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ABSTRACT 

 This paper investigates the effects of thermal radiation and variable viscosity flow down along an inclined plane with 

boundary conditions at free surface. The major problem includes internal heat generation, increase or decrease in temperature, 

and other thermophysical properties. The thermophysical properties include Grashof number, Nusselt number, Viscosity and 

Solar radiation parameter. The problems created have not been examined. Thus, this work examined the effect of temperature 

and velocity profiles on the various values of coefficient of viscosity, also the effects of solar radiation parameter on the major 

property of the fluid flow down along an inclined plane. 

The partial differential equations for the problem are continuity, momentum and energy equations. These are non- 

linear dimensionless equations governing the fluid flow down the inclined plane using integration method. The equations for 

the fluid flow, temperature and velocity of the problem are reduced to their final forms using perturbation method. Analytical 

expressions are employed to obtain the value of the velocity and temperature profiles in terms of parameters under the 

considerations in the flow field. The parameters are the major factors influencing the properties of the fluid flow down along 

an inclined plane. Hence, the viscosity of the fluid increases as the velocity of the fluid decreases while increase in the solar 

radiation parameter increases velocity of the fluid. Also the quantities of radiant energy absorbed by the fluid flow bring 

changes in the temperature of the fluid. Increase in Nusselt decreases the velocity of the fluid. Grashof number increases while 

the temperature of the fluid decreases. In conclusion, viscosity of the fluid decreases with an increase in temperature due to 

cohesion and molecular momentum exchange between fluid layer and the parameters are found to have a significant effect over 

the velocity and temperature profiles of the fluid flow down an inclined plane at free surface. It will also useful for the 
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industries in the production of the various fluids (liquid or gas) such as vegetable oil, palm oil and steam generation along an 

inclined plane and so on. 

Key words: Grashof number, Inclined plane, Nusselt number, Perturbation, Thermal radiation,  

.  

1. Introduction 

Fluid mechanics is one of the core applied Mathematics which deals with the behavior of fluid under the conditions of 

rest or motion; Disu [20]. The discussion is built around the properties of the fluid flow down along an inclined plane with 

boundary conditions at the free surface; the flow of liquid is always that both the pressure and the shear stress are zero 

everywhere. Liquid thin flows in conduits or open channels are of interest in science, engineering, and everyday life. The study 

of the temperature-dependent (thermal conductivity) and fluid viscosity of a thin liquid film along an inclined plane with a free 

surface are important because of their wide applications in several industries. Examples may be found in the melting of rods, 

aluminum during the recycling processes, continuous flow of liquid in beverage industries, water cooperation, painting 

industries, and so on. Myers, Charpin, and Tshehla[1], Wyle and Huang [2]. 

Elbarbary and Elgazery [6] investigated the effects of variable viscosity and variable thermal conductivity on heat 

transfer from moving surfaces with radiation. In their work, the fluid viscosity also varies as an inverse linear function of 

temperature, and the thermal conductivity varies as a linear function of temperature. The effect of convective heat transfer is 

extremely important in understanding the flow structure of many fluids used in industrial and natural applications. The present 

paper is aimed at investigating the effect of convective heat transfer on the flow of a viscous fluid with exponential 

temperature-dependent viscosity, down an inclined plane with a free surface. Recently, [14] have studied the effect of variable 

thermal conductivity in a non-isothermal sheet stretching through power-law fluids. Similar studies for the viscoelastic fluids 

have been reported by Prasad [15]. Both studies revealed that the effect of variable thermal conductivity is to increase the shear 

stress. The thickness of the thermal boundary layer relative to the velocity boundary layer depends on the Prandtl number 

which by its definition varies directly with the fluid viscosity and inversely with the thermal conductivity of the fluid. As the 

viscosity and the thermal conductivity vary with temperature so does the Prandtl number. Despite this fact, all of the afore-

mentioned studies treated the Prandtl number as a constant. The use of a constant Prandtl number within the boundary layer 

when the fluid properties are temperature-dependent introduces errors in the computed results. 

Recently, Rahman [16] studied the hydromagnetic flow of a Newtonian fluid over an inclined plate with variable 

viscosity whereas Rahman et al. [16] studied the flow of a micropolar fluid with variable viscosity over a permeable stretching 

sheet. Both studies confirmed that for the accurate prediction of the thermal characteristics of variable viscosity fluid flows, the 

Prandtl number must be treated as a variable rather than a constant. These studies, however, assumed the thermal conductivity 

to be a constant. In another study, Rahman et al. [17] investigated the effects of variable electric conductivity and non-uniform 

heat source (or sink) on convective micropolar fluid flow along with an inclined flat plate with constant surface temperature. 

They found that the skin-friction coefficient and Nusselt number are higher for the case of constant fluid electric conductivity 

than for the case of variable fluid electric conductivity. In their model, they treated fluid viscosity and thermal conductivity to 

be constants. 

Aziz [21] solved the laminar thermal boundary layer flow over a flat plate with a convective surface boundary 

condition by applying the similarity variable and presented the Biot number. The study of convective heat transfer in a viscous 

incompressible fluid over flat plate has received considerable attention due to its application in processes involving high 

temperatures such as gas turbines, nuclear, power plants, and thermal storage. The problem of fluid flow over a horizontal, 

stationary flat plate in a uniform free stream was first solved by Asibor [23]. This was done by transforming the governing 

partial differential equations into ordinary differential equations by introducing a new independent variable called the 

similarity variable. The similarity variable has been applied to solve the thermal boundary layer for the constant surface 

temperature at the plate on the heat transfer characteristics. Usman [24] 

The steady laminar boundary layer flow of a non-Newtonian fluid over an impermeable flat plate with convective 

boundary condition was investigated by Hazarika and Kabita [25], the power-law index of the fluid was considered. Given the 

above paper, the effect of some fluid properties (such as temperature, and viscosity related to variable numbers that are Biot 

number, Brickman number) has been investigated.  Therefore, the present paper is aiming at investigating the effect of thermal 

radiation and variable fluid viscosity along an inclined plane with the free surface by considering Grash of number, angle of 

inclination, Nusselt number, the flow of a viscous fluid and thermal conductivity with exponential temperature-dependent 

viscosity, down an inclined plane with a free surface. Rajput [24] 

2. Problem Formulation 
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Consider a steady boundary laminar flow and heat transfer of a viscous incompressible fluid down an infinite inclined 

plane. Let L be the direction of the fluid flow along the x-axis as the main flow along an inclined plane of the sheet and h be 

the width in the y-direction along the y-axis. The word infinite implies that the length of the plane is greater than the L. Hence, 

the flow may be treated as two-dimensional (
𝜕𝑢

𝜕𝑧
 = 0). For the flow is steady, the flow variables are independent of time (

𝜕𝑢

𝜕𝑡
 = 

0). With a free surface, the energy coming off the sun reaches the fluid in the form of electromagnetic waves after experiencing 

considerable interaction with the atmosphere. Hence, Solar radiation is introduced (Rs) which varies directly with the quantity 

of heat gained by the fluid. 

 

 

 

 

 

 

Fig. 1:   Geometry of the problem. Source: Researcher (2019) 

 

where 𝜃 is an inclination angle, Ts is the surface temperature, Tl is the lower temperature, T is the temperature of the fluid, ℎ 

represents the width along the y-axis and g is the acceleration due to gravity.  

Under the foregoing assumptions and invoking the usual boundary layer approximation, the governing equations for 

the Continuity, Momentum and Energy equations of a viscous fluid in the presence of Variable fluid properties (fluid viscosity 

and thermal conductivity) take the following form. 

3. Continuity Equation 

∇. 𝑢 = 0 

 
    𝜕𝑢  

𝜕𝑥
 +   

𝜕𝑣  

𝜕𝑦
  = 0 

3.1 Momentum Equation 

The momentum equation for the fluid flow for x-axis and y-axis respectively are written in terms of components 

below: 

    X – Component, we have; 

ρ (
𝜕𝑢  

𝜕𝑡
 + u

𝜕𝑢  

𝜕𝑥
 + v 

𝜕𝑢  

𝜕𝑦
) = − 

𝜕𝑝 

𝜕𝑥
 + ρg𝛽(T−Tl)sin𝜃 

+2(μ
𝜕2u  

𝜕𝑥2 +𝜇
𝜕2u  

𝜕𝑦2  +𝜇
𝜕2v 

𝜕𝑦𝜕𝑥
 

    Y − Component, we have;   

ρ ( 
𝜕𝑢  

𝜕𝑡
 + u 

𝜕𝑢  

𝜕𝑥
 + v  

𝜕𝑣  

𝜕𝑦
) = − 

𝜕𝑝 

𝜕𝑥
 + ρg𝛽(T−Tl)cos𝜃 

+ 2 (μ
𝜕2v  

𝜕𝑦2 )+  μ 
𝜕2u  

𝜕𝑦𝜕𝑥
 +  𝜇

𝜕2v 

𝜕𝑥2  

3.2 Energy Equation 

   In optically thin limit radiation, the radiation flux vector is given 

Qr = − 4𝜎K
𝜕𝑇4

𝜕𝑦
 

   The conservation of energy equation is given by     

ρcp(
𝜕𝑇

𝜕𝑡
 + u

𝜕𝑇  

𝜕𝑥
 + v 

𝜕𝑇  

𝜕𝑦
) = 

𝜕 

𝜕𝑥
 (𝑘

∂T

𝜕𝑥
) + 

𝜕 

𝜕𝑦
(𝑘

∂T

𝜕𝑦
) + μ[2(

𝜕𝑢

𝜕𝑥
)2

+ (
𝜕𝑢  

𝜕𝑦
 + 

𝜕𝑣 

𝜕𝑥
)

2
 + 2(

𝜕𝑣

𝜕𝑦
) − Qr 

non- dimensionless parameters and variable employed for this study are as follows; 

ᵡꞌ=  
𝑥

𝐿
 , yꞌ=   

𝑦

𝐻
, uꞌ=   

𝑢

𝑈   
, vꞌ=

𝑣𝐿

ℎ𝑈  
, tꞌ= 

𝑈𝑡

𝐿
  μꞌ = μ0μꞌ p=P=

𝜇0𝑢𝐿

ℎ2
Pꞌ Tꞌ=

T − Tl

Ts – Tl
 

To simplify notation, the primes are omitted from now on. Since the film is thin liquid, the aspect ratio ε = h/L≪1. Using the 

scaled parameters, (3.2 – 3.6) now becomes                         
    𝜕𝑢

𝜕𝑥
 + 

𝜕𝑣

𝜕𝑦
 = 0 

𝜀 2 
Re (

𝜕𝑢

𝜕𝑡
 + u

𝜕𝑢

𝜕𝑥
+  𝑣

𝜕𝑢

𝜕𝑦
) =  −

𝜕𝑝

𝜕𝑥
+ 1 + 2𝜀2             𝜇(

∂2u   

𝜕𝑥2 ) +  𝜇(
𝜕2𝑢

𝜕𝑦2 )+ 𝜇𝜀2 (
𝜕2𝑣

𝜕𝑦𝜕𝑥
 ) 

(1) 

(3) 

(2) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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𝜀 2 Re4
 (

𝜕𝑢

𝜕𝑡
 + u

𝜕𝑢

𝜕𝑥
+  𝑣

𝜕𝑢

𝜕𝑦
) =  −

𝜕𝑝

𝜕𝑥
+ 𝐺𝑟𝜀cot𝜃 

+2𝜀2𝜇 (
∂2v   

𝜕𝑦2 ) +𝜀 2 
 

𝜕

𝜕𝑥
 [𝜇(

𝜕𝑢

𝜕𝑦
 + 𝜀2

 
𝜕𝑣

𝜕𝑥
)] 

𝜀 2
Pe( 

𝜕𝑇

𝜕𝑡
  + u 

𝜕𝑇  

𝜕𝑥
 + v ) =  𝜀 2 

k
𝜕2𝑇

𝜕𝑥2   +k 
𝜕2𝑇

𝜕𝑦2 

+ NuEc[
𝜕𝑝 

𝜕𝑡
 + u 

𝜕𝑝  

𝜕𝑥
 + v  

𝜕𝑝  

𝜕𝑦
]+ Gr μ [2 𝜀 2

 (
𝜕𝑢  

𝜕𝑥
) 

2
 

+2 𝜀 2
 (

𝜕𝑢  

𝜕𝑥
) 

2
 + (

𝜕𝑢  

𝜕𝑥
+   

𝜕𝑢  

𝜕𝑦
) 

2 
] − 

𝜕𝑄𝑟

𝜕𝑦
 

  where Gr = gβ
𝑘(𝑇−𝑇s)L3

𝑈 2  , U = 
𝜌𝑔𝐻2 𝑠𝑖𝑛𝜃

𝜇0
  and 

Nu = 
h𝐿

𝐾
   Pe =  

ρcp UL

𝑘
  P = 

𝜇0 𝑈𝐿

ℎ2  

3.3 Boundary Conditions 

    (i) At y=0, the temperature at the lower surface is constant: 

𝑢 (0) = 0, v (0) = 0, T (0) = 0, at y=0 and 

(ii) At. y =1,  (
𝜕𝑢  

𝜕𝑦
)|y=1, = 0  ( 

𝜕𝑇  

𝜕𝑦
)|y=1= Nu(T- 1) 

Where Nu = 
h𝐿

𝐾
 is the Nusselt number and represent the ratio of heat transfer between a moving fluid and a solid body. The 

conditions are similar to conditions in Alhama and Zueco (2007) and Makinde (2006). 

In an Optically thin limit, the radiant absorption is expressed as the thermal radiation flux: 

Qr = − 4𝜎K
𝜕𝑇4

𝜕𝑦
 

Applying Taylor series about 𝑇 ∞  and neglecting higher-order terms to give: 

T
`4

 = (4𝑇 𝑇∞ 
3  −  3𝑇 ) ∞ 

4  

 

T
`4

 = 𝑇 − ∞ 
4  T

`4
 

Substituting equation (15) into equation (13) we have:    
𝜕𝑄𝑟

𝜕𝑦2 = 16𝜎K (𝑇 ) ∞ 
3 𝜕2T 

𝜕𝑦2  

  All the values of the parameters such as Peclet number, Renold number and reduced quantity PrEc are all assumed to be very 

small and neglected. The Grashof number may be very close to unity and must be retained in the equations (8 – 11). Using this 

condition, the equations are reduced to their final form: 
𝜕𝑢  

𝜕𝑥
 +   

𝜕𝑣  

𝜕𝑦
  = 0 

 

−
𝜕𝑝

𝜕𝑥
 + 

𝜕

𝜕𝑦
 [𝜇(

𝜕𝑢

𝜕𝑦
 ) + 1 = 0 

 

−
𝜕𝑝

𝜕𝑦
 = 0 

𝜕2𝑇

𝜕𝑦2
  = − Gr 𝜇 (

𝜕𝑢  

𝜕𝑦
) 

2
 −  16𝜎K(𝑇 ) ∞ 

3 𝜕2T  

𝜕𝑦2  

 Let Rs =  16𝜎K(𝑇 ) ∞ 
3 ,then, equation (20) is reduced to 

𝜕2𝑇

𝜕𝑦2
  =  

1

1+𝑅𝑠
 ( −  Gr 𝜇 (

𝜕𝑢  

𝜕𝑦
) 

2 
)  

 

 

3.4 Variable Viscosity Analysis 

𝜇 = 𝜇0 𝑒
 – ф(T 

–
  T

l
) 

 

Where 𝜇0 is the reference viscosity at the reference temperature T0  and ф is the coefficient of viscosity with temperature Costa 

and Macedonio(2003).   

 Using non- dimensional parameters from equation (7), then equation (22) becomes; 

 

𝜇 =  𝑒   – ф ∆ T T 1    

 

Let Ҩ = ф ∇𝑇|   

 

𝜇 =  𝑒   – ҨT      

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(11a) 
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 Equation (25) is known as Naheme’s exponential law, see Myers and Et-al, Ҩ is a constant called coefficient of viscosity 

variation. 

Let  
𝜕𝑝

𝜕𝑥
   = 0   

 

   Substituting equations (19) and (20) into equation (13), we have: 

 
𝜕

𝜕𝑦
 [ 𝜇 (

𝜕𝑢

𝜕𝑦
 )] + 1= 0                                   

   Integrating equation (18) with respect to y we have: 

𝜇 (
𝜕𝑢

𝜕𝑦
 ) = A − y 

   Dividing both sides of equation (22) by  𝜇 we have:  
𝜕𝑢

𝜕𝑦
  = (A – y)  𝜇 −1 

 

    Substituting equations (25) into equation (28) we have: 
𝜕𝑢

𝜕𝑦
  = (A – y) 𝑒  ҨT    

 

   Substituting equations (29) into equation (21) we have: 

 
𝜕2𝑇

𝜕𝑦2
  =  

1

1+𝑅𝑠
 (− Gr 𝜇 (

𝜕𝑢  

𝜕𝑦
) 

2 
) 𝑒  2ҨT    

 

 Substituting equation (29) into equation (30) we have: 

 
𝜕2𝑇

𝜕𝑦2
  =  

1

1+𝑅𝑠
 ( −  Gr  𝑒   – ҨT    (

𝜕𝑢  

𝜕𝑦
) 

2
) 𝑒  2ҨT    

 

𝜕2𝑇

𝜕𝑦2
  =    

1

1+𝑅𝑠
  (−Gr (A – y)𝑒  ҨT)    

 Therefore, equation (31) represents the temperature profile and equation (29) represents velocity profile. 

 

 

 

4. Method of Solution  
 Equation (29) cannot be integrated further to determine velocity, since it involves unknown temperature T. In order to 

solve equations (31) and (29) subject to boundary conditions, we assume that the variation in the fluid viscosity is small 

(0< 𝜑 ≪ 1) and seek an asymptotic solution for the fluid velocity and temperature of the form: 

 

u= u0 + 𝜑 u1 

 

T= T0 + 𝜑T1 

 

A similar expression for equations (32- 33) can be obtained in Tshela, (2013) 

     Substituting for T in equation (31), we have:        

                                          
𝜕2(T0 + Ҩ T1

𝜕𝑦2   =  
1

1+𝑅𝑠
 (−Gr (A 𝑒  Ҩ[T0(y) + Ҩ T1(x,y)] ) 

 

   Using Taylor series expansion, we have: 
𝜕2𝑇0

𝜕𝑦2
 + 𝜑 

𝜕2T1 

𝜕𝑦2  =   − 
1

1+𝑅𝑠
 Gr (A – y)

2 
[+

  Ҩ[T0(y) + Ҩ T1(x,y)]2

2!
+ ⋯ 

 
𝜕2T0

𝜕𝑦2   + 𝜑 
𝜕2T1 

𝜕𝑦2  =   (
1

1+𝑅𝑠
 )−Gr[ (A− y)

2
 + 𝜑T0(A− y)

2
]   

                  

The leading order of 𝜑, in the equation(35b), is now reduced to:  

 

                𝜑0;  (A− y)
2 
  and  𝜑| ;  T0 (A− y)

2 

 
𝜕2T0

𝜕𝑦2   = (
1

1+𝑅𝑠
 ) (−Gr (A− y)

2
 )  

 

(26) 

(27) 

(29) 

(30) 

(31a) 

(32) 

(33) 

(35b) 

(36) 

(37a) 

(34) 

(26a) 

(28) 

(31) 

(35a) 

(35c) 



17 
 

𝜕2T1 

𝜕𝑦2  =  (
1

1+𝑅𝑠
 )(−Gr T0 (A− y)

2
 ) 

 

Equation (36) and (37a) are solved subject to the boundary conditions thus; 

      T0 = T1 = 0, at y =0, [(
𝜕𝑇0

𝜕𝑦
)]|y=1 = − Nu (T0 – 1),        

[(
𝜕𝑇0

𝜕𝑦
)]|y =1 = NuT1 

Transform equation (36) by letting B = (
1

1+𝑅𝑠
 ) to give: 

𝜕2T0

𝜕𝑦2   =  −B (A − y)
2
 

Integrating equation (39i) with respect to y and applying the boundary conditions: 

(
𝜕𝑇0

𝜕𝑦
) =    

B(A−𝑦)3 

3
 + C 

−Nu(T0−1) =  
B

3
 (A−1)

3
 + C 

C =   −Nu(T0−1) −  
B

3
 (A−1)

3
 

Putting equation (33) into equation (41) to give: 
𝜕𝑇0

𝜕𝑦
 =  

B

3
 (A−y)

3− 
B

3 
 (A−1)

3−Nu(T0−1) 

 

 Resolving equation (43) into two difference equations to determine T0, thus: 

 
𝜕𝑇0

𝜕𝑦
 =  

B

3
 [(A−y)

3− 
(A−1)

3
] 

𝜕𝑇0

𝜕𝑦
 =   − Nu (T0−1) 

 Integrating equation (44A), with respect to y we have: 

T0 =   −  
B

12
 (−A

4
+6A

2
y

2−12A
2
y−4Ay

3
+

 
12Ay+

 
y

4
 − 4y) + C   

Integrating equation (44B), with respect to y we have:  

T0 = 1 + D𝑒−𝑁𝑢𝑦  

Therefore; add equation (45A) and (45B) to give: 

T0 =   
B

12
 (−A

4
+6A

2
y

2−12A
2
y−4Ay

3
+

 
12Ay +

 
y

4− 4y)  + (D𝑒−𝑁𝑢𝑦   + 1) + C   

Applying initial conditions: T0 = 0 at y=0 to determine the values of C thus: 

C = − (D + 1) 

Substituting C into equation (46), we have: 

T0 = 
B

12
 (−A

4
+6A

2
y

2−12A
2
y−4Ay

3
+

 
12Ay 

+
 
y

4
 − 4y) + (D𝑒−𝑁𝑢𝑦   + 1) − (D+ 1) 

Transform equation (37) to give: 
𝜕2T1

𝜕𝑦2   = −BT0 (A− y)
2
 

Substituting T0 into equation (48) to give:  

     
𝜕2T1 

𝜕𝑦2  = −B[
B

12
 (−A

4
+6A

2
y

2−12A
2
y−4Ay

3
 +

 
12Ay +

 
y

4
 − 4y) + (D𝑒−𝑁𝑢𝑦 +1) − (D+ 1)] (A− y)

2
   

Equation (35d) is further simplified and Integrated with respect to y to give:   
𝜕𝑇1

𝜕𝑦
 =− 

B2

12
 (A

7
y +5A

6
y

2
+

 
3A

5
y

3
 + 6A

5
y

2
+ 6A

4
y

2 
+A

4
y + 18A

4
y

3− 
 39

5
A

3 
y

5
+ 2A

3
y +18A

3
y

3 

− 18A
3
y

4
+ 

7

5
 A

2
y

6
+ 6A

2
y

3
+ 18A

2
y

4
 + 6A

2
y

5
 − 6Ay

4− 6Ay
5
) − 

B2

12
 (

y8

5
−  2y2) 

+ 3A
2
BD(

y 

𝑁𝑢
𝑒−𝑁𝑢𝑦+ y

2
)−3ABD(

𝑦2 

𝑁𝑢
𝑒−𝑁𝑢𝑦 −y

3
) +BD(

𝑦3 

𝑁𝑢
𝑒−𝑁𝑢𝑦 −y

4
) + E 

 

Applying initial conditions: at y = 1,[(
𝜕𝑇0

𝜕𝑦
)]|y =1 = NuT1 into  equation (50) to determine E : 

E = −
B2

12
(A

7 
+5A

6
+

 
3A

5
 + 6A

5
 + 6A

4 
+A

4
 + 18A

4− 
 39

5
A

3 
+ 2A

3
+18A

3− 18A
3
+ 7A

2
 + 6A

2
+ 18A

2
 

+ 6A
2− 6Ay−6A) − 

B2

12
 (

1

5
−  2) + 3A

2
BD(

1

𝑁𝑢
𝑒−𝑁𝑢 −  1) −3ABD(

1

𝑁𝑢
𝑒−𝑁𝑢 −1) –BD(

1 

𝑁𝑢
𝑒−𝑁𝑢 +1)  

– NuT1 

Substituting equation (51) into equation (50) to give: 

𝜕T1 

𝜕𝑦
 = − 

B2

12
 (A

7
y +5A

6
y

2
+

 
3A

5
y

3
 + 6A

5
y

2
 + 6A

4
y

2 
+A

4
y

4
 + 18A

4
y

3− 
 39

5
A

3 
y

5
+ 2A

3
y

2 

+18A
3
y

3− 18A
3
y

4 
+ 

7

5
 A

2
y

6
 + 6A

2
y

3
+ 18A

2
y

4
 + 6A

2
y

5
 − 6Ay

4− 6Ay
5
) − 

B2

12
 (

y8

5
−  2y2) 

+ 3A
2
BD(

y 

𝑁𝑢
𝑒−𝑁𝑢𝑦+ y

2
) −3ABD(

𝑦2 

𝑁𝑢
𝑒−𝑁𝑢𝑦 −y

3
+BD(

𝑦3 

𝑁𝑢
𝑒−𝑁𝑢𝑦 −y

4
) 

(38) 

(39) 

(40) 

(42) 

(43) 

(44A) 

(44B) 

(45A) 

(45B) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

(41) 

(37b) 
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−
B2

12
(A

7 
+5A

6
+

 
9A

5
+ 25A

4 
+A

4− 
 29

5
A

3 
+ 37A

2− 12A−
9

5 
) + 

B2

12
 (

1

5
−  2) 

+ 3A
2
BD(

1

𝑁𝑢
𝑒−𝑁𝑢 −  1) −3ABD(

1

𝑁𝑢
𝑒−𝑁𝑢 −1) –BD(

1 

𝑁𝑢
𝑒−𝑁𝑢  +1) –  NuT1 

                                                       

Resolving equations (52) into two difference equations to give: 
𝜕T1

𝜕𝑦
 = − 

B2

12
 (A

7
y +5A

6
y

2
+

 
3A

5
y

3
 + 6A

5
y

2
 + 6A

4
y

2 
+A

4
y

4
 + 18A

4
y

3
 − 39

5
A

3
y

5
+ 2A

3
y

2
 

+18A
3
y

3− 18A
3
y

4 
+ 

7

5
 A

2
y

6
 + 6A

2
y

3
+ 18A

2
y

4
+ 6A

2
y

5
 − 6Ay

4− 6Ay
5
) − 

B2

12
 (

y8

5
−  2y2) 

+ 3A
2
BD(

y 

𝑁𝑢
𝑒−𝑁𝑢𝑦+ y

2
)−3ABD(

𝑦2 

𝑁𝑢
𝑒−𝑁𝑢𝑦 −y

3−3ABD(
𝑦2 

𝑁𝑢
𝑒−𝑁𝑢𝑦 −y

3
) 

+BD(
𝑦3 

𝑁𝑢
𝑒−𝑁𝑢𝑦 −y

4
) −

B2

12
(A

7 
+5A

6
+

 
9A

5
 + 25A

4  
+

 
A

4− 
 29

5
A

3
+ 37A

2− 12A−
9

5 
) + 

B2

12
 (

1

5
−  2) 

+ 3A
2
BD(

1

𝑁𝑢
𝑒−𝑁𝑢 −  1)−3ABD(

1

𝑁𝑢
𝑒−𝑁𝑢 −1) –BD(

1 

𝑁𝑢
𝑒−𝑁𝑢  +1) 

 
𝝏𝐓𝟏

𝝏𝒚
 =  − NuT1  

Integrating equation (53A) to give: 

T1 = − 
𝐁𝟐

𝟏𝟐
 ( 

𝑨𝟕

𝟐
𝒚𝟐 + 

𝟓𝑨𝟔

𝟑
𝒚𝟑 +  

𝟑𝑨𝟐

𝟒
𝒚𝟒+ 

𝟔𝑨𝟒 

𝟑
𝒚𝟑 +  

𝑨𝟒

𝟓
𝒚𝟓  −  

𝟏𝟖𝟔𝑨𝟒

𝟒
𝒚𝟒−   

𝟑𝟗𝑨𝟒

𝟔
𝒚𝟔 + 

𝟐𝑨𝟑

𝟑
𝒚𝟑 

+ 
𝟏𝟖𝑨𝟑

𝟒
𝒚𝟒 +

𝟐𝑨𝟑

𝟑
𝒚𝟑 + 

𝟏𝟖𝑨𝟑

𝟒
𝒚𝟒 + 

𝟏𝟖𝑨𝟑

𝟓
𝒚𝟓 + 

𝟕𝑨𝟐

𝟑𝟓
𝒚𝟕 + 

𝟔𝑨𝟐

𝟒
𝒚𝟒 + 

𝟏𝟖𝑨𝟐

𝟓
𝒚𝟓+ 

𝟔𝑨𝟐

𝟔
𝒚𝟔 − 

𝟔𝑨

𝟓
𝒚𝟓 − 

𝟔𝑨

𝟔
𝒚𝟔) 

−3ABD(−
𝐲𝟐

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 − 
𝟐𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −
𝟏

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚   
𝟏

𝟒
𝒚𝟒)  −3A

2
BD          (−

𝐲

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚  −   
𝟏

𝟑
𝒚𝟑) −BD(−

𝐲𝟑

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 −

 
𝟑𝐲𝟐

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 − 
𝟐𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −
𝟏

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 

+
𝟏

𝟓
𝒚𝟓) + 

𝐁𝟐

𝟏𝟐
(A

7
y

 
+5A

6
y +

 
9A

5
y+ 25A

4
y

 
+A

4
y – 𝟐𝟗

𝟓
A

3
y + 37A

2
y−12Ay−

𝟗

𝟓 
𝐲) 

− 3A
2
BD(

𝐲

𝑵𝒖
𝒆−𝑵𝒖 −  𝒚) −3ABD(

𝒚

𝑵𝒖
𝒆−𝑵𝒖 −y) –BD(

𝒚 

𝑵𝒖
𝒆−𝑵𝒖  +y)    

 Integrating equation (47B) to give: 

log T1 = − Nuy + E 

T1 = F 𝒆−𝑵𝒖𝒚 

 Adding equations    (47Ai) and (47Bi) to give: 

T1 =  − 
𝐁𝟐

𝟏𝟐
 ( 

𝑨𝟕

𝟐
𝒚𝟐 + 

𝟓𝑨𝟔

𝟑
𝒚𝟑 +  

𝟑𝑨𝟐

𝟒
𝒚𝟒+

𝟔𝑨𝟓

𝟑
𝒚𝟑 +  

𝟔𝑨𝟒 

𝟑
𝒚𝟑+ 

𝑨𝟒

𝟓
𝒚𝟓 − 

𝟏𝟖𝟔𝑨𝟒

𝟒
𝒚𝟒 − 

𝟑𝟗𝑨𝟒

𝟔
𝒚𝟔 

+ 
𝟐𝑨𝟑

𝟑
𝒚𝟑  + 

𝟏𝟖𝑨𝟑

𝟒
𝒚𝟒 +

𝟐𝑨𝟑

𝟑
𝒚𝟑 + 

𝟏𝟖𝑨𝟑

𝟒
𝒚𝟒 + 

𝟏𝟖𝑨𝟑

𝟓
𝒚𝟓 + 

𝟕𝑨𝟐

𝟑𝟓
𝒚𝟕  + 

𝟔𝑨𝟐

𝟒
𝒚𝟒 + 

𝟏𝟖𝑨𝟐

𝟓
𝒚𝟓 + 

𝟔𝑨𝟐

𝟔
𝒚𝟔 

− 
𝟔𝑨

𝟓
𝒚𝟓 – 

𝟔𝑨

𝟔
𝒚𝟔) −3ABD(−

𝐲𝟐

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 −  
𝟐𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −
𝟏

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −   
𝟏

𝟒
𝒚𝟒) 

−3A
2
BD(−

𝐲

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 −  
𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −
𝟏

𝟑
𝒚𝟑) −BD(−

𝐲𝟑

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 – 
𝟑𝐲𝟐

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 – 
𝟐𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 

−
𝟏

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 +
𝟏

𝟓
𝒚𝟓) + 

𝐁𝟐

𝟏𝟐
(A

7
y

 
+5A

 
+

 
9A

5
y + 25A

4
y

 
+A

4
y − 𝟐𝟗

𝟓
A

3
y  + 37A

2
y−12Ay−

𝟗

𝟓 
𝐲) 

− 3A
2
BD(

𝐲

𝑵𝒖
𝒆−𝑵𝒖 −  𝒚) −3ABD(

𝒚

𝑵𝒖
𝒆−𝑵𝒖 −y) –BD(

𝒚 

𝑵𝒖
𝒆−𝑵𝒖  +y) + F 𝐞−𝐍𝐮𝐲+ E   

 

Applying 1nitial conditions, T1 = 0 at y=0 to determine E; 

E = 
𝟑𝐀𝟐𝐁𝐃

𝐍𝐮𝟑  −  
𝟑𝐀𝐁𝐃

𝐍𝐮𝟑  − F 

Putting E into equation (56a), we have: 

T1=  − 
𝐁𝟐

𝟏𝟐
 ( 

𝑨𝟕

𝟐
𝒚𝟐 + 

𝟓𝑨𝟔

𝟑
𝒚𝟑 +  

𝟑𝑨𝟐

𝟒
𝒚𝟒+

𝟔𝑨𝟓

𝟑
𝒚𝟑 +  

𝟔𝑨𝟒 

𝟑
𝒚𝟑  +  

𝑨𝟒

𝟓
𝒚𝟓  −  

𝟏𝟖𝟔𝑨𝟒

𝟒
𝒚𝟒−   

𝟑𝟗𝑨𝟒

𝟔
𝒚𝟔 

+ 
𝟐𝑨𝟑

𝟑
𝒚𝟑  + 

𝟏𝟖𝑨𝟑

𝟒
𝒚𝟒 +

𝟐𝑨𝟑

𝟑
𝒚𝟑 + 

𝟏𝟖𝑨𝟑

𝟒
𝒚𝟒+ 

𝟏𝟖𝑨𝟑

𝟓
𝒚𝟓 + 

𝟕𝑨𝟐

𝟑𝟓
𝒚𝟕  + 

𝟔𝑨𝟐

𝟒
𝒚𝟒 + 

𝟏𝟖𝑨𝟐

𝟓
𝒚𝟓  + 

𝟔𝑨𝟐

𝟔
𝒚𝟔 

− 
𝟔𝑨

𝟓
𝒚𝟓 – 

𝟔𝑨

𝟔
𝒚𝟔) −3ABD(−

𝐲𝟐

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 − 
𝟐𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −
𝟏

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −   
𝟏

𝟒
𝒚𝟒) 

−3A
2
BD(−

𝐲

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 −  
𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −
𝟏

𝟑
𝒚𝟑) −BD(−

𝐲𝟑

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 

− 
𝟑𝐲𝟐

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 − 
𝟐𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −
𝟏

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 +
𝟏

𝟓
𝒚𝟓) + 

𝐁𝟐

𝟏𝟐
(A

7
y

 
+5A

6
y 

+9A
5
y+ 25A

4
y

 
+A

4
y − 𝟐𝟗

𝟓
A

3
y +37A

2
y−12Ay−

𝟗

𝟓 
𝐲)−3A

2
BD(

𝐲

𝑵𝒖
𝒆−𝑵𝒖 −  𝒚) 

−3ABD(
𝒚

𝑵𝒖
𝒆−𝑵𝒖 −y) –BD(

𝒚 

𝑵𝒖
𝒆−𝑵𝒖  +y) + F 𝐞−𝐍𝐮𝐲+  

𝟑𝐀𝟐𝐁𝐃

𝐍𝐮𝟑  −  
𝟑𝐀𝐁𝐃

𝐍𝐮𝟑  – F  

(52) 

(53A) 

(53B) 

(54) 

(55a) 

(56a) 

(57) 

(55b) 

(56b) 
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Therefore, final temperature profile is obtained by combining equations (45a) and (57) thus: 

        T = T0 + 𝝋T1 

T =  
𝐁

𝟏𝟐
 (−A

4
+6A

2
y

2−12A
2
y−4Ay

3
+

 
12Ay +

 
y

4
 − 4y) + (D𝒆−𝑵𝒖𝒚 +1) − (D+ 1 – 𝝋

𝐁𝟐

𝟏𝟐
 ( 

𝑨𝟕

𝟐
𝒚𝟐 

+ 
𝟓𝑨𝟔

𝟑
𝒚𝟑 +  

𝟑𝑨𝟐

𝟒
𝒚𝟒 + 

𝟔𝑨𝟓

𝟑
𝒚𝟑 +  

𝟔𝑨𝟒 

𝟑
𝒚𝟑  +  

𝑨𝟒

𝟓
𝒚𝟓 + 

𝟏𝟖𝟔𝑨𝟒

𝟒
𝒚𝟒 −   

𝟑𝟗𝑨𝟒

𝟔
𝒚𝟔 + 

𝟐𝑨𝟑

𝟑
𝒚𝟑 + 

𝟏𝟖𝑨𝟑

𝟒
𝒚𝟒 

+
𝟐𝑨𝟑

𝟑
𝒚𝟑 + 

𝟏𝟖𝑨𝟑

𝟒
𝒚𝟒+ 

𝟏𝟖𝑨𝟑

𝟓
𝒚𝟓 + 

𝟕𝑨𝟐

𝟑𝟓
𝒚𝟕 + 

𝟔𝑨𝟐

𝟒
𝒚𝟒+ 

𝟏𝟖𝑨𝟐

𝟓
𝒚𝟓  + 

𝟔𝑨𝟐

𝟔
𝒚𝟔 − 

𝟔𝑨

𝟓
𝒚𝟓 − 

𝟔𝑨

𝟔
𝒚𝟔) 

−3 𝝋ABD(−
𝐲𝟐

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 −  
𝟐𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −
𝟏

     𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −   
𝟏

𝟒
𝒚𝟒 

−3𝝋A
2
BD(−

𝐲

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 −
𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −   
𝟏

𝟑
𝒚𝟑) −BD(−

𝐲𝟑

𝑵𝒖𝟐 𝒆−𝑵𝒖𝒚 −  
𝟑𝐲𝟐

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 

− 
𝟐𝐲

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 −
𝟏

𝑵𝒖𝟑 𝒆−𝑵𝒖𝒚 +
𝟏

𝟓
𝒚𝟓) +𝝋 

𝐁𝟐

𝟏𝟐
(A

7
y

 
+5A

6
y+

 
9A

5
y+ 25A

4
y

 
+A

4
y − 𝟐𝟗

𝟓
A

3
y 

+ 37A
2
y−12Ay−

𝟗

𝟓 
𝐲) −3𝝋A

2
BD( 

𝐲

𝑵𝒖
𝒆−𝑵𝒖 − 𝒚) −3ABD(

𝒚

𝑵𝒖
𝒆−𝑵𝒖 −y) – 𝝋BD(

𝒚 

𝑵𝒖
𝒆−𝑵𝒖  +y) 

+ 𝝋 (F 𝐞−𝐍𝐮𝐲+  
𝟑𝐀𝟐𝐁𝐃

𝐍𝐮𝟑  −  
𝟑𝐀𝐁𝐃

𝐍𝐮𝟑  – F) 

 

Similarly, the velocity profile can be solved by combining equation (25B) and (23) thus: 
𝝏𝒖

𝝏𝒚
  = − y 𝒆 Ҩ𝐓   + A𝒆 Ҩ𝐓    

𝝏𝒖

𝝏𝒚
 = (A – y)𝒆 Ҩ𝐓    

u  =  u0 + Ҩ u1 

Substituting for u in equation (23A) we have: 
𝝏 𝐮𝟎(𝐲)+ Ҩ 𝐮𝟏(𝐱,𝐲)

𝝏𝒚
 = (A – y)𝒆 Ҩ𝐓    

Using Taylor series expansion, we have: 
𝝏 𝐮𝟎(𝐲)+ Ҩ 𝐮𝟏(𝐱,𝐲)

𝝏𝒚
 = (A – y)[𝟏 +

𝝋𝑻

𝟏!
+

(𝛗𝐓)𝟐

𝟐!
+ ⋯ ] 

𝛛𝐮𝟎

𝛛𝐲
 + 𝛗

𝛛𝐮𝟏

𝛛𝐲
  = (A – y) + 𝛗T0(A – y)  

The leading order and 𝝋 terms are: 
𝛛𝐮𝟎

𝛛𝐲
  = (A – y)      

𝝏𝒖𝟏

𝝏𝒚
  = T0 (A – y) 

Equations (56) and (57) can be solved subject to the following conditions: 

𝑢0 = 𝑢1= 0, at y = 0     

Integrating equation (56) with respect to y we have: 

u0  = 
𝒚

𝟐
 (2− y) + J     

Applying initials conditions: u0 = 0 at y = 0 in equation (59) to give 

               J = 0 

u0  = 
𝒚

𝟐
 (2− y)    

Equation (60) gives Newtonian velocity profile. A similar expression for equation (60) may be obtained in Meyers et-

al.,(2006)  

Substituting T0 into equation (57), we have:  

𝜕𝑢1

𝜕𝑦
 = [

B

12
 (−A

4
+6A

2
y

2−12A
2
y−4Ay

3
+

 
12Ay +

 
y

4
 − 4y)+ (D𝑒−𝑁𝑢𝑦   + 1)− (D+ 1)](A− y)                     

Simplifying equation (3.61) to give: 

 

     
𝜕𝑢1

𝜕𝑦
 = 

B

12
 (−A

5
 + 6A

3
y

2−12A
3
y−4A

2
y

3
+

 
12A

2
y +A

 
y

4
 – 4Ay)+ A (D𝑒−𝑁𝑢𝑦 + 1) −A(D+ 1)       

                    

Integrating equation (62) with respect to y we have: 

𝑢1 = 
B

12
 (−A

5
y + 2A

3
y

3−6A
3
y

2− 
5

2
A

2
y

4
+

 
6A

2
y

2 
+ A

 
y

5
 – 2Ay

2
 + A

4
y

2
 + 4A

2
y

3
 + 4Ay

3
 

− 
1

6

 
y

6
 +  

4

3

 
y

3
) + D (

A

𝑁𝑢
𝑒−𝑁𝑢𝑦 −  

y2

2
−   𝐴𝑦) + y (A−1) + 

1

𝑁𝑢
𝑒−𝑁𝑢𝑦(y −  

1

Nu
 ) + J 

Applying initial conditions: u1= 0 at y = 0 to determine J  

J = −AD
1

Nu
 + 

1

𝑁𝑢2 𝑒−𝑁𝑢𝑦 

 Substituting J into equation (63) we have: 

𝑢1 = 
B

12
 (−A

5
y + 2A

3
y

3−6A
3
y

2− 
5

2
A

2
y

4
+

 
6A

2
y

2 
+ A

 
y

5
 – 2Ay

2
 + A

4
y

2
 + 4A

2
y

3
 + 4Ay

3
 − 

1

6

 
y

6
 

(58) 

(59) 

(60A) 
(60B) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71a) 

(71b) 
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       +  
4

3

 
y

3
) + D (

A

𝑁𝑢
𝑒−𝑁𝑢𝑦 −  

y2

2
−   𝐴𝑦) + y (A−1) + 

1

𝑁𝑢
𝑒−𝑁𝑢𝑦(y −  

1

Nu
 ) −AD

1

Nu
 + 

1

𝑁𝑢2 𝑒−𝑁𝑢𝑦  

                                                  

Therefore, final velocity profile is obtained by combining equations (60) and (63) thus: 

         u  =  u0 + Ҩ u1  

u =   
𝒚

𝟐
 (2− y) + Ҩ 

B

12
 (−A

5
y + 2A

3
y

3−6A
3
y

2 5

2
A

2
y

4
+

 
6A

2
y

2 
+ A

 
y

5
 – 2Ay

2
 + A

4
y

2
 + 4A

2
y

3
 

+ 4Ay
3
 − 

1

6

 
y

6
 +  

4

3

 
y

3
) + Ҩ D (

A

𝑁𝑢
𝑒−𝑁𝑢𝑦 −  

y2

2
−   𝐴𝑦)  + y Ҩ (A−1) + Ҩ

1

𝑁𝑢
𝑒−𝑁𝑢𝑦(y −  

1

Nu
 ) 

+ Ҩ
1

𝑁𝑢
𝑒−𝑁𝑢𝑦(y − AD)  

To find all the arbitrary constant A,C,D,E,F, and J, we apply initial conditions: to give: 

D = −1, F = C = J = 0, B = 
 Gr

1+ 𝑅𝑠
  Ҩ 

A = − 
1

𝑁𝑢
𝑒−𝑁𝑢𝑦andE =  

3 Gr

1+ 𝑅𝑠
 

1

𝑁𝑈4 𝑒−𝑁𝑢𝑦 (y −  
1

Nu
 ) 

Substituting equation (66) into equation (50) to give a final solution of temp., profile thus; 

T =  
 Gr

1+ 𝑅𝑠
 (

1

𝑁𝑢4 𝑒−4𝑁𝑢𝑦 + 
6y2

𝑁𝑢2 𝑒−2𝑁𝑢𝑦 −
12y

𝑁𝑢2 𝑒−2𝑁𝑢𝑦+ 
4y

𝑁𝑢3 𝑒−3𝑁𝑢𝑦+ 
12y

𝑁𝑢
𝑒−𝑁𝑢𝑦 

+ y
4
 – 4y) + (𝑒−𝑁𝑢𝑦+ 1) – Ҩ

B2

12
 (–

y2

𝑁𝑢7 𝑒−7𝑁𝑢𝑦 +
5y2

3𝑁𝑢6 𝑒−6𝑁𝑢𝑦 −
3y4 

4𝑁𝑢2 𝑒−5𝑁𝑢𝑦 −
6y3 

3𝑁𝑢5 

+
6y3

3𝑁𝑢4
𝑒−4𝑁𝑢𝑦 +

y5

5𝑁𝑢4
𝑒−4𝑁𝑢𝑦 +

18y4

4𝑁𝑢4
𝑒−4𝑁𝑢𝑦 +

39y6

6𝑁𝑢3
𝑒−3𝑁𝑢𝑦 −

2y3

3𝑁𝑢3
𝑒−3𝑁𝑢𝑦 −

18y4

4𝑁𝑢3
𝑒−3𝑁𝑢𝑦 

+
18y5

5𝑁𝑢3 𝑒−3𝑁𝑢𝑦 +
7y7

35𝑁𝑢2 𝑒−2𝑁𝑢𝑦 +
6y4

4𝑁𝑢2 𝑒−2𝑁𝑢𝑦 +
18y5

5𝑁𝑢2 𝑒−2𝑁𝑢𝑦 +
y6

𝑁𝑢2 𝑒−2𝑁𝑢𝑦 +
6y5

5𝑁𝑢
𝑒−𝑁𝑢𝑦 +

y6

𝑁𝑢
𝑒−𝑁𝑢𝑦) – Ҩ

B2

12
 (

y9

45
−  

y6

3
 ) − Ҩ 

3 Gr

1+ 𝑅𝑠
 

1

𝑁𝑢2 𝑒−2𝑁𝑢𝑦 (−
y

𝑁𝑢2 𝑒−𝑁𝑢𝑦 − 
1

𝑁𝑢3 𝑒−𝑁𝑢𝑦 −   
1

3
𝑦3)   − Ҩ 

3 Gr

1+ 𝑅𝑠
 

1

𝑁𝑢
𝑒−𝑁𝑢𝑦(–

y2

𝑁𝑢2 𝑒−𝑁𝑢𝑦 −
2y2

𝑁𝑢3 𝑒−𝑁𝑢𝑦 – 
1

𝑁𝑢3 𝑒−𝑁𝑢𝑦 −  
1

4
𝑦4)  –  Ҩ 

 Gr

1+ 𝑅𝑠
(–

y3

𝑁𝑢2 𝑒−𝑁𝑢𝑦 

−
3y2

𝑁𝑢3 𝑒−𝑁𝑢𝑦 −
2y2

𝑁𝑢3 𝑒−𝑁𝑢𝑦  + 
1

5
𝑦5) + Ҩ 

3 Gr

1+ 𝑅𝑠
(–

y

𝑁𝑢7 𝑒−7𝑁𝑢𝑦 −
5y

𝑁𝑢6 𝑒−6𝑁𝑢𝑦 −
9y

𝑁𝑢5 𝑒−5𝑁𝑢𝑦 

             –
25y

𝑁𝑢4 𝑒−4𝑁𝑢𝑦 −
29y

5𝑁𝑢3 𝑒−3𝑁𝑢𝑦 +
     37y

𝑁𝑢2 𝑒−2𝑁𝑢𝑦–
12y

𝑁𝑢
𝑒−𝑁𝑢𝑦 −

9y

5
 ) −Ҩ 

3 Gr

1+ 𝑅𝑠
 

1

𝑁𝑢2 
𝑒−2𝑁𝑢𝑦(

y

𝑁𝑢
𝑒−𝑁𝑢 − 𝑦)  

        

   − Ҩ 
3 Gr

1+ 𝑅𝑠
 

1

𝑁𝑢 
𝑒−2𝑁𝑢𝑦     (

y

𝑁𝑢
𝑒−𝑁𝑢 − 𝑦) + Ҩ 

 Gr

1+ 𝑅𝑠
 (

y

𝑁𝑢
𝑒−𝑁𝑢 + 𝑦) + Ҩ 

3 Gr

1+ 𝑅𝑠
 

1

𝑁𝑢4 
𝑒−𝑁𝑢𝑦 (

1

𝑁𝑢
𝑒−𝑁𝑢 + 1)   

                                                   

Substituting equation (66) into equation (50) to give final solution of velocity profile thus: 

u =   
𝒚

𝟐
 (

y

𝑁𝑢
𝑒−𝑁𝑢 − 𝑦) + Ҩ

 Gr

12(1+ 𝑅𝑠)
(–

y

𝑁𝑢5 𝑒−5𝑁𝑢𝑦 +
2y3

𝑁𝑢3 𝑒−3𝑁𝑢𝑦 −
6y2

𝑁𝑢2 𝑒−2𝑁𝑢𝑦 

–
5y4

2𝑁𝑢4
𝑒−4𝑁𝑢𝑦 −

6y2 

𝑁𝑢2
𝑒−2𝑁𝑢𝑦 +

y5

𝑁𝑢
𝑒−𝑁𝑢𝑦–

2y2

𝑁𝑢
𝑒−𝑁𝑢𝑦 +

4y3

𝑁𝑢2
𝑒−2𝑁𝑢𝑦 

−
4y3

𝑁𝑢
𝑒−𝑁𝑢𝑦 +

y

𝑁𝑢
𝑒−𝑁𝑢𝑦 −

y6

6
 + 

4y3

𝑁𝑢
) + Ҩ (

1

𝑁𝑢2 𝑒−2𝑁𝑢𝑦 −
y2

2
−

y

𝑁𝑢
𝑒−𝑁𝑢𝑦)+ Ҩ y(

1

𝑁𝑢
𝑒−𝑁𝑢 − 1) + Ҩ

1

𝑁𝑢
𝑒−𝑁𝑢𝑦(y−

1

𝑁𝑢
) + Ҩ 

(
1

𝑁𝑢2 𝑒−𝑁𝑢𝑦+ 
1

𝑁𝑢
𝑒−𝑁𝑢𝑦)       

5. DISCUSSION OF RESULTS 

 

 In this paper, the effect of the thermal radiation and the variable viscosity fluid flow an inclined plane with a free 

surface is investigated. The system of differential equations (26a) and (25) are meant for the velocity and temperature profile 

which are solved analytically using the asymptotic method of solution. The results are presented in figures 1 to 8, for velocity 

and temperature for various values of the flow governing parameters such as Nusselt number and Grashof number and 

radiation parameter and coefficient of viscosity variation. 

 For the analytical validation of our results, we carefully chose values for the parameters used for the plotting of the 

graphs. The following values were assumed for each graph thus;  

In figure 1 and 2; (Nu =0.5,Rs= 0.2 Gr = 2.0) at various values of (𝜑 =0.1, 0.2, 0.3) for the effect of Gr on uy. and 𝜑 on uy.  

In figure 3; (Nu = 0.5, 𝜑 = 0.1 Gr = 5.0) at various values of (𝜑 =0.1, 0.2, 0.3) for the effect of Rs on uy. 

In figure 4; (𝜑 = 0.1, Rs = 0.1, Gr =5.0) at various values of (Rs= 0.1, 0.5, 1.0) for the effect of Nu on u(y) . 

In figure 5; (Nu =1.0, 𝜑 = 0.1,  Rs = 0.1 ) at various values of (Gr =0.1, 1.0, 2.0) for the effect of Gr on T(y). 

In figure 6: (Nu =5.0, Rs = 0.2, Gr =1.0) at various values of (𝜑 =0.5, 1.0, 2.0) for the effect of 𝜑 on T(y).  

(72) 

(73) 

(74) 

(75) 

(76) 
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In figure 7; (Nu = 1.0, 𝜑 = 0.1, Gr =2.0) at various values of (Rs = 0.1, 0.3,0.5) for the effect of Rs on T (y).   

In figure 8; (𝜑 = 0.1, Rs = 0.1, Gr = 1.0) at various values of (Nu =2.0, 3.0, 5.0)for the effect of Nu on T (y).  

 

 
 

Figure 1: Effect of Gr on u(y) 

 

Figure 1 above shows the real application of the velocity profile for the various values of 𝜑         (0.1, 0.2, and 0.3). It is 

observed that as the coefficient of viscosity increases the velocity also increases. An increase in Grashof number simply 

indicates that the fluid heat up faster and the fluid of viscosity drops and aids the flow of the fluid along an inclined plane. As a 

result, the velocity of the fluid increases significantly in the direction of the flow that is Newton's second law of motion is 

obeyed. Asibor et-al; (2017) investigated variable thermal conductivity on Jeffery fluid past a vertical porous plate with heat 

and mass fluxes, using an implicit finite difference method of Crank-Nicolson type. Their results on the effect of Grashof 

number on the velocity of the fluid indicate that the Grashof number increases when the velocity increased which are following 

the present result in the graph above.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Effect of ϕ on u(y) 

 

Figure 2, shows the relationship between the viscosity and velocity of the fluid. It is observed that as viscosity increases the 

velocity of the fluid also increases. This occurs due to the less resistance flow of the fluid and the velocity of the fluid increases 

to the maximum speed at the free surface. Meanwhile, Tshela, (2013) investigates the flow variable viscosity fluid down an 

inclined plane with a free surface, using Runge Kuta Method and his results indicate that the velocity of the fluid increases as 

the coefficient of viscosity variation increases which is similar to the recent results of the study from the graph above.  
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Figure 3: Effect of Rs on u(y) 

 

Figure 3, depicts the effect of solar radiation over the velocity of the fluid. It is observed that as the value of Rs increases the 

velocity of the fluid increases. The velocity increases exponentially with an increase in temperature due to the heat radiation 

absorbed by the fluid surface. 

 

 
Figure 4: Effect of Nu on u(y) 

 

Figure 4, shows the effect of the Nusselt number over the velocity of the fluid. It is observed that an increase in the Nusselt 

number decreases the velocity of the fluid. This is due to the decrease in the heat transferred to the surrounding atmosphere. 

The fluid starts regaining the viscous force and the reduction in the velocity of the fluid is then observed. 

 

 
Figure 5: Effect of Gr on T(y) 

 

Figure 5, this shows the effect of Grashof number over the temperature of the fluid. It is observed that the Grashof number 

increases while the temperature of the fluid decreases. The result indicated that there is a reduction in the viscous force of the 

fluid due to the heat dissipation of the fluid to the atmosphere. Hence the temperature of the fluid decreases.  
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Figure 6: Effect of ϕ on T(y) 

 

Figure 6, shows the effect of viscosity on the temperature of the fluid. It is observed that viscosity increases while the 

temperature decreases. When ϕ increases, the temperature of the fluid decreases due to the heat lost by the internal frictional 

forces caused by the collision of the fluid particles.  

 

 
 

Figure 7: Effect of Rs on T(y) 

 

Figure 7, the effect of solar radiation on temperature is depicted. It is observed that the values of the radiation parameter 

increase while the temperature of the fluid increases. Since heat gain by the fluid through radiation is directly proportional to 

the fluid which led to an increase in temperature as observed from the graph above. Asibor et-al; (2017) investigated variable 

thermal conductivity on Jeffery fluid past a vertical porous plate with heat and mass fluxes, using an implicit finite difference 

method of Crank-Nicolson type. Their results on the effect of thermal radiation on temperature of the fluid indicate that the 

temperature profile increases in the presence of heat generation and radiation parameter increased which is following the 

present result in the graph above.  
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Figure 8: Effect of Nu on T(y) 

 

 

 

Figure 8, shows the effect of Nusselt on the temperature of the fluid. It is observed that the Nusselt number decreases while the 

fluid temperature increases. The temperature difference between the fluid and wall channel decreases, and the Nusselt number 

over the wall decreases. Therefore, an increase in temperature is observed. This result is similar to the finding of Tshela, 

(2013) where he analyzed the effect of Biot number on the temperature of the fluid from his investigation on the flow of a 

variable viscosity fluid down an inclined plane with a free surface. His results indicate the temperature of the fluid increases as 

the Biot number decreases. 

    

6. CONCLUSION 

This analytical study has been carried out for the effect of thermal radiation and variable viscosity on a fluid flow along an 

inclined plane with a free surface. The governing partial differential equations are solved analytically by the asymptotic 

method. The effects of velocity, temperature, and radiation parameters studied. The effects of Grashof number, Nusselt number 

and viscosity variation on velocity and temperature profile are shown graphically. The velocity profile of various effects of 

thermophysical parameters is displayed in figures 1 to 4. The general observation is that the maximum flow speed is noticed at 

the centerline of the flow channel. In figures 1 and 2, the rate of flow speed increases to the rise in Gr and 𝜑and reduction due 

to an increase in Rs and Nu in figures 3 and 4 respectively. However, the temperature distributions of the flow and heat 

transfer are displayed in figures 5 to 8. Figures 5 and 6 showed that the rising values of Gr and 𝜑 bring about a reduction in 

temperature while the reverse is noticed in figures 7 and 8 where an increase in Rs and Nu thereby makes the temperature rise 

as well. 

NOMENCLATURE 

Nu  Nusselt number 

Gr   Grashof number 

Cp  Heat capacity (JKg−1K−1) 

Ec          Eckert number 

g  Acceleration due to gravity (m/s
2
) 

h   Channel height (m) 

k   Thermal conductivity (Wm−1K−1) 

L   Channel length (m) 

P   Pressure scale (Pa) 

p   Pressure (Pa) 

Pe   P´eclet number 

Pr    Prandtl number 

Re    Renolds number 

t  Time (s) 

T   Temperature (
o
C) 

Tl   Lower temperature 

Ts   Surface temperature (
o
C) 

ΔT   Temperature drop (
o
C) 

U   Velocity scale (m/s) 

(u, v):   Cartesian velocity (m/s) 

(x, y):   Cartesian coordinates (m) 

𝜀  Aspect ratio of the flow 



25 
 

𝜇   Kinematic viscosity (kg/ms) 

 𝜇0             Kinematic viscosity references (kg/ms) 

Φ:   Viscous dissipation function 

𝜌  Fluid density (Kgm−3) 

𝜑  Coefficient of viscosity variation (K
-1

). 

Rs                     Solar radiation 

𝛽  Coefficient of volume expansion (K
-1

)  

ф                      Coefficient of viscosity 
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