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Abstract:Motor imagery (MI) 
electroencephalography (EEG) technology is 
acquiring great attention from researchers due 
to its remarkable real-world applications. EEG 
signals inherit a high degree of non-
stationarity, making their analysis not modest. 
Hence, choosing an appropriate signal 
processing approach becomes crucial. This 
comparative paper aims to identify a suitable 
signal processing method among famous 
approaches, namely short-time Fourier 
transform (STFT), continuous wavelet 
transform (CWT), and two variations of 
discrete wavelet transform maximal overlap 
DWT (MODWT) and MODWT 
multiresolution analysis (MODWTMRA). 
Different mother wavelet basis filters 
experimented with wavelet methods: Morse, 
Amor, Bump, Symlets, Daubechies, Coiflets, 
and Fejér-Korovkin. The different methods 
were tested on the classification of the right-
hand and left-hand motor imagery tasks using 
the brain-computer interface (BCI) 
competition IV 2b dataset. A shallow 
convolutional neural network containing a 
single convolution layer was first trained and 
then used for classification. The experimental 
outcomes verified that MI EEG signals can be 
better analyzed and recognized using the 
maximal overlap-based signal processing 
methods. The classification accuracy proved 
that MODWT and MODWTMRA with the 
Symlets wavelet outperformed the other 
methods. 

 

 

 

http://doi.org/10.25130/tjes.30.3.14
http://doi.org/10.25130/tjes.30.3.14
http://doi.org/10.25130/tjes.30.3.14
mailto:ali.alsaegh@uomosul.edu.iq
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.25130/tjes.30.3.14
https://orcid.org/0000-0003-1633-6679
mailto:ali.alsaegh@uomosul.edu.iq


 

 

Ali Al-Saegh / Tikrit Journal of Engineering Sciences 2023; 30(3): 140-147. 

Tikrit Journal of Engineering Sciences Volume 30 No. 3 2023  141 Page 

 تحدید تقنیة معالجة اشارة مناسبة لبیانات الدماغ التخیلیة 
 غ ئعلي الصا

 . العراق -  الموصل  /  الموصل كلیة الھندسة / جامعة  /  حاسوب قسم ھندسة ال 

 الخلاصة
) اھتماما كبیرا من قبل الباحثین بسبب تطبیقاتھا العملیة المذھلة. تمتلك إشارات  MI EEGتكنولوجیا اشارات الدماغ التخیلیة (تحظى  

درجة عالیة من عدم الثبات مما یجعل تحلیلھا أمرا غیر سھل. وبالتالي یصبح اختیار نھج معالجة الإشارة المناسب أمرا    EEGالـ  
خلال عمل مقارنة بین عدة طرق معروفة وھي تحویل فورییھ    حاسما. تھدف ھذه الورقة إلى تحدید أفضل طریقة لمعالجة الإشارة من

) المدى  (STFTقصیر  المستمرة  الموجة  وتحویل   (CWT  الأقصى التداخل  ذات  المتقطعة  الموجة  تحویل  من  ونوعین   (
)MODWT) الدقة  متعدد  وتحلیل   (MODWTMRA  مثل الأم  الموجة  أساس  فلاتر  من  مختلفة  أنواع  تجربة  تم   .(Morse  
الطرق    Fejér-Korovkinو  Coifletsو  Daubechiesو  Symletsو   Bumpو  Amorو تم اختبار  الموجات.  مع طرق 

بیانات   باستخدام مجموعة  الیمنى والید الیسرى  للید  الحركة  بتخیل  المتعلقة  المھام   Brain-Computerالمختلفة على تصنیف 
Interface (BCI) Competition IV 2b.    تدریب شبكة عصبیة التي تحتوي على طبقة التفاف  صغیرة وتلافیفیة  یتم أولاً 

النتائج التجریبیة أنھ یمكن تحلیل إشارات   بشكل أفضل باستخدام طرق معالجة    MI EEGواحدة ثم استخدامھا للتصنیف. أكدت 
قد    Symletsباستخدام موجة    MODWTMRAو  MODWTالإشارة التي تعتمد على التداخل الأقصى. بینت دقة التصنیف أن  

 قت على الطرق الأخرى. تفو

اشارات الدماغ، تحویل الموجة المتقطعة ذات التداخل الأقصى، تخیل الحركة، تحویل فورییھ قصیر المدى، تحویل    الكلمات الدالة:
 .المویجة

1.INTRODUCTION
Comprehensive research has been conducted 
on electroencephalogram (EEG) for various 
purposes, including medical diagnosis and 
treatment, person identification and 
authentication, social interaction, and many 
other applications [1–4]. One of the well-known 
types of EEG recordings adopted in brain-
computer interface (BCI) systems is motor 
imagery (MI) [5,6], which is a noninvasive 
technique and thus easy to record from a 
subject. MI EEG-based BCI appeared as a 
committed technology with potential 
applications within the medical and non-
medical fields. Simply, the motor imagery task 
involves just imagining moving a precise limb 
or joint in the subject body without actually 
carrying the movement out. This imagination 
produces changes in the brain's electrical 
signals that can be captured at the cortex and 
used to issue control instructions to a BCI 
external device. The EEG technology, in 
general, is characterized by highly-temporal 
resolution signals, safety for the subject as it has 
no risks during the recording process, as well as 
its low cost and portable device. While the EEG 
data analysis has some difficulties due to the 
non-stationarity of recorded signals, the multi-
channel recording strategy, the channel 
correlation, and the presence of extrinsic 
artifacts and noise [7,8]. Consequently, there is 
a need for robust and efficient systems that can 
extract relevant information from these signals. 
The employment of MI EEG technology in real-
life applications faces several challenges. For 
example, The EEG sensors (electrodes) need to 
be improved to make them user-friendly, and 
signal processing approaches need to be 
enhanced, particularly in terms of sampling 
rate and classification methods. Additionally, 
careful consideration must be given to the 

choice of technology to ensure that the end-user 
device is fast, reliable, robust, cheap, wearable, 
and portable. The deep learning (DL) 
approaches have recently been used to learn the 
patterns of different EEG tasks [7]. DL 
algorithms automatically extract, select, and 
classify features without requiring designing 
and determining which features to deal with. 
However, the DL approaches typically require a 
large amount of data for large-scale neural 
networks to be effectively trained [9], which 
means a considerable number of training 
samples (trials in MI EEG) must be available to 
obtain a reliable and robust classifier. The 
available MI EEG datasets comprise few trials 
per subject, making the use of the DL 
techniques difficult. However, this problem can 
be overcome using shallow neural networks, 
especially when the number of classes to be 
classified is small. Performing a specific motor 
imagery task results in a reduction in spectral 
power in the mu band (8-13 Hz), referred to as 
event-related desynchronization (ERD), and an 
increase in the spectral power in the beta band 
(13-30 Hz) referred to as event-related 
synchronization (ERS) [7]. These changes in 
energy levels within identified frequency bands 
can be utilized to create useful images that 
capture the ERD/ERD patterns and, 
consequently, can be used to train a neural 
network. Time-frequency representation 
techniques, such as Fourier and wavelet 
transforms, can be used to create the images. 
Generally, three input formulations are 
typically used in the EEG signal analysis: 
calculated (hand-engineered) features, time-
series signals, and time-frequency spectral 
images [7]. Calculated features type of input 
formulation is a conventional method of 
providing neural networks with training data in 
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vectors. This input type is suitable for analyzing 
small datasets only because it may take a long 
time when dealing with large-scale datasets. 
Also, generating features may cause potential 
information loss, ultimately affecting 
classification accuracy. Time-series input 
formulation for EEG data involves using the 
amplitude of signals in the time domain, and it 
offers the advantage of end-to-end training 
without the need for feature extraction or using 
a third-party algorithm to generate another 
form of data, such as images. However, the raw 
time-series input formulation cannot jointly 
capture all spatial, temporal, and frequency 
information of the two important features, ERD 
and ERS. To formulate EEG data as images, 
various techniques, such as STFT and wavelet 
transform, can be used. The output feature 
maps are represented in two-dimensional or 
three-dimensional matrices. Nevertheless, the 
time-frequency representations neglect the 
spatial information related to the location of 
electrodes, which is essential in EEG analysis 
[10]. To overcome this problem and achieve a 
reliable classification model, the sub-images of 
electrode signals are arranged in a form that 
preserves spatial information. This paper aims 
to quantify the classification accuracy of the 
most well-known time-frequency 
representation approaches, such as short-time 
Fourier transform (STFT), continuous wavelet 
transform (CWT), Maximal overlap discrete 
wavelet transform (MODWT), and MODWT 
multiresolution analysis (MODWTMRA). Also, 
the techniques’ effect is studied by changing the 
mother wavelets and the presence and absence 
of the eye blink artifact. The remainder of the 
paper is structured as follows: Section 2 
provides the recent related works. Section 3 
discusses the approaches used in this research, 
such as the compared different types of signal 
processing, the MI EEG dataset, the 
architecture of the used neural network, and 
other details. Section 4 presents the obtained 
experimental results with a discussion. Finally, 
Section 5 concludes the paper’s outcomes. 
2.LITERATURE REVIEW 
In the past years, a common approach for 
analyzing EEG trials was transforming them 
into two-dimensional images using time-
frequency representation approaches, with 
STFT and CWT being the most frequently used 
methods. By transforming the data this way,  
capturing the power spectrum at each explicit 
frequency band within a signal becomes 
possible. Additionally, the spatial information 
of the recording EEG electrodes can be 
conserved throughout arranging the resulting 
sub-images to preserve the order of the 
recorded signals. Hence, all the information 
related to time, frequency, and spatial 
(electrode location) can be used to train a 
neural network. Tabar and Halici [11] proposed 

a neural network model that combines a 
convolutional neural network (CNN) as an 
auto-feature extractor and stacked 
autoencoders (SAE) as a classifier. The 
suggested CNN model was a shallow CNN 
comprising only one convolution layer, pooling 
layer, and classification layer. They used a 
shallow CNN to train it with the available limit 
size of data. The authors applied STFT to 
generate 2D images to train and test their 
proposed network. Lu et al. [12] obtained the 
frequency representations of EEG signals by 
applying fast Fourier transform (FFT) and 
wavelet package decomposition (WPD) 
separately to compare the two approaches. 
They trained a deep belief network (DBN) of 
restricted Boltzmann machines (RBM) 
leveraging the obtained frequency domain 
features. Zhao et al. [13] utilized wavelet kernels 
within their deep convolutional neural network 
(CNN) to decrease the required learnable 
parameters compared to traditional 
convolutional filters. Cropping augmentation, 
transfer learning, and early stopping policy 
were implemented to improve the training 
process and minimize the overfitting hazard. In 
Ref’s [14, 15] applied STFT to transform each 
raw signal of a multi-signal trial into a 2D 
spectral image. Then sub-images related to 
certain frequency bands were extracted and 
combined while preserving the electrodes’ 
locations. Dai et al. [14] used spectrograms to 
train a shallow CNN. Whereas Xu et al. [15] 
used the generated images for transfer learning 
using the pre-trained VGG-16 neural network. 
Ortiz-Echeverri et al. [16] applied the blind 
source separation (BSS) technique to estimate 
the latent independent sources (components) 
from the raw signals of EEG, with one 
component per electrode, which was done to 
diminish the impact of probable noise and 
artifacts. Then, the assessed components were 
arranged depending on the correlation between 
each of their components. Subsequently, a 2D 
image was created for each trial by assembling 
sub-images retrieved for the estimated 
components using the CWT. The generated 
scalograms were used to train a small-size CNN 
architecture composed of two convolution 
layers. Xie and Oniga [17] used a deep CNN 
with two branches; each branch consisted of 
two convolution layers. The first branch 
received EEG trials as raw time-series signals, 
while the second branch received EEG trials as 
an image generated by CWT. The two branches’ 
obtained features were combined and sent to 
the classification layer. Data transformation 
was used as a data augmentation method to 
increase the number of training samples. 
Hwang et al. [18] utilized the frequency band 
common spatial pattern (FBCSP) as a feature 
extraction method at different frequency bands. 
The information-theoretic feature selection 
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(ITFE) algorithm was then used for feature 
selection. The selected features were used to 
train long short-term memory (LSTM) 
network. The network consisted of three stages: 
the input for learning a new pattern, the forget 
to remember or forget the last pattern, and the 
output to pass the updated pattern to the next 
step. 
3.MATERIALS AND METHODS  
This section describes the MI EEG dataset used, 
the way of training image formulation, the 
different experimented time-frequency 
representation techniques, the shallow CNN, 
and the experimental setup. Fig. 1 depicts the 
general block diagram of the proposed 
methodology for identifying the suitable signal 
processing technique for MI EEG analysis. 
Briefly, the recorded 3-channel MI EEG signals 
were transformed into time-frequency spectral 
images and then used for training a neural 
network. Four main types of signal processing 
were used: STFT, CWT, MODWT, and 
MODWTMRA. The reason for selecting STFT 
and CWT is their generality of use for analyzing 
different types of signals. Also, as presented in 

the literature review section (section 2), they 
analyzed EEG signals satisfactorily. Both 
MODWT and MODWTMRA are recent 
variations of the wavelet transform, and they 
are worth a try for analyzing MI EEG signals. 
3.1.Dataset 
The BCI competition IV 2b dataset [7] is 
commonly used in EEG-based BCI research. It 
consists of EEG trials recorded from 9 subjects 
while executing motor imagery tasks. The 
dataset contains 5 sessions, with each subject 
performing 2 sessions on the first two days and 
3 sessions on the following three days. Each 
session contains 120 or 160 trials, with each 
trial lasting for 4 seconds. Some of the provided 
trials contain eye blink artifacts in all five 
sessions. The EEG signals were recorded using 
3 electrodes (C3, Cz, and C4) with a sampling 
rate of 250 Hz. The dataset includes two classes 
of MI tasks: the imagination of moving the left 
hand and the imagination of moving the right 
hand. A timing scheme of the recorded trials is 
illustrated in Fig. 2. The BCIC IV 2b dataset is 
widely used for developing and testing the BCI 
systems that decode motor imagery tasks. 

 

Fig. 1 Block Diagram of the Research’s Methodology. 

 

Fig. 2 Timing Outline of the Recorded MI EEG Trials.

3.2.Formulation of Input Images 
By leveraging the energy changes within known 
frequency bands, it is possible to create 
meaningful images that capture the patterns of 
ERD and ERS. The patterns are then utilized for 
training a neural network. Time-frequency 
representation techniques can be employed to 
generate these images. As the used dataset was 
recorded by three electrodes, three images for 
each trial were obtained. From each image 
corresponding to an electrode, two sub-images 
were extracted corresponding to both mu and 
beta bands to capture the two phenomena, ERD 
and ERS. The sub-images sizes were then 
unified to ensure equal weighting for both 
bands. The mu band was captured within (8-13 
Hz), while the beta band was captured within 
(13-30 Hz). For each trial, the result sub-images 

were arranged vertically and combined to 
reserve the electrodes’ spatial location and form 
the final training image. 
3.3.Short-time Fourier Transform 
(STFT) 
STFT is a time-series signal processing 
technique used to analyze the spectrum of a 
long signal by windowing it into shorter 
segments and performing Fourier transform 
(FT) on each segment. The spectrum features 
within a particular period were analyzed 
sequentially by changing the window’s position 
[19]. The formula for calculating the STFT is as 
in Eq. (1). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑓𝑓, 𝑡𝑡) = � 𝑥𝑥(𝑡𝑡)
+∞

−∞
ℎ(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑡𝑡 (1) 
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Where 𝑥𝑥(𝑡𝑡) denotes a time-series signal, i.e., a 
single electrode signal of MI EEG in this study, 
and ℎ(𝑡𝑡) denotes a window function. The 
complete time window moves over the signal as 
τ steps. STFT applies a time-frequency 
centralized window function to the EEG signals 
and estimates the power spectrum at various 
time points, which transforms the signals from 
the time domain to the frequency domain 
helping in learning information through 
network models. The time window determines 
the temporal resolution of the transformed 
signal at every point. The frequency window 
represents the range of frequencies captured in 
the generated matrix. The frequency resolution 
decreases as the time domain window size 
increases during STFT transformation. 
3.4.Continuous Wavelet Transform 
(CWT) 
CWT and FT share some similarities in their 
ways of estimation. FT estimates correlation 
coefficients between each one of the original 
signals and a sinusoidal signal, while CWT 
estimates correlation coefficients between each 
one of the original signals and a predetermined 
mother wavelet base filter. Nevertheless, unlike 
FT, which decomposes the signal into a 
frequency domain, CWT allocates the signal to 
a time-frequency domain by managing the 
shape of the mother wavelet using scaling and 
shifting parameters. CWT [16] can be evaluated 
using Eq. (2). 
𝐶𝐶𝐶𝐶𝑆𝑆(2𝜋𝜋𝑓𝑓, 𝑠𝑠) = 1 |𝑠𝑠|1 2⁄⁄ �𝑥𝑥(𝑡𝑡)𝜓𝜓(𝑡𝑡 − 2𝜋𝜋𝑓𝑓 𝑠𝑠⁄ )𝑑𝑑𝑡𝑡 (2) 

Where 𝑥𝑥(𝑡𝑡) denotes a time-series signal, 𝜓𝜓 
denotes a pre-defined mother wavelet, 𝑡𝑡 is the 
time shifting parameter, i.e., translation 
parameter, and 𝑠𝑠 is the scaling parameter. 
3.5.Discrete Wavelet Transform (DWT) 
MODWT and MODWTMRA are variations of 
the discrete wavelet transform (DWT); 
therefore, this sub-section presents a brief idea 
of the DWT [20] and then presents the 
mathematical model of MODWT. The DWT 
quantifies the wavelet coefficients of the scale 
2𝑗𝑗 and the location of 2𝑗𝑗𝑘𝑘 using Eq. (3). 

𝐶𝐶𝑋𝑋(𝑗𝑗, 𝑘𝑘) = 2−𝑗𝑗 2⁄ � 𝑋𝑋𝜋𝜋

𝑁𝑁−1

𝑛𝑛=0

𝜓𝜓∗(2−𝑗𝑗𝑡𝑡 − 𝑘𝑘) (3) 

Where 𝐶𝐶𝑋𝑋(𝑗𝑗, 𝑘𝑘) is a wavelet coefficient, 𝑋𝑋 is the 
discrete input signal, 𝑁𝑁 is an integer of power 2, 
the scaling parameter 𝑠𝑠0 = 2, the translating 
parameter 𝜏𝜏0 = 1, and the mother wavelet is 
given in Eq. (4). 

𝜓𝜓𝑗𝑗,𝑘𝑘(𝑡𝑡) = 1 �𝑠𝑠0
𝑗𝑗�
1 2⁄

⁄ 𝜓𝜓∗�𝑡𝑡 − 𝑘𝑘𝜏𝜏0𝑠𝑠0
𝑗𝑗 𝑠𝑠0

𝑗𝑗� � (4) 
Where 𝑗𝑗 and 𝑘𝑘 are integer variables that control 
the scaling and translating parameters. 
3.6.Maximal Overlap Discrete Wavelet 
Transform (MODWT) 
MODWT is a mathematical model that 
decomposes a time-series signal into scaling 
and multilevel wavelet coefficients. It has some 

advantages over the discrete wavelet transform 
(DWT). One of the MODWT key benefits is 
handling signals of arbitrary length, whereas 
DWT is restricted to signals with a length that 
is an integer power of two. Also, MODWT is a 
transform invariant, meaning that the pattern 
of the wavelet transform is unaffected by any 
shift in the input signal [21].  The 𝑗𝑗th level of 
MODWT decomposition wavelet coefficient 𝐶𝐶𝑗𝑗,𝑙𝑙 
and scaling coefficient 𝑉𝑉𝑗𝑗,𝑙𝑙 for an input signal 
𝑋𝑋𝜋𝜋(𝑡𝑡 = 0, … ,𝑛𝑛 − 1) can be obtained from Eq. (5) 
and Eq. (6). 

𝐶𝐶𝑗𝑗,𝜋𝜋 = �ℎ�𝑗𝑗,𝑙𝑙

𝑛𝑛−1

𝑙𝑙=0

𝑋𝑋𝜋𝜋−𝑙𝑙 mod𝑛𝑛 (5) 

𝑉𝑉𝑗𝑗,𝜋𝜋 = �𝑔𝑔�𝑗𝑗,𝑙𝑙

𝑛𝑛−1

𝑙𝑙=0

𝑋𝑋𝜋𝜋−𝑙𝑙 mod𝑛𝑛 (6) 

Where ℎ�𝑗𝑗,𝑙𝑙 is the high-pass filter, and 𝑔𝑔�𝑗𝑗,𝑙𝑙 is the 
low-pass filter. Both are derived from the DWT 
filters as ℎ�𝑗𝑗,𝑙𝑙 = ℎ𝑗𝑗,𝑙𝑙 2𝑗𝑗 2⁄⁄  and 𝑔𝑔�𝑗𝑗,𝑙𝑙 = 𝑔𝑔𝑗𝑗,𝑙𝑙 2𝑗𝑗 2⁄⁄ ; 
where 𝑗𝑗 is the level of decomposition (𝑗𝑗 =
1,2, … , 𝐿𝐿), 𝐿𝐿 is the highest decomposition level, 
and 𝑙𝑙 is the filter length. The two filters are 
settled by the used mother wavelet function. 
3.7.MODWT Multiresolution Analysis 
(MODWTMRA) 
The MODWT decomposes the energy of the 
input signal across detail coefficients and 
scaling coefficients. On the other hand, 
MODWTMRA involves projecting a signal onto 
wavelet subspaces and a scaling subspace. The 
MRAMODWT decomposes signal 𝑋𝑋 into low-
pass filtered approximation component (𝐴𝐴𝑗𝑗) 
and high-pass filtered detail components (𝐷𝐷𝑗𝑗). 
The MRAMODWT mathematical model [22] 
can be presented in Eqs. (7)-(9). 

𝑋𝑋 = �𝐷𝐷𝑗𝑗

𝐿𝐿

𝑗𝑗=1

+ 𝐴𝐴𝐽𝐽0 (7) 

𝐷𝐷𝑗𝑗,𝜋𝜋 = �ℎ�𝑗𝑗,𝑙𝑙

𝑛𝑛−1

𝑙𝑙=0

𝐶𝐶𝑗𝑗,𝜋𝜋+𝑙𝑙 mod𝑛𝑛 (8) 

𝐴𝐴𝑗𝑗,𝜋𝜋 = �𝑔𝑔�𝑗𝑗,𝑙𝑙

𝑛𝑛−1

𝑙𝑙=0

𝑉𝑉𝑗𝑗,𝜋𝜋+𝑙𝑙 mod𝑛𝑛 (9) 

Where 𝐴𝐴𝑗𝑗 is the approximation component. 
3.8.Shallow Convolutional Neural 
Network 
The implemented shallow CNN architecture 
comprised a convolution layer followed by a 
max-pooling layer. Fig. 3 shows a simple 
illustration of the network. The height of the 2D 
kernels used in the convolutional layer equaled 
the height of the training image, which was 96 
in our case. The vertical direction of the kernel 
apprehends information associated with both 
electrodes’ locations and frequency. The width 
of the kernels was 3; this horizontal direction of 
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the kernel apprehends information associated 
with the time. The output of the convolution 
layer was evaluated by the rectified linear unit 
(ReLU) activation function. The max-pooling 
layer subsampled the output of the convolution 
layer by a factor of 10. A softmax classification 
fully connected layer was the end layer of the 
network. This last layer has two neurons to 
classify the two motor imagery classes, i.e., left 
hand and right hand. The network was trained 
on the generated images containing 
information concerning electrodes’ locations, 
time, and frequency. 
3.9.Experimental Settings 
The shallow CNN was implemented in Matlab 
R2020a using the deep learning toolbox. The 
learnable parameters of the network were 
optimized by the Adam algorithm. The initial 

learning rate was set to 0.0001 then every ten 
epochs of learning was multiplied by a drop 
factor of 0.9 to achieve smoother learning at the 
end of the process. The first three sessions from 
the dataset were used to train the neural 
network, while the two others were used to test 
the network. A complete training and testing 
phase was repeated twice for two cases: training 
and testing using the trials that contained eye 
blink artifacts (with artifacts) and training and 
testing using trials that did not contain the 
artifacts (without artifacts). The classification 
accuracy was used for evaluating the 
performance of the presented signal processing 
methods. The mathematical formula for 
evaluating the accuracy is given in Eq. (10). 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(%) = (𝑆𝑆𝑇𝑇 + 𝑆𝑆𝑁𝑁 𝑆𝑆𝑇𝑇 + 𝑆𝑆𝑁𝑁 + 𝑆𝑆𝑇𝑇 + 𝑆𝑆𝑁𝑁)⁄

× 100% (10) 

 

Fig. 3 The Implemented Shallow CNN.

4.RESULTS AND DISCUSSION 
The classification accuracy was evaluated for 
each subject in the dataset. The average 
accuracy for the nine subjects was calculated, 
which was done for different types of the 
presented signal processing. One of the 
hyperparameters that need to be set is the mini-
batch size (MBS), which determines the 
number of samples (images) used for training 
the neural network at each iteration. Since 
there were no different filters (such as mother 
wavelet) in the case of STFT, different MBS 
experimented with the STFT. It can be seen 
from Table 1 that the case of 300 images per 
iteration achieved the highest accuracy. Thus 
MBS=300 was adopted with all subsequent 
processing methods for achieving fairly 
comparison. Table 1 presents the average 
accuracy achieved by the STFT. It is clear that 
without artifacts, classification was better than 
with the presence of artifacts due to the 
admixture of different shapes of signals with 
the MI EEG; such signals are produced by the 
body muscles and limbs, such as eye blink, 
finger movement, and leg or hand movement. 
Table 2 presents the average accuracy achieved 
by the CWT with three different mother 

wavelets Morse, Amor, and Bump. Also, it can 
be noticed that the classification performance 
in the case of no artifacts was better than with 
artifacts. 
Table 1 Average Accuracy of STFT for Different 
MBS. 
Mini-Batch Size With Artifacts Without Artifacts 
100 74 75 
200 74 76 
300 77 77 
400 76 77 
500 75 76 

Table 2 Average Accuracy of CWT. 
Mother Wavelet With Artifacts Without Artifacts 
Morse 72 76 
Amor 71 74 
Bump 70 75 

Fig. 4 shows a visual comparison between the 
achieved results by MODWT and MODWTMRA 
with five different types of mother wavelets, 
namely Symlets (sym), Daubechies (db), 
Coiflets (coif), and Fejér-Korovkin (fk) and 
their different orders. Part A of the figure 
compares the two approaches with the presence 
of artifacts, while part B compares the two 
approaches with the absence of artifacts. 
Relatively, more cells of red color mean bad 
classification in comparison to the green cells, 
which means good classification. In general, the 
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figure shows that the Symlets type achieved the 
highest classification accuracy for the two cases 
with/without artifacts. Again, this figure’s 
results are consistent with those presented in 
Table 1 and Table 2. In contrast, the 
classification accuracy was higher in the case of 
no artifacts than in the presence of artifacts. It 
can be noticed that in most cases of mother 
wavelets, MODWTMRA achieved better results 
than MODWT. In the case of STFT, using a 
short window size provided a reasonable time 
resolution but a poor frequency resolution. 
Conversely, a wider window size provided a 
good frequency resolution but a poor time 
resolution. This time-frequency resolution 
trade-off may not be optimal for interpreting 
the MI EEG signals. A multiresolution-based 
wavelet transforms, i.e., MODWT and 
MODWTMRA, were considered more suitable 
than the static time-frequency-based Fourier 
transform and dynamic time-frequency-based 
wavelet transforms. Whereas, in addition to the 
inclusion of time and frequency information, 
the multiresolution, i.e., MODWTMRA, 
allowed for the analysis of signals at deep levels, 
which are all essential in EEG analysis. 

 

Fig. 4 Visual Comparison between MODWT 
and MODWTMRA. (A) with Artifacts and (B) 

without Artifacts. 
For the sake of justification of the achieved 
results in this study, a comparison with some 
previous studies is demonstrated in Table 3. 
The selected studies used the same MI EEG 
dataset (BCIC IV 2b) for a reasonable 
comparison. The obtained results in this study 
are reasonable. The maximal overlap-based 
methods, i.e., MODWT and MODWTMRA, 
outperformed other signal processing methods, 
which confirms that MI EEG data require high-
concentration methods to encompass the non-
stationarity of the signals. It may be noticed 
that although almost the same general model 

used by [9, 11], and this study was similar 
(STFT+shallow CNN), the results of the three 
studies were different because a data 
augmentation method was used by [9], whereas 
no augmentation was used by [11] and this 
study. Also, the process of training a neural 
network depends on several settings, such as 
learning rate, number of epochs, batch size, 
activation function, parameter initialization at 
the beginning of training, and other settings. 
The variation of those settings could also cause 
some variation in the end performance. 
Table 3 Comparison of Obtained Results with 
Other Studies. 
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[11] STFT Shallow CNN No 75 
[15] STFT VGG-16 Cropping 74 
[9] STFT Shallow CNN CutCat 78 
[23] CSP Shallow CNN No 64 

[14] STFT Shallow CNN + 
Autoencoders No 78 

This 
research STFT Shallow CNN No 77 

This 
research CWT Shallow CNN No 76 

This 
research MODWT Shallow CNN No 81 

This 
research MODWTMRA Shallow CNN No 82 

5.CONCLUSION 
The MI EEG data implicate high non-
stationarity within their time-series signals, so 
selecting the proper signal processing method 
is essential. Hence, the present comparative 
study tried to identify the best method among 
the well-known approaches; namely STFT, 
CWT, MODWT, and MODWTMRA; with 
different types of mother wavelets. Among the 
experimented various combinations, the 
MODWT and MODWTMRA achieved the best 
classification results, especially using Symlets 
mother wavelet. The trade-off between the time 
and frequency resolution exhibited by STFT has 
limited capability for analyzing MI EEG signals. 
Also, the simple form of the wavelet transform, 
which depends on dynamically changing the 
time-frequency resolution based on the 
inherited frequency bands in the signals, did 
not show the optimal results. The approaches 
that depend on applying maximal overlapping 
base wavelet filters showed superior 
classification performance. 
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