑴𝒂𝒂𝒙𝒙𝑰𝑰𝒕𝒕𝒔𝒔𝒓𝒓

   (6) 

𝑹𝑹𝒓𝒓𝒂𝒂𝒕𝒕𝒔𝒔 =  𝑹𝑹𝑹𝑹𝑴𝑴𝒊𝒊𝒊𝒊 −  𝑰𝑰𝒕𝒕𝒔𝒔𝒓𝒓 ×(𝑹𝑹𝑹𝑹𝑴𝑴𝒂𝒂𝒙𝒙− 𝑹𝑹𝑹𝑹𝑴𝑴𝒊𝒊𝒊𝒊 )
𝑴𝑴𝒂𝒂𝒙𝒙𝑰𝑰𝒕𝒕𝒔𝒔𝒓𝒓

          (7) 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟  and 𝑀𝑀𝑀𝑀𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟 denote the current and 
maximum iteration values, respectively. 𝑃𝑃𝑠𝑠𝑟𝑟𝑡𝑡𝑡𝑡𝑒𝑒 
increases from PsRMin to PsRMax during the 
search process, as shown in Eq. (6). R rate is 
also reduced adaptively from 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅 to 𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 . 
𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 , 𝑃𝑃𝑠𝑠𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅, 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑅𝑅, and 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  are the new 
ICEFO control parameters that will be set 
before the search process. In a nutshell, the two 
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new control equations of 𝑃𝑃𝑠𝑠𝑟𝑟𝑡𝑡𝑡𝑡𝑒𝑒 and R rate will 
improve the exploration-exploitation balance 
by giving a higher probability to the random 
search mechanism in the early phase, while 
candidate EMPs are more likely to be derived 
from the positive field as 𝑃𝑃𝑠𝑠𝑟𝑟𝑡𝑡𝑡𝑡𝑒𝑒  increases. In 
other words, during the early stages of the 
search, ICEFO will efficiently explore the search 
space and favor exploitation around better 
solutions during the later stages [27]. In this 
work, the ICEFO algorithm is implemented to 
optimize the Model Predictive Control (MPC) 
parameter. In addition, the results of the ICEFO 
algorithm with MPC are compared to the ECPO 
algorithm. Next, the simulation results of the 
MPC with these optimization methods are 
presented to show the effectiveness of both of 
them. 
2.2.Experimental Sets (Simulation 
Parameters Settings)  
First of all, the EV system parameters, 
optimization methods, coefficient settings, and 
optimal parameters of MPC are included in the 
following tables: Table 1 shows the system 
parameters before MPC implementation. 
Table 1 The Valued Parameters of the EV 
System [29]. 

No. Parameters Values Parameters Values 

1 𝑽𝑽𝒊𝒊𝒊𝒊 36 𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼 𝑲𝑲𝒃𝒃 0.023 𝑉𝑉. 𝑠𝑠
/𝑟𝑟𝑀𝑀𝑟𝑟 

2 𝑱𝑱𝒎𝒎 0.02 𝑘𝑘𝑘𝑘.𝑚𝑚2 𝑹𝑹𝒂𝒂 1 𝑂𝑂ℎ𝑚𝑚 
3 𝒃𝒃𝒎𝒎 0.03 𝑳𝑳𝒂𝒂 0.23 𝐻𝐻𝐼𝐼𝐻𝐻𝐼𝐼𝑟𝑟𝐻𝐻 
4 𝑲𝑲𝒕𝒕 0.023 𝑁𝑁.𝑚𝑚

/𝐴𝐴 
𝑲𝑲𝒕𝒕𝒂𝒂𝒄𝒄𝒕𝒕𝒐𝒐 0.4696 

5 𝒓𝒓 0.5 𝒊𝒊 3.1 

Additionally, Table 2 lists the ECPO and ICEFO 
optimization settings with the optimized 
parameters of the MPC. 
Table 2 ECPO and ICEFO Algorithm 
Parameters with MPC Controller. 
No. MPC with ECPO 

Parameters 
MPC and ICEFO 

Parameters 
Parameters Values Parameters Values 

1 𝐻𝐻𝑇𝑇 3.1258 𝑠𝑠𝐼𝐼𝑠𝑠. 𝐻𝐻𝑇𝑇 0.1575 𝑠𝑠𝐼𝐼𝑠𝑠. 
2 𝐷𝐷𝐷𝐷𝑚𝑚𝐼𝐼𝐻𝐻𝑠𝑠𝐷𝐷𝑣𝑣𝐻𝐻 𝑣𝑣𝑓𝑓 𝐼𝐼ℎ𝐼𝐼 

 𝑝𝑝𝑟𝑟𝑣𝑣𝑝𝑝𝑣𝑣𝐼𝐼𝑚𝑚 
1 𝐷𝐷𝐷𝐷𝑚𝑚𝐼𝐼𝐻𝐻𝑠𝑠𝐷𝐷𝑣𝑣𝐻𝐻 𝑣𝑣𝑓𝑓 𝐼𝐼ℎ𝐼𝐼  

𝑝𝑝𝑟𝑟𝑣𝑣𝑝𝑝𝑣𝑣𝐼𝐼𝑚𝑚 
1 

3 𝑃𝑃𝑣𝑣𝑝𝑝𝑢𝑢𝑣𝑣𝑀𝑀𝐼𝐼𝐷𝐷𝑣𝑣𝐻𝐻 𝑠𝑠𝐷𝐷𝑠𝑠𝐼𝐼 75 𝑃𝑃𝑣𝑣𝑝𝑝𝑢𝑢𝑣𝑣𝑀𝑀𝐼𝐼𝐷𝐷𝑣𝑣𝐻𝐻 𝑠𝑠𝐷𝐷𝑠𝑠𝐼𝐼 50 
4 𝑁𝑁𝑢𝑢𝑚𝑚𝑝𝑝𝐼𝐼𝑟𝑟 𝑣𝑣𝑓𝑓 𝐷𝐷𝐼𝐼𝐼𝐼𝑟𝑟𝑀𝑀𝐼𝐼𝐷𝐷𝑣𝑣𝐻𝐻𝑠𝑠 50 𝑁𝑁𝑢𝑢𝑚𝑚𝑝𝑝𝐼𝐼𝑟𝑟 𝑣𝑣𝑓𝑓 𝐷𝐷𝐼𝐼𝐼𝐼𝑟𝑟𝑀𝑀𝐼𝐼𝐷𝐷𝑣𝑣𝐻𝐻𝑠𝑠 50 
5 𝐿𝐿𝑣𝑣𝐿𝐿𝐼𝐼𝑟𝑟 𝑝𝑝𝑣𝑣𝑢𝑢𝐻𝐻𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷𝐼𝐼𝑠𝑠 0.055835 𝐿𝐿𝑣𝑣𝐿𝐿𝐼𝐼𝑟𝑟 𝑝𝑝𝑣𝑣𝑢𝑢𝐻𝐻𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷𝐼𝐼𝑠𝑠 0.005116 
6 𝑈𝑈𝑝𝑝𝑝𝑝𝐼𝐼𝑟𝑟 𝑝𝑝𝑣𝑣𝑢𝑢𝐻𝐻𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷𝐼𝐼𝑠𝑠 10.047232 𝑈𝑈𝑝𝑝𝑝𝑝𝐼𝐼𝑟𝑟 𝑝𝑝𝑣𝑣𝑢𝑢𝐻𝐻𝑟𝑟𝑀𝑀𝑟𝑟𝐷𝐷𝐼𝐼𝑠𝑠 2.000472 
7 𝐻𝐻𝑢𝑢𝑚𝑚𝑝𝑝𝐼𝐼𝑟𝑟 𝑣𝑣𝑓𝑓 𝑟𝑟𝑢𝑢𝐻𝐻𝑠𝑠 1 𝐻𝐻𝑢𝑢𝑚𝑚𝑝𝑝𝐼𝐼𝑟𝑟 𝑣𝑣𝑓𝑓 𝑟𝑟𝑢𝑢𝐻𝐻𝑠𝑠 1 
8 - - 𝑃𝑃𝑣𝑣𝑠𝑠𝐷𝐷𝐼𝐼𝐷𝐷𝑣𝑣𝐼𝐼_𝑓𝑓𝐷𝐷𝐼𝐼𝑣𝑣𝑟𝑟 0.01 
9 - - 𝑁𝑁𝐼𝐼𝑘𝑘𝑀𝑀𝐼𝐼𝐷𝐷𝑣𝑣𝐼𝐼_𝑓𝑓𝐷𝐷𝐼𝐼𝑣𝑣𝑟𝑟 0.045 
10 - - 𝑁𝑁𝐼𝐼𝑢𝑢𝐼𝐼𝑟𝑟𝑀𝑀𝑣𝑣_𝑓𝑓𝐷𝐷𝐼𝐼𝑣𝑣𝑟𝑟 0.02 
11 - - 𝑅𝑅𝑀𝑀𝐻𝐻𝑟𝑟𝑣𝑣𝑚𝑚 𝐼𝐼𝑣𝑣𝐼𝐼𝑠𝑠𝐼𝐼𝑟𝑟𝑣𝑣𝑚𝑚𝑀𝑀𝑘𝑘𝐻𝐻𝐼𝐼𝐼𝐼 0.03 

Where 𝐻𝐻𝑇𝑇  is the optimal time gap of the MPC 
controller. 

3. RESULTS AND DISCUSSION 
This section presents the results and discussion 
of the electric vehicle system. Consequently, the 
implementation of the proposed MPC with the 
ICEFO and ECPO methods is shown. 
Additionally, the Integral Square Error (ISE) 
Performance Index (PI) is represented as the 
cost function in those optimization methods, as 
follows [28]: 
 

𝑬𝑬𝒔𝒔𝒓𝒓𝒇𝒇𝒐𝒐𝒓𝒓𝒎𝒎𝒂𝒂𝒊𝒊𝒄𝒄𝒔𝒔 𝑰𝑰𝒊𝒊𝒔𝒔𝒔𝒔𝒙𝒙 =  ∫ 𝒔𝒔𝟐𝟐(𝒕𝒕)𝒕𝒕
𝟎𝟎 𝒔𝒔𝒕𝒕       (8) 

Where 𝐼𝐼(𝐼𝐼) is the difference value between the 
model reference output and the system output. 
3.1.Results of First Set Case 1: Electric 
Vehicle Without MPC 
In this subsection, the EV model is presented 
without being controlled to show the system’s 
actual performance. Fig. 2 shows the 
performance of leader-follower velocity and 
distance of the vehicles with their relatives 
without a controlling scheme. It can be seen 
that the system has bad performance in 
following the vehicle to follow the leader 
vehicle. The difference in distances between the 
leader and follower was 55 𝑚𝑚. Also, the leader 
approached zero in 9 𝑠𝑠𝐼𝐼𝑠𝑠, while the follower 
reached zero in 7 𝑠𝑠𝐼𝐼𝑠𝑠. 
3.2.Second Set of Results Case 2: Electric 
Vehicle with MPC and ECPO Algorithm 
In this subsection, Fig. 3 shows the controlled 
EV system with MPC after it was optimized by 
the ECPO algorithm. Additionally, the leader-
follower velocity and distance of the vehicle 
with their relatives were improved. It can be 
seen that the following vehicle was closer to the 
leader's vehicle. The difference in distance 
between the leader and follower became almost 
30 𝑚𝑚. Consequently, the leader approached 
zero in 6.5 𝑠𝑠𝐼𝐼𝑠𝑠, while the follower reached zero 
in 4.8 𝑠𝑠𝐼𝐼𝑠𝑠. Eventually, the relative distance was 
matched up with the safe distance at the fifth 
second. 
3.3.Results of the Third Set Case 3: 
Electric Vehicle and MPC with ICEFO 
Algorithm 
In this subsection, Fig. 4 presents the controlled 
EV system with MPC after it was optimized by 
the ICEFO algorithm. Moreover, the leader-
follower velocity and distance of the vehicle 
with their relatives were improved more than 
ECPO. It can be shown that the difference in the 
distances between the leader and follower 
became almost the same as in the ECPO case. 
Further, the leader approached zero in 4.8 𝑠𝑠𝐼𝐼𝑠𝑠, 
while the follower reached zero in 5 𝑠𝑠𝐼𝐼𝑠𝑠. 
Eventually, the relative distance was matched 
up with the safe distance at the fifth second. 
Table 2 lists a comparison between the ECPO 
and ICEFO algorithms results. 
3.4.Performance Comparison of 
Improved Physics-Inspired 
Optimization Algorithms 
In this section, the simulation results show that 
the MPC-controlled system improved with the 
ECPO and ICEFO. However, the results showed 
that the MPC with ICEFO has a much better 
impact on the system than the MPC without 
ICEFO. Table 3 compares the ECPO and the 
ICEFO algorithms’ results. 
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(a) Leader-Follower Distance 

 
(b) Leader-Follower Velocity 

 
(c) Relative Distance 

 
(d) Relative Velocity 

Fig. 2 (CASE.1) The Uncontrolled EV System. 

 
(a) Leader-Follower Distance. 

 
(b) Leader-Follower Velocity. 

 
(c) Relative-Safe Distance. 

 
(d) Relative Velocity. 

Fig. 3 (CASE.2)  The MPC and EV Controlled 
System. 
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(a) Leader-Follower Distance. 

 
(b) Leader-Follower Velocity. 

 
(c) Relative-Safe Distance. 

 
(d) Relative Velocity. 

Fig. 4 (CASE.3) The MPC and EV Controlled 
System. 

Table 3 A Comparison Between ECPO and 
ICEFO. 
No. Leader-

Follower 
ECPO Algorithm ICEFO Algorithm 

1. Velocity Converged to zero at 6.5 
sec. 

Converged to zero at 
5 sec 

2. Distance Around 130m and 100m at 
6 sec. 

Around 130m and 
100m at 5 sec. 

3. Relative 
Distance 

Matched up at 5 sec. Matched up at 4 sec. 

4. Relative 
Velocity 

Sewing between -5m/sec. 
and 14m/sec. 

Sewing between -
8m/sec. and 
15m/sec. 

4.CONCLUSIONS 
Electric vehicles are becoming increasingly 
popular due to their environmental benefits 
and the decreasing cost of batteries. In this 
work, an MPC method is proposed to control 
the leader-follower EV system to compensate 
for its stability and performance. Additionally, 
the uncontrolled system showed some lack of 
performance and bad tracking of the following 
vehicle towards the leading car. After that, the 
MPC was applied to the leader-follower system 
with the ECPO optimization method to obtain 
the optimal MPC. Also, the MPC was applied to 
another optimization method, i.e., ICEFO, to 
gain better results. Moreover, the simulation 
results showed that the MPC-controlled system 
improved with the ECPO and ICEFO. However, 
the results showed that the MPC with ICEFO 
had a much better impact on the system than 
the MPC without ICEFO. Eventually, the results 
of the ICEFO algorithm were better and more 
preferable than ECPO, with an optimal time gap 
of 3.1258 sec in ECPO to 0.1575 sec in ICEFO. 
Also, the velocities were more matched up and 
converged to zero at 6.5 sec in ECPO for the 
leader, which reduced to 5 sec in ICEFO, while 
the follower convergence remained the same at 
4.8 sec. Consequently, the relative velocities 
and distance improved much more with both 
optimization algorithms, especially with 
ICEFO. 
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NOMENCLATURE   
𝐵𝐵𝑒𝑒 Total equivalent damping friction 
𝐶𝐶𝑟𝑟 Rolling coefficient of EV 
𝐽𝐽𝑒𝑒 Total equivalent inertia of the rotor 
𝐾𝐾𝑏𝑏  Electromotive force constant 
𝐾𝐾𝑡𝑡  Torque constant,N 
𝐿𝐿𝑡𝑡 The armature inductance 
𝑀𝑀𝐶𝐶  Mass of the car, (kg) 
𝑅𝑅𝑡𝑡 Armature resistance 
𝑘𝑘𝑡𝑡𝑡𝑡ℎ Tachometer gain 
𝑟𝑟2 Radius of the wheel 

𝑃𝑃𝑠𝑠𝑟𝑟𝑀𝑀𝐼𝐼𝐼𝐼 The probability of copying the EMP index from 
the positive field. 

𝑅𝑅𝑟𝑟𝑀𝑀𝐼𝐼𝐼𝐼 The probability of the randomization procedure 
Greek symbols 

𝛽𝛽 Random number 
𝜑𝜑 The golden ratio constant 
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