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Abstract: Early detection of autism spectrum disorder
(ASD) increasingly relies on objective movement-based
biomarkers. This Systematic survey explores the
confluence of three promising areas: Augmented Reality
(AR) gameplay for eliciting naturalistic full-body
movement, skeleton tracking for data extraction, and
Vision Transformer (ViT) models for analysing
spatiotemporal movement patterns to detect ASD. This
survey aims to summarize the current research landscape
by considering available full-body skeleton datasets and
transformer-based approaches, such as pure ViTs,
spatiotemporal transformers, graph transformer variants,
hybrid CNN-ViT models, and physics-informed
approaches for AR systems that elicit ASD-relevant motor
and social behaviors, and to organize them into a
taxonomy. Our results reveal that models from the
transformer learning family are better than traditional
deep learning methods at all aspects of modelling
coordination, time irregularity, and joint-dependency
patterns related to ASD; however, this is limited due to a
lack of AR gameplay data sets, pose-estimation accuracy,
heterogeneity in task design, and a lack of clinically
validated benchmarks. Building upon these results, we
present a reference end-to-end pipeline for AR-collected
movement analysis taking into account standardized task
design, robust skeleton preprocessing, motion
tokenization, and classifier through transformers and
targeted suggestions for future research such as the
development of shared AR-based datasets, multimodal
fusion approaches (e.g., gaze + skeleton), self-supervised
vital transformer pretraining with large motion datasets,
physics-informed modeling, and clinically aligned
evaluation protocols to ensure the development of
scalable, robust and clinically meaningful vit-based
autism detection systems.
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1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex
neuro-developmental disorder in which there
are chronic differences in social
communication, sensory integration, and
motor control. Over the past 20 years, clinical
researchers have increasingly recognised that
motor  behavior, particularly full-body
movement patterns, is a valuable indicator of
the underlying mechanisms of ASD. It has been
consistently shown that autistic individuals
exhibit atypicalities in balance, gesture
production, timing, coordination, postural
stability, and whole-body motor planning.
These differences are evident early in childhood
and are highly informative for both screening
and assessment, making motor behaviour one
of the most promising objective indicators in
the early identification of ASD [1]. Traditional
methods for measuring motor behaviour in
clinical settings rely on human observation,
structured tasks, or standardised rating scales.
While these approaches are valuable, they are
subject to inter-rater variability. At the same
time, children, especially those with ASD, may
respond differently in clinical settings due to
anxiety, unfamiliarity, or reduced engagement.
These limitations have motivated a shift
towards more naturalistic, technology-assisted
assessment environments in which behaviour
can be elicited more spontaneously, recorded
more consistently, and analysed more
objectively [2]. Augmented Reality (AR)
gameplay has become a highly -effective
medium for this purpose. AR Tasks can be
designed to elicit ASD-relevant behaviours,
such as imitation, joint attention, gesture
following, social orienting, and whole-body
motor coordination, in an engaging, gamified,
and ecologically valid environment [3]. Despite
the potential of AR gaming, skeleton tracking,
and transformer models, research at the
intersection of these three remains in its
infancy and is dispersed. Existing AR systems
vary significantly in task design, sensing
modalities, gameplay duration, and
behavioural targets. Similarly, available
datasets are limited in quantity, size, diversity,
and clinical labelling [4]. Given this lack of
fragmentation, there is a clear need for a
structured, systematic synthesis that unifies the
literature on AR-based movement elicitation,
skeleton data representation, and transformer-
based modeling approaches for ASD detection.
A good mapping of this new domain, however,
can help reveal methodological weaknesses,
identify gaps in existing datasets, highlight
interesting transformer architectures, and,
indeed, unravel how AR gameplay can be
standardised to enable more consistent
behavioural evaluation. Such synthesis is of
special significance as the field moves towards
clinically meaningful, scalable, and privacy-

preserving digital assessment tools [4]. To help
fill this gap, this systematic survey provides an
exhaustive review of AR systems deployed for
the evaluation of ASD, complete-body skeleton
datasets, movement representations,
preprocessing approaches, and models in the
transformer family, with a focus on motion
analysis. It establishes a coherent taxonomy of
transformer-based architectures, synthesises
their advantages and limitations, and presents
a consolidated end-to-end pipeline, with
collected movement data in mind, developed by
AR. The survey also highlights several
challenges, including a dearth of datasets, the
diversity of pose-tracking methods, the lack of
clinical validation, and privacy concerns, and
concludes with specific recommendations for
future research directions.

2.BACKGROUND

Understanding  the  technological and
behavioural basis of autism detection based on
full-body movement requires understanding
the elements underlying this field of study. This
section contains the Dbasic background
necessary to understand the context of the rest
of the survey, including evaluation of three
basic dimensions: (i) the nature of behavioral
and motor characteristics typically associated
with ASD, (ii) augmented reality (AR)
environments as naturalistic platforms for
evoking some measurable whole-body actions,
and (iii) the computational models and pose-
estimation techniques used to translate raw
movement to analyzable skeletal
representations. Together, these components
have provided the conceptual basis for the
modern transformer-based ASD detection
systems.

2.1.Autism and Motor Behaviour
Characteristics

Autism Spectrum Disorder (ASD) is gaining
widespread attention as a condition that
includes not only a difference in social
communication, but characteristic motor and
coordination patterns that occur early in
development. A growing body of literature
indicates that autistic individuals exhibit
measurable differences in full-body movement,
including postural stability, gesture execution,
bilateral coordination, gait regularity, and the
timing and smoothness of limb trajectories.
These movement atypicalities can be observed
in both structured tasks and spontaneous play
and often precede symptoms in verbal and
social behaviours, thus motor behaviour
appears as a good channel for screening at an
early stage [5]. Full-body skeleton tracking
enables these. Computational behavioral
patterns are to be characterised as joint
trajectories (2D or 3D) over time, and
computational models can be used to analyse
joint velocities, accelerations, relative joint
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angles, symmetry differences, and temporal
coordination. These representation formats
preserve  essential  information  about
kinematics relevant to the distinction between
ASD-Typical and Neurotypical movement
dynamics. Since the motor patterns are less
susceptible to cultural, linguistic, and
environmental variability, they provide the
foundation for a stable and objective basis for
two-way automated detection of ASD, mainly
when elicited naturally, through interactive and
engaging AR experiences [6].

2.2, Augmented Reality for ASD
Assessment

Augmented Reality (AR) has become an
increasingly exciting platform for behavioral
assessment when investigating autism due to
its capacity to combine elements of the digital
world with aspects of the real environment,
while still preserving the naturalistic
interaction. Unlike traditional clinical settings,
with their tasks that can seem rigid, artificial,
and anxiety-inducing, AR is an engaging, play-
based medium that encourages spontaneous,
full-body movement. This makes it particularly
useful for eliciting behaviors relevant to ASD,
including imitation, gesture following, social
orienting, joint attention, response inhibition,
and whole-body coordination [7]. AR gameplay
has actions. These tasks can be standardized for
timing, difficulty, and structure and are
reproducible, but have ecological validity.
Importantly, because AR-based environments
allow for free movement on the part of the
children, barriers to compliance are mitigated,
and opportunities for attaining movement
patterns translatable to in-the-world behavior
are increased [8]. Overall, AR offers a robust,
child-friendly, and high ecological validity
platform to capture complete body movement
data that will be required to foster the
automated detection of ASD, which is an
essential ~ bridging  platform  between
naturalistic behavior.

2.3.Skeleton Tracking and Pose
Estimation

Skeleton tracking and pose estimation are the
backbone of any movement-based system for
ASD detection. These techniques range from
converting the raw visual input, usually RGB,
depth, or RGB-D stream, into structured
representations at the joint level and therefore
enabling the analysis of full body motion
accurately and consistently. At the heart of each
of these processes lies the extraction of a set of
anatomical keypoints (e.g., head, shoulders,
elbows, wrists, hips, knees, ankles) and their 2D
or 3D trajectories over time. As discussed, these
trajectories preserve identifiable facial details,
making the skeleton-based representations
significantly more private than the raw video
recording [9]. Modern pose estimation
frameworks such as OpenPose, MediaPipe,

VNect, and the Kinect SDK employ deep neural
networks that can detect joint positions despite
occlusions, varying lighting conditions, and fast
movement. Depth sensors (e.g., Kinect Azure,
Intel RealSense) provide geometric
information that improves the accuracy and
temporal stability of 3D joints. These
technologies enable the recording of complex
movement patterns important for ASD, such as
irregularities in rhythm, asymmetries,
hesitations, repetitive movements, and
deviations in velocity or joint coordination [10].
2.4.Vision Transformers and
Spatiotemporal Modeling

Vision Transformers (ViTs) have become one of
the most important architectural innovations in
the fields of computer vision and sequence
modeling, and possess powerful capabilities for
analysing full-body movement data. Unlike
convolutional neural networks (CNNs), which
model dependencies among meaningful
elements in space using fixed receptive fields,
transformers rely on mechanisms of global self-
attention between joints and across the entire
temporal sequence. This is a property that
makes them particularly suitable for the
detection of ASD, in which there may be slight
abnormalities in timing, coordination, or cross-
limb interactions with diagnostic value [11].
More advanced madiapproaches include Graph
Transformers, which incorporate skeletal
connectivity as a constraint in the attention
mechanism; Hybrid CNN-ViT, which uses a
CNN to extract low-level motion cues and then
a transformer to refine the results; and Physics-
informed Transformers, which incorporate
biomechanical constraints to  improve
interpretability and robustness. Additionally,
the self-supervised version of ViTs on large-
scale motion datasets has demonstrated
excellent generalisation ability—important
given the limited availability of labelled data for
ASD [12]. Vision Transformers (ViTs) have
several benefits over a more traditional deep-
learning architecture when modeling skeleton-
based ASD motor patterns. CNN-based
approaches are good at learning local spatial
structures of joints. Still, they cannot learn
long-range interactions between distal body
parts, which are critical for comprehending full-
body coordination. RNNs and LSTM variations
can capture the dynamics of time series. Still,
they are more susceptible to timing anomalies
and differences in movement velocity, as well as
to the presence of noise and missing frames,
which are typical of the motor behavior of
autistic children. Conversely, since ViTs have a
self-attention mechanism, the model can
simultaneously analyze all joints and time steps
and extract global spatiotemporal correlations,
which are not limited by locality or the order of
the sequence. This renders ViTs especially
appropriate to ASD movement analysis, in
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which abnormal patterns tend to encompass
distributed postural asymmetries, retarded or
irregular time relations among limbs, and long-
range joint interactions, which grow over the
temporal span of a movement sequence.
2.5.Research Questions (RQ)

To steer this systematic survey and organize the
analysis in the categories of AR systems,
skeleton-based representations, and
transformer-family models, the following
research questions were formulated:

RQ1. AR Systems: How are augmented
reality (AR) environments being utilized to
induce clinically relevant individuals with ASD
to exhibit full-body movement behavior, and
what tasks, sensors, and design paradigms
predominate current investigation approaches
using AR-based assessments?

RQ2. Skelton-Based Movement Analysis:
What are the types of full-body skeleton
datasets, movement tasks, and preprocessing
strategies for collecting ASD relevant motor
patterns, and what are the limitations of the
current collected data sources?

RQ3. Transformer Models: How have
Vision Transformers, spatiotemporal
transformers, graph transformer architectures,
and CNN-ViT hybrid modeling approaches
been employed to tackle challenges in object
recognition of full-body movement data in the
scope of ASD detection, with the modeling
strategy that shows the most promising
success?

RQ4. Gaps and Future Needs: What are the
major challenges, methodological in nature,
and open research opportunities at the
intersection of AR gameplay, modeling based
on skeletons, and ASD detection via
transformers?

3.SURVEY METHODOLOGY

Conducting a systematic survey across the
domains of AR-based behavioral elicitation,
skeleton-tracking technologies, and transform-
based ASD detection requires a structured,
transparent methodology. This chapter
describes the process of identifying, selecting,
and analyzing the relevant literature, including
the databases searched, the search strategies
used, the inclusion and exclusion criteria, and
the multi-stage screening procedure. The
forging of a rigorous methodological base in
this section ensures that the synthesis
presented in the following chapters is
comprehensive, reproducible, and consistent
with the formulation of research questions
earlier in this study.

3.1.Databases and Sources

To ensure coverage of as much literature as
possible, several academic databases were
used, including IEEE Xplore, ACM Digital
Library, PubMed, Scopus, ScienceDirect, and
arXiv. Searches focused on peer-reviewed
journals, conferences, and preprints that have

content related to AR systems, full-body
movement analysis, skeleton tracking, and
transformer-based modeling used for the
detection of ASD. Backwards and forward
reference tracing was also conducted to identify
studies that could not be obtained through the
direct search process. By using a variety of
databases, both the technical and clinical
domains are covered. IEEE and ACM for
engineering, robotics, AR, and computer vision
studies, while PubMed and ScienceDirect have
medically oriented ASD research. Scopus offers
cross-disciplinary indexing with an emphasis
on identifying the studies that use AR-based
behavioral tasks combined with computational
modeling. The inclusion of arXiv is critical
given how fast-paced transformer architectures
are changing, with many seemingly published
first as preprints. This use of many sources
addresses biases and helps identify emerging
applications for  AR-skeleton-transformer
intersections.

3.2.Search Strategy

A defined keyword approach was applied.
Searches for combinations of terms related to
ASD, augmented reality, movement analysis,
skeleton tracking, and transformer
architectures. Examples of representative
search phrases were:

Autism" OR "ASD" AND "augmented reality”.
Autism motor behavior" AND "skeleton
tracking”. Vision Transformer" OR
"spatiotemporal transformer" AND "movement
analysis”. AR  gameplay" AND "pose
estimation".

Search strings were progressively refined to
maximise recall while excluding irrelevant
literature.

Keyword combinations were modified
repeatedly by reference to initial search results.
Adding terms such as "pose estimation",
"skeleton data", "Kinect", and "joint
trajectories" increased the retrieval of
movement analysis papers relevant to ASD to a
large extent. Likewise, terms like "transformer
encoder, "attention mechanism, and "graph
transformer” appeared in recent studies on
specific models. Boolean operators and
symbols for wild cards were used to represent
different terminology embraced by different
communities (e.g., "motion capture”, "body
tracking", "movement disorder", "ViT-based.
This became a refinement that ensured
maximum precision without sacrificing recall.
3.3.Inclusion and Exclusion Criteria
Defining specific inclusion and exclusion
criteria is key to ensuring that the selected
studies are meaningful to the goals of the survey
and the research questions that have been
developed earlier. Because the intersection of
AR gaming, skeleton-based analysis of the
movement, and transformer-based detection of
ASD lies across multiple disciplines, it is
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important to filter the literature in a systematic
way to retain only such studies that offer
empirical, methodological, or technical
relevance to this field. The criteria below set a
high bar, distinguishing between ASA research
based on movement and unrelated to AR,
clinical experiments, or machine learning
research, and therefore, such a synthesis is
focused, coherent, and scientifically wvalid.
Inclusion criteria: Studies either focused on
ASD assessment, behavioural modelling, or the
movement-based detection, works that involve
AR environments, motion-eliciting tasks, or
interactive gameplay, Studies on skeleton-
based representations (skeleton-based or pose-
estimation-based pipelines), Machine learning
or deep learning models such as ViTs or the like,
and Papers that provide some empirical data,
evaluation metrics, or some methodological
contributions. Exclusion criteria: Studies not
related to ASD or movement behavior, AR
research without complete body analysis of
motion, on-ASD relevant motion-analysis
papers, and Non-technical work, reviews
without data or opinion work. Together, these
inclusion and exclusion criteria provide a
focused, methodologically sound basis for the
survey. By limiting the research sample to the
space between AR-based behavior elicitation,
skeleton-driven movement analysis, and
transformer family modelling, the selected
literature aligns directly with the survey's
research questions. This helps to make sure that
the resulting synthesis is both coherent and
relevant to helping to ensure the coherence of
the next stage - the structured screening and
selection of eligible studies - to proceed with
clarity and coherence.
3.4.Study Selection and Screening
Process
A structured process with multiple screening
stages was used to ensure that studies directly
relevant to AR-based behavioural elicitation,
skeleton-tracking methodologies, and
transformer-driven ASD  detection were
included. Given the heterogeneity of research
on the topics of interest, spanning clinical,
computational, and interaction design
disciplines, a stepwise selection workflow was
needed to screen out studies that were
unrelated or methodologically weak. This
process helps make the survey as scientific as
possible and ensures that the final collection of
papers is informative and meaningful in
relation to the research questions.

The three successive phases of the selection

pipeline included:

a) Title and Abstract Screening: Initial
filtering to identify studies mentioning
ASD, AR interaction, movement analysis,
pose estimation, or transformer-based
modeling. Papers that were obviously
irrelevant were discarded at this stage.

b) Full-Text Evaluation: Detailed study of
methodology, such as movement elicitation
paradigm, data collection setup, skeleton
extraction method, and machine learning
methods. Studies with inadequate
methodological information or lacking
information on movement were excluded.

c¢) Final Eligibility of Final Filtering:
Papers that met all the inclusion criteria
were kept for review. Ambiguous cases
(e.g., partial AR tasks, limited joint-
tracking detail, hybrid behavioral setups)
were double-checked through secondary
review to ensure consistency and minimize
subjectivity in the measures.

The multi-stage screening procedure ensures

that the final body of literature, which is part of

this survey, is methodologically reliable and
strictly relevant to the intersection of AR-based
behavioral elicitation, skeleton-driven motion
analysis, and transformer-family modeling. By
narrowing selection increasingly from the
keyword filtering to the full-text evaluation and
eligibility checking, the selection process
minimizes the bias and prevents inclusion of
studies that don't have the empirical rigour or
that don't align with the research questions.

This approach to structuring a set of studies

provides a clean, validated set on which the

synthesis in the next section can be constructed.
3.5.Synthesis Approach

A well-organized synthesis approach was

required to combine the wide variety of

research in the fields of AR-based behavior
tasks, skeleton-based movement
representations, and  transformer-based
modeling approaches. Because the included
studies span disciplines such as clinical science,
computer vision, AR interaction design, and
deep learning research, a common analytical
framework is needed to derive meaningful
patterns and answer the survey's research
questions. This section describes the
methodology employed to categorise, compare,
and interpret the chosen literature, to allow a
coherent understanding of the intersections
between these domains that support the
development of a coherent understanding of
the detection of ASD. To achieve this, each of
the studies was mapped onto one of three
analytical dimensions relating to the survey

RQ's (Research Questions) 1-4. First, AR-based

ASD systems were analyzed in reference to their

task structures (e.g., gesture imitation, object

tracking, spatial navigation), hardware
platforms (e.g., Kinect, ARCore/ARKit, depth
cameras), and behavioral goals. Second, data
characteristics, joint representations,
preprocessing strategies, and types of motor
features extracted were reviewed in the
skeleton-based ASD studies. Third, models of
the transformer family were synthesized taking
into consideration the architecture type (Vision
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Transformers, spatiotemporal transformers,
graph transformers, or hybrid CNN-ViT
structures), tokenization formats, attention
mechanisms, and evaluation methodology. To
specify the synthesis process, the studies
included were then classified into three fields of
analysis with respect to their primary
contribution to methodology: (i) AR-based
behavioral elicitation systems, (ii) skeleton-
based movement data and pose-extraction
pipelines, and (iii) transformer-based modeling
methods. All studies were grouped into one or
more categories based on the introduction of a
new AR task paradigm, the presentation of
structured skeletal motion data, or the
application of a modeling method to the
analysis of movement in ASD. In this
categorization, a structured comparison was
possible according to the research questions of
the survey. In this way, it was able to support
the necessity to guarantee the integration of
insights from heterogeneous fields in a
coherent manner. An additional flow diagram is
presented to depict this classification process
and visualize the idea of how the studies moved
in the direction of first identification and
further division into domain-specific grouping
into AR systems, skeleton data, and
transformer models. Through this framework
of a structured synthesis, the survey brings
together the learnings of different fields of
research into a single perspective, paving the
way for a better understanding of the concerted
effort coming from  limb skeletal
representations, transformer-driven models,
and gameplay with AR games to tackle the
problem of ASD detection. This integrative
approach not only organizes the current
findings but also lays the groundwork for the in-
depth analysis presented in the following
chapters.

4.AR SYSTEMS FOR AUTISM
ASSESSMENT

Augmented Reality (AR) has very quickly
become one of the most promising platforms
for providing naturalistic, measurable full-body
movement behaviors to people with autism
spectrum  disorder (ASD). Unlike the
conventional assessment environment, which
is based on structured clinical tasks or lab-style
environments, AR allows immersive, game-like
interactions that encourage children to move
around freely while keeping a task structure
consistent. This puts AR in a unique position to
facilitate behavioral assessment and motor
analysis, as well as providing the early
screening - especially when paired with modern
skeleton tracking frameworks and learning-
based models [13]. This chapter provides a
review of the existing AR systems that have
been developed for ASD research, with special
emphasis on the type of interactions each can
incorporate, the types of sensors employed to

capture movement in the world, the behavioral
objectives each system aims to measure, and
the methodological gaps that have motivated
the development of AR-based ViT-driven
assessment pipelines.
4.1.AR Interaction Paradigms Used in
ASD Research
AR systems dedicated to autism assessment
usually use interaction paradigms that
encourage children to complete actions
involving whole-body responses to virtual cues,
objects, or characters [14,15]. These paradigms
fall into several recurring categories:

¢ Gesture-Imitation Tasks: Where the
child is asked to mimic poses, arm
movements, or whole-body gestures that an
avatar performs.

e Tasks of Object-Based Interaction:
AR elements (balls, shapes, targets) pop up
around the child.

¢ Navigational/spatial-complexity
Exploration Tasks: Children do physical
movements in a specific space in front of
AR overlays.

e Social-Response AR Tasks: Some
systems use AR avatars that call the child’s
name, point to objects, and give
instructions.

¢ Reward-Based AR Gameplay:
Gamified AR tasks that play animations if
the child makes the correct movement.

These paradigms show, in total, how AR can

efficiently induce reliable motor patterns

required for automated detection of ASD [16].

In Figure 1, the five primary AR interaction

categories above, identified for use in ASD

research, are summarized.

AR Interaction Paradigms
for ASD

!

Five AR Interaction Categories

| S S S S|

Gesture Object- | [Navigatio-| | Social- Reward-
Imitation Based nal/ Response Based
Tasks Interaction Spatial Tasks Gameplay
Tasks Tasks

| ! |

AR Sensors & Tracking Technologies

= Depth Cameras (Kinect, RealSense)

* RGB / RGB-D Maobile AR Tracking

+ Pose Estimation Models
{OpenPose, MediaPipe)

|

Output: Full-Body Skeleton Data

Joint Coordinates, Trajectories,
Timing., Dynamics

Fig. 1 Overview of AR interaction Paradigms
for ASD.
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4.2.Sensors Used in AR-Based ASD
Systems

AR systems for autism assessment make good
use of sensing technologies to capture full-body
movement with sufficient accuracy, temporal
resolution, and robustness for clinical or
computational analysis. The selection of the
sensor directly influences the quality of the
extracted skeleton data, the description of
details in joint trajectories, and the generic
suitability of the system overall for ASD-related
tasks, not least because autistic children may be
in unpredictable motion, speed, and even
irregular motion profiles. This section provides
an overview of the most common sensing
platforms for AR-based ASD-related research
and notes the strengths and limitations of each
[17].

Depth Cameras (as mentioned above,
e.g., Microsoft Kinect, Intel RealSense) :
Depth cameras are the most popular type of
sensor for AR-for-ASD systems because they
provide high-quality 3D joint information,
robust skeletal tracking, and good resistance to
lighting differences. Specific examples of the
applications of Kinect-based systems include:
gesture imitation, movement copying, and
balance tasks[18,19].

RGB -D Sensor Incorporated as AR
Glasses / Mobile AR Platform: Modern AR
systems (ARKit, ARCore) use body trackers,
which are based on camera data, to estimate the
2D or pseudo-3D skeletons in real-time.

RGB Cameras and Models for Pose
Estimation wusing OpenPose and
MediaPipe: Some AR systems combine
simple RGB cameras with pose estimation
software to extract joint trajectories.
Multi-Sensor Fusion: Few advanced
systems use a combination of sensors (RGB +
depth) to enhance the accuracy of the joints
further.

Wearable Sensors (less ASD-focused
AR): Some research uses IMUs or other
wearable motion sensors, but they aren't as
suitable for children with ASD because autistic
children often don't like to wear devices due to
tactile discomfort and sensory sensitivities.
4.3.ASD-Related AR Tasks

AR systems intended for autism evaluation are
usually embedded systems that incorporate
structured activities within interactive, game-
like environments that motivate children to
make specific full-body movements in response
to a virtual cue. These tasks are designed to
intentionally elicit the motor patterns known to
be different in individuals with autism than in
those who are neurotypical to measure behavior
in a naturalistic, but standardized, way[20].
Below are the main types of tasks used in the AR
field of ASD research aimed at different types of
motor or cognitive behavior [21]:

Gesture-Imitation Tasks: In these tasks, a
virtual avatar or AR character performs a
movement—such as raising an arm, stepping to
the side, or assuming a full-body pose—and the
child must imitate it. Measures: Motor
imitation ability, Bilateral coordination,
Upper/lower limb timing.

Pointing, Reaching, and Locomotor
Interaction: Here, AR objects appear at
different  spatial locations (front/back,
left/right, high/low), requiring the child to
reach, tap, move toward, and swipe virtual
objects. Measures: Reaction time, spatial
orientation, and range of motion.
Target-Following and Path-Tracking
Tasks: AR cues (arrows, footsteps, glowing
markers) appear in the physical environment,
instructing the child to walk, step, or follow a
path. Measures: Gait stability, Dynamic
balance, and step timing.

Multi-Step Action Tasks: Some AR setups
require the child to combine multiple actions—
for example, raise a hand, touch a virtual object,
and step back. Measures motor planning,
sequencing skills, and transition between sub-
actions.

Socially AR Tasks: AR characters may: point
to cues, ask the child to perform actions, and
display emotional expressions. Measures: joint
attention and social response time.
Reward-Based AR Gameplay: Many systems
embed simple rewards, such as animations,
sound, stars/tokens, and character reactions.
4.4.Summary of AR-Based ASD Studies
To provide a structured understanding of how
augmented reality has been implemented in
autism research, this section will provide an
overview of the key studies that implemented
AR environments to elicit full-body movement
behaviors in individuals with ASD. Unlike the
conceptual overview in the previous section,
this section is concerned with concrete research
evidence - namely, the details of the various
studies about their specific objectives,
characteristics of participating individuals,
registration style of AR interaction, sensing,
movement tasks, and main findings. By placing
these studies into the types of tasks and sensors
discussed in Sections 4.1-4.3, this summary
provides a solid ground where one can gather
some immutable trends of the methods under
consideration, examine those systems’
effectiveness, and recognize gaps that help to
spur the development of far more advanced AR-
based assessment pipelines.
Gesture-Imitation Tasks: Gesture-
imitation studies consistently demonstrate that
AR environments enhance children’s ability to
reproduce whole-body actions. For example,
Pérez-Fuster [26] showed improved imitation
accuracy and joint attention in full-body
pictogram-guided actions. At the same time,
Amara [27] reported increased engagement and

jTikrit Journal of Engineering Sciences | Volume 32 | No. SP1! 2025

roze Al



https://tj-es.com/

Iyas Qaddara, Ahmad Sharieh, Huda Karajeh / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2831.

better hand—eye coordination during AR-based
hand-gesture tasks. Similarly, Lee [28]
observed notable gains in role-play imitation
using a Kinect-based AR avatar. These findings
collectively indicate that AR-guided imitation
tasks can reliably elicit repeatable motor
patterns and expose core ASD-related
difficulties such as delayed motor copying and
reduced body-schema awareness—patterns
clearly reflected across the Gesture-Imitation
studies summarized in Table 1.

Object-Based Interaction Tasks: Object-
based AR tasks converge on a common
outcome: improved attentional engagement
and interaction with physical—virtual objects.
Tang [31,32] demonstrated that AR-supported
object recognition improves vocabulary
acquisition and object learning, while Wedyan
[33] highlighted the need for standardization in
multi-sensor AR object systems. Koumpouros
[34] further showed cognitive accessibility
gains when autistic learners interacted with
AR-enhanced objects. Together, these studies
(listed in Table 1) underscore that object-based
AR tasks are effective at drawing and sustaining
attention while eliciting fine-motor planning
sequences, making them particularly useful for
structured ASD motor assessments.
Social-Response AR Tasks: Social-
response AR systems integrate motor actions
with social cues, and the studies listed in Table
1 consistently show improvements in joint
attention and social-motor alignment. Cheng &
Bololia [38] synthesized multiple AR social-
interaction tasks and found consistent

improvements in following social cues, while
Liu [39] demonstrated enhanced social
communication and gaze stability using AR
smart glasses. These findings align with the
tabled results, highlighting that embedding
social agents or avatars within AR
environments generates more ecologically valid
motor responses—responses that better reflect
real-world social-motor challenges
experienced by autistic children.
Reward-Based AR Gameplay: visual and
auditory rewards increase participation,
consistency, and the quality of motor data
collected. The study by Pérez-Fuster (listed
under multiple categories due to cross-task
design) demonstrates that immediate
reinforcement promotes more stable whole-
body imitation. In contrast, others indicate that
reward-triggered movement repetition
improves data density and reduces behavioral
variability. As reflected in Table 1, reward-
driven systems achieve higher engagement
levels and produce cleaner motor sequences,
making them ideal for collecting standardized
full-body data for ASD motion analysis.

Table 1 summarises the studies reviewed in the
context of the five AR interaction paradigms.
Each entry focuses on the essential elements
within these areas, required for systematic
comparison of outcomes, such as the type of
task, the type of sensing modality, target skills,
and key outcomes. This table is the basis of the
answer to RQ1, and the lack of information in
the AR-based assessment of ASD.

Table 1 Summarize Studies in AR Interaction Paradigms.

Category Study / Citation AR Task Type Sensors Targeted Skills / Key Findings
Used Behaviors

1. Gesture- Pérez-Fuster etal.  Whole-body Depth Imitation, joint AR improved

Imitation Tasks  (2025) [26] imitation, camera / AR  attention, body imitation accuracy

Amara et al.

pictogram-guided
actions
Hand-gesture +

room

RGB camera

knowledge

Gesture recognition,

and social attention

AR increased

(2023) [27] voice AR tasks + gesture hand-eye engagement +
tracking coordination gesture learning
Lee (2021) [28] Kinect-based role-  Kinect depth  Imitation, role-play Notable
play with AR sensor skills improvement in
avatar motor copying
Alcaniz Rayaetal. VR/ARbody- Kinect Full-body movement ML classified ASD vs
(2020) [29] movement patterns NT with good
classification accuracy
Hu et al. (2025) AR emotion- Mobile AR Emotional imitation, Better recognition of
[30] driven imitation expression emotional cues
2. Object-Based  Tang et al. AR vocabulary Mobile RGB  Object learning, AR improved
Interaction (2019a) [31] with object attention engagement with
Tasks recognition objects
Tang et al. Lightweight AR Mobile Object recognition Faster learning of
(2019b) [32] object detection camera new vocabulary
Wedyan et al. AR system review  Mixed Object-interaction, AR is promising, but
(2020) [33] + prototype Sensors recognition needs
standardization
Koumpouros AR tools for Mobile Object interaction, AR enhanced
(2025) [34] autism devices basic motor cognitive accessibility
coordination
3. Navigational =~ Lee & Huang AR + MR map- Kinect / MR Social cues, spatial Improved sequencing
/ Spatial AR (2025) [35] based navigation sequencing and cues following
Tasks
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McMahon et al. AR navigation for =~ Mobile AR Real-world Increased
(2015) [36] employment navigation independence and
planning
Fridhi et al. Geospatial AR Mixed Spatial-motor Better exploration
(2020) [37] exploration VR/AR integration and direction
following
4. Social- Cheng & Bololia Systematic review  Various Joint attention, AR improves social
Response AR (2024) [38] of AR social tasks social cues interaction
Tasks consistency
Liu et al. (2017) AR smartglasses AR glasses Social High feasibility +
[39] system communication, child compliance
gaze
Syahputra et al. AR social stories Mobile AR Social rules, social Improved story
(2018) [40] understanding comprehension
Nekar et al. Multiplayer AR AR tablet + Social + cognitive Significant social-
(2022) [41] dual task SEensors motor cognitive gains
Rega et al. (2018) AR motivation Mobile AR Motivation, AR increased
[42] enhancer engagement willingness to
participate
5. Reward- Williams & VR/AR reward- VR + Positive Increased
Based AR Chandramouli training sensors reinforcement, engagement +
Gameplay (2025) [43] communication response stability
Nekar et al. Cognitive-motor AR game Cognitive control, Reduction in
(2022) [44] AR game RRBs repetitive behaviors
Brandio et al. AR gamebook Mobile AR Motivation, Improved task
(2015) [45] reading/action initiation
coupling
Bhatt et al. (2014) AR game therapy Mixed Engagement, basic AR games increased

[46]

Sensors

motion

participation

As shown in Table 1, the five categories of AR
interaction exhibit clear patterns in the
approaches used across studies to elicit motor
and social behavior for the assessment of ASD.
Tasks of gesture imitation demonstrate a good
consistency across the literature, with most
studies focusing on coordination, timing, and
joint synchronization, key signs of the ASD-
related motor atypicalities. Object-based
interaction and locomotor navigation tasks
tend to utilise a wider range of whole-body
motions and are suitable for analysing
vasomotor integration and dynamic balance.
5.SKELETON-BASED ASD DETECTION
The skeleton-based method for ASD detection
has become one of the most promising signals
for the acquisition of objective and quantitative
indicators of autistic motor behavior. Instead of
relying on subjective observation or manual
rating scales, skeleton analysis takes the full-

Raw AR
Gameplay /
Video Stream

—>

body movement. It converts it into a structured
and joint-level data - in other words, it tracks
how each limb is moving, aligning, accelerating,
and coordinating with time. Because autistic
people tend to have measurable differences in
timing, fluidity, balance, gait, postural control,
and the synchronization of the joints, the
trajectories of the skeleton are also a rich source
of behavioral information that is both
standardized and unobtrusive [47,48]. This
chapter provides an overview of the current
state of the art in skeleton-based ASD detection,
covering available datasets, movement tasks for
motor  elicitation, feature-representation
methods, preprocessing pipelines, and the
limitations of these datasets. Together, these
components make up the structural backbone
of the transformer-based movement analysis
investigated in the next chapter. Figure 2 shows
the Skeleton-Based ASD Detection Pipeline.

Preprocessing Model Input
(Filtering, — (Transformer o
Normalization) ML)

!

Joint Trajectories
/Features

Fig. 2 Skeleton-Based ASD Detection Pipeline.
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5.1.Datasets

Skeleton-based ASD detection requires full-
body movement data to be available, of high
quality, and of a specific structure. Due to the
subtlety,  heterogeneity, and  context-
dependence of autistic motor behavior, high-
resolution joint trajectories across a range of
tasks, participants, and movement conditions
are important for data sets. Yet the field is
plagued by having far too few publicly available
datasets of autistic people, and most were
originally designed for more general human-
action recognition, which are not intended for
clinical assessment. This section reviews the
datasets that are currently used for the
skeletons in a way related to ASD. It makes a
distinction between (i) datasets that are
converted to use specifically for ASD, (ii)
general human movement data sets that are
frequently adopted for model pretraining, and
(iii) custom-built in-house data sets that are
designed for small-scale clinical usage.
5.1.1.ASD-Specific Skeleton Datasets
ASD-specific skeleton datasets directly capture
the full-body motion of autistic children during
controlled and naturalistic tasks, yielding joint-
level trajectories suitable for computational
movement analysis. Table 2 presents the main
datasets available in the literature for ASD
research.

5.1.2.RRB-Based Skeleton Datasets
Repetitive and stereotypical behaviors (RRBs),
e.g., hand flapping, rocking, and cyclic
movements of a particular limb, are among the
most typical motor patterns observed in ASD.
Skeleton-based datasets targeted at RRBs yield
useful information about the temporal
regularity, amplitude, and spatial repetition of
these behaviors such that machine learning
models can recognize stimming patterns
directly from the joint trajectories. The
following studies are primary efforts made to
capture and analyze RRB movements by using
pose estimation and skeletal tracking.
5.1.3.Gait & Full-Body Movement ASD
Datasets

Gait-based locomotor patterns for the whole
body are another major source of motor
signatures associated with ASD. Datasets in this
category are concerned with walking cycles,
balance control, stride variability, and global
coordination; in many cases, obtained via depth
cameras or a motion capture system. These
datasets offer rich temporal-spatial joint
information for the quantitative analysis of the
postural stability and movement variability of
autistic individuals.

5.1.4.Markerless Pose-Estimation
Datasets (Open Pose/Validation)
Markerless pose estimation algorithms extract
joint lesions in the form of skeletal trajectories
directly from RGB no-deep-sense video. These
datasets are important because they closely

reflect the real-world conditions of AR-based
assessment, where children move freely, and
only a single camera may be available. The
following studies are among the markerless
datasets and validation efforts that are key to an
ASD motor behavior analysis.

5.2.Movement Tasks

Skeleton-based ASD studies use a wide range of
movement tasks to elicit a motor pattern that
can be analyzed from joint-level movement
trajectories. Each task category focuses on
specific aspects of motor coordination, timing,
posture, and repetitive behavior.
Understanding these types of tasks is crucial
before the features and preprocessing steps of
ASD movement classification can be defined.
Figure 3 shows the Movement Task Categories
Used in Skeleton-Based studies of ASD.

Types of Movement Tasks

GAIT GESTURE
| TASKS | IMITATION
Natural or structured J TASKS

walking trials Replicating

predefined
movements

FREE-
MOVEMENT/
NATURALISTIC
TASKS
Unstructured or
spontaneoous
actions

Fig. 3 Movement Tasks.

5.3.Skeleton Features

Skeleton-based ASD studies use a variety of
motion features derived from joint trajectories
to describe motor coordination, temporal
stability, and spatial consistency. These
features provide quantitative representations of
gait, gesture execution, upper-limb control, and
repetitive behavior. The following categories
summarize the most commonly used feature
types in the literature on skeleton analysis in
ASD, as shown in Figure 4.

Joint
Positions
Coordinate
Features

Joint Angular
and Kinematic
Features

Pairwise
Distances

Frequency/

Spectrral : and .

Features egmen
Skeleton Lengths
Features

Temporal-
Dynamics
Features

Frequency/
Spectica
Features

poral and poral and
Gait-Specific | Gait-Specific
Metrics Metrics

Fig. 4 Skeleton Features.
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In summary, the range of features of skeleton
use goes from the raw implementation of joint
coordinates to the advanced implementation of
relational or frequency-domain features. Each
feature category involves social and unique
aspects of how kids with ASD move, which form
the basis for the preprocessing and feature
engineering steps outlined in the next section.
5.4.Preprocessing

Raw skeleton data obtained from RGB cameras,
depth sensors, or markerless pose estimation
models often contain noise, missing joints,
variable frame rates, and variable sequence
lengths [49]. Preprocessing is thus admitted to
be crucial for the purpose of transforming the
heterogeneous motion recordings into clean,
standardized input that is ready to be fed into
the feature extraction and the transformer-
based modeling. Figure 4 provides an overview
of the (typical) preprocessing steps applied to
skeleton-based ASD datasets, including
missing-joint  handling, smoothing and
normalization, temporal alignment, sequence
segmentation, and data augmentation. The
following steps summarize the most common
preprocessing strategies that are used across
the skeleton data sets with a connection to the
study of ASD:

RN o Bt

Temporal
Alignment

( J
= e

Skeleton Preprocessing Pipeline

- Segmentation &>

Fig. 5 Preprocessing Pipeline.

Before discussing dataset limitations, here is an
integrated summary of all the datasets of
skeletal-based ASDs included in this survey.
Table 2 summarizes the comprehensive
coverage of available datasets by bringing
together ASD-specific datasets, datasets
specifically about repetitive behaviours,
datasets specifically about gait, and datasets on
markerless pose estimation. This unified
tabulation highlights the diversity of sensing
modalities, participant experience, and motor
tasks across the existing literature and serves as
a useful reference point for understanding
methodological differences before exploring
their limitations.

Table 2 Unified Skeleton-Based ASD Dataset Summary.

Dataset Study Year Sensor / Participants Task Type Notes Publicly
Type Extraction Available
Liet al. [50] 2023 RGB + Depth + ASD children  Free-play, Multimodal YES
Skeleton therapy dataset
Zhang et al. 2021 Pose Estimation (2D)  ASD children  Gesture LSTM- YES
[51] imitation based
Al-Jubouriet 2020 Kinect v2 (3D) ASD children  Gait Structured  YES
al. [52] dataset
Muty & 2016  Pose Estimation ASD children ~ Arm- EarlyRRB  YES
Azizul [53] flapping
Type1— Shin et al. 2025 Pose Estimation ASD children  Motor tasks Dual- YES
ASDj [54] stream DL
Specific Zahan et al. 2023 Pose Estimation ASD/Non- Gait + Large YES
[55] ASD gesture dataset
Yazdi et al. 2024 Kinect ASD children  Gait Spatial NO
[56] temporal
Paulo et al. 2025 RGB+Depth+Skeleton ASD Motor tests Clinical NO
[57] individuals
Type 2 — Lemler et al. 2025 Post-hoc Skeleton ASD children = Mannerisms  Multi-label NO
RRB [58]
Muty & 2016  Pose Estimation ASD children  Arm- RRB YES
Azizul [53] flapping
Linetal. [59] 2025 Robot vision ASD children  Body Robot- YES
language assisted
Type 3 — Goldthorpet 2025 Motion-capture ASD/Non- Gait Variability = NO
Gait al. [60] ASD
Wuetal. [61] 2024 Markerless tracking ASD children  Gait Clinical YES
Type 4 — Kalam et al. 2024 OpenPose ASD/Non- General Video- NO
Markerless [62] ASD movement based
Anderson et 2025 Markerless gait Toddlers Gait Validation NO
al. [63]
Barahona[64] 2025 Open-source pose Infants Arm motion  Tracking NO

5.5.Dataset Limitations

Although this new and greater access to
skeleton-based ASD datasets provides a
significant improvement, it is still limited in
several ways, which have not allowed for
generalisation of the models or diagnostic

validity. To begin with, the available datasets
tend to be very small, including fewer than 50
people with autism, leading the a loss of
statistical power and the failure of deep
learning models to trigger learning across the
full range of motor variability. Second,
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numerous datasets are biased in terms of
demographics, particularly with respect to age,
gender, and levels of ASD severity. As a result,
biased representations of motion and,
consequently, may not be generalizable in other
subpopulations. The other great limit is that the
composition of senses one to themselves is very
different. Data obtained wusing Kinect,
OpenPose, motion capture laboratories, and
custom-engineered depth cameras differ
enormously in the definition of joints, sampling
rate, noise level, and coordinate system. These
discrepancies make the comparison of various
studies and the training of single models
without a significant amount of preprocessing
more difficult. A few are also task-specific (e.g.,
gait-only, arm-flapping-only), which constrains
the range of motor behaviors that can be
studied with them and the creation of holistic
classifiers of ASD movements. Lastly, each
dataset has a different level of annotation
quality. Others are founded on the manual
tagging of motion episodes or stimming
incidences, whereas others are linked with
feeble or crude tags when reducing the accuracy
of supervised study. The combination of these
constraints demonstrates the need not only to
use standardized acquisition procedures, but
also to use larger and more varied samples and
rich, multi-task skeleton datasets in future
studies of ASD movement.

6. TRANSFORMER MODEL TAXONOMY
Among the latest developments in transformer-
based architectures has come a fundamental
restructuring of the skeleton-based movement

analysis field, providing the skeleton-based
motor behavior researchers with potent ways to
model whole-body motor behavior with autism
spectrum disorder (ASD). A transformation of
local spatial patterns or short-term time
relations, as is the case with deep-learning
models such as CNNs, RNNs, or graph
convolutional networks, transformers use self-
attention mechanisms that are capable of
jointly modelling long-range dependencies and
long-range time dynamics on a global scale. The
latter is especially applicable in the case of ASD
detection, where subtle anomalies in
coordination, timing, balance, Dbilateral
synchronization, and posture are observed in
long sequences of movements. To offer the
systematic overview of this new domain, this
chapter offers a taxonomy of the transformer-
based methods employed to analyze the ASD-
related skeleton, grouping the literature in five
broad categories: Vision Transformers,
Spatiotemporal Transformers, Graph
Transformers, Hybrid = CNN-Transformer
models, and Self-Supervised or Pertained
Transformer models as shown in Figure 6. We
summarize representative studies in each
category in Table 3. Altogether, the literature
review has shown that transformer-based
models have great potential in ASD analysis,
especially in cases when both temporal and
structural data are considered. Table 4
Comparative Summary of AR, Skeleton, and
Transformer Approaches in ASD Movement
Assessment.

' N N N N\ N
Vision Spatiotemporal Graph Hybrid CNN- Self-Supervised
Transformers Transformers Transfermers Transformer or Pretrained
Models Transformers
. J VAN J SN J
Fig. 6 Transformer Model Taxonomy.
Table 3 Summary of Transformer-Based Approaches for ASD Analysis.
Category Study Data Type Task Key Outcome
Vision Shin,et al. (2025)[65] Facial images ASD classification ViT outperformed CNNs in
Transformer spatial feature extraction
Spatiotemporal ~ Gupta et al. (2025)[66] Multi-modal ASD severity Improved robustness through
Transformer behavioral assessment spatiotemporal attention
Graph Zhang et al. (2023)[67] Skeleton action data Action recognition Graph-aware attention captured
Transformer (relevant to ASD) joint dependencies
Hybrid (CNN-  Anand & Kini (2024)[68] Clinical + ASD classification The hybrid model outperformed
Transformer) Neuroimaging the standalone CNN/Transformer
Multi-Task Gao et al. (2024)[69] Behavioral/clinical ASD detection across Multi-task learning improved
Transformer multiple tasks generalization
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Table 4 Comparative Summary.

Dimension AR-Based Systems Skeleton-Based Analysis Transformer-Based Models

Engagement Very high; interactive, Moderate; passive capture without Low by itself; it depends on the

Level motivating, suitable for active interaction upstream data source
children with ASD

Data Low; tasks vary widely, Medium; structured joint coordinates High requirement; needs clean,

Standardization  sensors differ, no but heterogeneous sensors (Kinect, uniformly structured sequences
consistent protocols OpenPose, MoCap)

Modeling Low to moderate; mostly Moderate; CNN/RNN/LSTM/GCN High; self-attention enables

Complexity rule-based or traditional pipelines; limited long-range  global temporal—spatial
ML modeling reasoning

Clinical Promising but inconsistent; Growing; used in gait and motor- Emerging; strong potential but

Readiness limited formal clinical control studies but not standardized still exploratory in ASD research
validation

Key Limitations Lack of standard tasks; Small datasets; demographic bias; Requires large, clean datasets;
variable environments; different joint definitions and frame sensitive to noise; high compute;
inconsistent recording  rates; task-specific few clinical benchmarks
quality available

7.PROPOSED PIPELINE aims at the creation of credible behavioral

This paper suggests the development of an
integrated pipeline that incorporates the
augmented reality (AR) gameplay, movement
capture using skeletons, and classification
based on transformers to aid in autism
detection. The pipeline will fill in the gaps in the
literature, especially the gap in the
unstandardized data on motor tasks and the
paucity of more advanced temporal and
structural modeling approaches to movement
analysis in relation to ASD. By shaping the
participants to perform the structured AR tasks
and converting the recorded movement
sequences to the representation that
transformers can accept, the proposed system

R‘!

AR Gameplay

indicators and at preserving the engaging and
child-friendly environment. The suggested
pipeline combines the AR-motor task with
whole-body skeleton tracking and transformer
analysis, offering a stepwise workflow for
evaluating motor movement in ASD. During the
gameplay, participant actions are captured as
indicated in Figure 7, and their sequence is
converted into skeletal joint sequences and
processed, which is then classified using a
transformer model. The design enables
standardized data collection in an engaging
environment and the analysis of movement
patterns.

Skeleton Preprocessing Tokenization Classification
Extraction Output
l * I ] J
Preprocessing Transformer

Fig. 7 Proposed Pipeline.

7.1.AR Gameplay Design

It is suggested that the AR game be created to
encourage children to perform certain upper-
and lower-limb movements in a controlled yet
naturalistic environment. The gameplay
features will encourage the users to reach,
point, step, imitate gestures, and follow
movement patterns, allowing a gathering of
consistent motor data among the participants.
Engagement and anxiety will be ensured
through visual and auditory feedback [70]. In
contrast, the difficulty of tasks will be altered
dynamically based on the performance of the
user to support people of different levels of
ability. The AR setting tries to provide
equilibrium between structure and playfulness,
where they can ensure meaningful motor

patterns are captured without affecting the
comfort of the users.

7.2.Data Collection

Video streams will be captured during the
gameplay sessions of ASD and typically
developing participants by the system. The
protocols to be used in each session will remain
constant to maintain uniformity across
individuals, including the task sequence, time
duration, and distance. The sample will
comprise 30 participants (15 with ASD, 15
controls), consistent with the recent literature.
Data collection will occur before acquiring
ethical approval and parental consent. All
videos will be safely stored and anonymized to
ensure the privacy of participants.
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7.3.Skeleton Extraction

The body joints will be tracked to provide
upper- and lower-limb and trunk movement
with the help of skeleton data being extracted at
the level of recorded videos based on either a
Microsoft Kinect camera or a similar pose
estimation system. The skeleton data will be
used to provide full-body movement at the
frame rate, using the 25-joint Kinet model.
Such representation allows organizing the
analysis of coordination patterns and mobility
dynamics.

7.4.Preprocessing

Noise filtering, joint coordinates normalization,
and sequence-to-sequence temporal alignment
will be part of the preprocessing. Missing or
fluctuating joint estimates will be interpolated,
and segments with low tracking quality will be
removed. The purpose of these steps is to
enhance the reliability of the data as well as
minimize sensor noise.

7.5.Tokenization

The skeleton sequences obtained after
processing are converted into a form that could
be read directly by the transformer model. The
movement records are initially broken into
small time clusters, which in turn record a short
continuous part of the movement of the child.
In each of the segments, a video frame is an
individual token. The 3D joint positions of that
frame are flattened into a solitary feature vector
and are fed through a learnable projection layer
that transforms it into a small numerical
embedding that is processed by transformers.
Positional information is then added to make
the model aware of the sequential arrangement
of frames, and an optional classification token
can be added at the start of the sequence to
provide an overview of the entire segment. The
resulting design, based on one token per frame
and partially overlapping segments, will ensure
that the transformer can capture a wider range
of patterns over time, relationships in the world
between joints that are distant to one another,
and low-level timing anomalies. The latter
features of the tokenization strategy render it
particularly suitable for the analysis of ASD
motor behavior, where the lack of proper
coordination, weak time consistency, and
distributed joint dependency is frequent over
large parts of the movement routine.

7.6. Transformer Model

The array of proposed classifications will utilize
a transformer-based framework that is
developed to learn long-range temporal
dynamics and the interactions among limbs.
The self-attention systems will help the model
to detect the lack of coordination, timing
disparities, and unusual movement
organization, which is commonly linked to
ASD. It will train the model to differentiate
between the ASD and control groups using
extracted movement features, leveraging

transformer capabilities described in recent
literature.

7.7.Evaluation Plan

The system will be tested based on the normal
performance measures, including accuracy,
precision, recall, and Fi-score. The cross-
validation will be done to determine the
generalization, and it will be compared to the
baseline models that include CNN or LSTM
architectures. The objective of the evaluation is
to know whether the transformer-based
representations can be used to achieve
quantifiable gains in the ASD classification.
7.8.Summary

Overall, the suggested pipeline is a combination
of AR-driven motor activity and transformer-
enhanced movement tracking, which will be a
systematic and innovative method of assessing
autism. The system should produce significant
behavioral understanding and help create more
useful computational means for ASD
assessment.

8.COMPARATIVE ANALYSIS

In this chapter, the author discusses the three
main directions of research considered to take
place in the context of this survey: AR-based
systems, skeleton-based, and transformer-
based models. It aims to determine their
respective strengths and weaknesses and to
emphasize how their results are applied to the
development of the proposed pipeline. This
section summarizes the lessons learned in the
preceding chapters, explains the
methodological gap the present research should
address, and provides the rationale for
combining the AR-guided tasks with the full-
body skeleton capture and a transformer
architecture.

8.1.Research Directions Comparison
AR-based systems have shown considerable
potential to raise the engagement and
motivation levels of children with ASD,
especially by using interactive and gamified
systems. Nonetheless, most AR solutions have
no standardized data acquisition, which leads
to the inconsistency of movement records and
the inability to apply them to objective
evaluation. Conversely, skeleton-based
techniques offer positional descriptions of
motor behaviors and can be used to make
quantitative assessments of coordination,
posture, and movement performance.
However, most of these approaches are based
on conventional classifiers or sequence models
like CNNs or LSTMs, which do not
conceptualize long-range temporal interactions
and complicated inter-limb interactions.
Transformer  models overcome  these
limitations in that they provide better
performance in the context of modeling the
temporal patterns and structural dependencies
between joints. The literature consulted in
Chapter 6 indicates that the spatiotemporal
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transformer and the graph-based transformer
are superior to traditional models for detecting
abnormal movement patterns associated with
ASD. Nonetheless, these models require high-
quality, consistent input data and are not often
implemented in controlled task environments,
which limits their usability.

8.2.Integrated Insights

The comparative results have shown that there
is no single direction of research that can offer
a comprehensive solution to ASD movement
assessment. AR-based solutions are the most
effective for engagement; skeleton-based
solutions provide quantitative analysis of
muscular movements but have less developed
modeling; and transformer-based models have
excellent representational capability but
heavily rely on high-quality inputs. Such
strengths can be used to overcome some of their
weaknesses, suggesting that a synthesised
framework may yield more valid and apparent
assessment results.

8.3.Recommendations to the Proposed
Pipeline

As a result of this investigation, the pipeline
proposed in Chapter 7 is directly aligned with
the most promising research direction. The
system guarantees a controlled and
standardized data collection and keeps the
participants motivated using AR-guided tasks.
Whole-body skeleton capture offers structured
data on movement that is wuseful in
computational modeling, and transformer-
based structures allow modeling of both
temporal and structural dependencies. Such a
combination addresses gaps identified in the
current literature and provides a unified
method that balances usability and analytical
rigor. In general, this course of comparison
shows that current available methods offer
quality but incomplete solutions to the
assessment of ASD movement. AR systems
enhance interactivity without structured data,
skeleton-based methods have a quantitative
representation of movements but only limited
modeling techniques, and the transformer-
based models allow more complex analysis but
demand steady inputs. All these restrictions
underscore the necessity of a combined
framework, which is at the foundation of the
troubles in the following chapter.
9.CHALLENGES AND LIMITATIONS
Although the integration of AR-guided motor
tasks, fully capturing the skeleton, and
transformer-based analysis takes a promising
direction, there are several challenges and
limitations. First, not many high-quality
records of movement among children with ASD
exist, because recruiting, seeking ethical
approval, and control of data gathering take
much time and need organization with clinical
and educational facilities. Such a lack of
standardised data can affect the generalisability

of models and limit large-scale validation.
Second, skeleton-tracking systems like Kinetect
or pose-estimation systems may introduce
noise, occlusions, or missing joints, especially
when children behave chaotically or lose
attention during tasks. Such tracking anomalies
can decrease the accuracy of movement
features being extracted and can affect the
performance of transformers, which also
depends on a reliable temporal and structural
input. Third, behavioral heterogeneity among
the ASD population is a given challenge.
Variations in cognitive capacity, motor
dexterity, attention span, and sensory
sensibilities might also affect the performance
of the tasks, and it may not be easy to determine
a common pattern of movement among the
participants. Due to these factors, models may
not fully represent the full range of ASD-related
motor characteristics. Lastly, the suggested
pipeline is yet to be proven empirically, and the
future application and appraisal will determine
its efficiency. The assessment of real-world
performance, usability, and clinical relevance,
especially across a variety of settings, needs to
be further conducted.

10.FUTURE DIRECTIONS

The work will be conducted in the future to
apply and verify the proposed AR-skeleton-
transformer pipeline and implement it in the
real-world environment. Sensory modalities
can be extended by including audio or facial
expression analysis to increase the capability of
the system to detect multimodal behavioral
signals that are linked to ASD. The deepening of
the sample of participants and longitudinal
research may also enhance the generalizability
of the model and help to determine the
developmental patterns across the years. The
metrics used in clinically aligned evaluation
protocols must enable the comparative,
meaningful representation of the
computational model relative to pre-existing
diagnostic practices. This involves correlation
of model output with standardized clinical
scales like ADOS, ADI-R, or SRS-2 so that
atypicality of motor manifestation at the
predicted level can be said to be in line with
severity scores that are clinically sound. Also,
ASD motor subtypes should be evaluated
sensitively in that they determine patterns
between bilateral coordination problems, gait
abnormalities, the lack of postural stability, and
repetitive motor behaviours, and not give a
single global prediction. Longitudinal
validation should also be included: it is
necessary to test the models with movement
data measured on several sessions to confirm
their stability over time and be able to observe
the changes in development or the effect of the
intervention. More measures can be tested,
including retest reliability, agreement with
clinician-rated video measures, and the ability
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to identify small within-child differences
associated with familiar clinical indicators. The
combination of these elements guarantees the
statistical ~ accuracy @ of  computational
predictions, as well as their clinical
interpretability, clinical reproducibility, and
true relevance to real-world ASD assessment
procedures.

11.CONCLUSION

This survey has reviewed three significant
research directions in the field of assessing the
movement of ASD, which are AR-based
systems, skeleton-based analysis, and
transformer-based models. AR solutions are
highly interactive but lack standardized data-
acquisition procedures. In contrast, skeleton-
based methods offer organized motor data at
the expense of traditional models with limited
ability to model the complex temporal and
inter-joint relationships. A transformer-based
strategy presents better modeling abilities,
especially long-range temporal-spatial
relationships, though it needs clean and
consistently structured input data, which most
present ASD datasets lack. Together, these
results indicate the obvious methodological
gap: there is no current framework that can
combine the control of task conditions, full-
body behavior in an ecologically valid way,
measure standard bone motions, and use the
advanced transformer architectures to
understand the movement deeply. The
proposed AR-Skeleton-Transformer pipeline
directly fills this gap by providing a well-
controlled and clinically equivalent behavioral
elicitation with the use of AR tasks, generating
high-quality and standardized skeleton data
that can be used in further modeling, and using
transformer models to obtain rich and
temporal-structural biomarkers that are not
accessible in other modalities. This combined
workflow is not only able to overcome the space
between the existing studies of ASD movements
but also offers a scalable, reproducible, and
clinically promising basis for next-generation
computational ASD diagnostics, making the
pipeline a formidable and visionary future
research choice.

CREDIT AUTHORSHIP CONTRIBUTION
STATEMENT

Iyas Qaddara: Writing original draft, survey
methodology, background, proposed pipeline,
formal analysis, and comparison analysis.
Ahmad Sharieh: Supervision, review, and
editing. Huda Karajeh: Supervision.
DECLARATION OF COMPETING
INTEREST

The authors declare that they have no known
competing financial interests or personal
relationships that could have influenced the
work reported in this paper.

ACKNOWLEDGEMENTS

The authors would like to thank the

administration of Jordan University for

providing all forms of support to the
university’s Students, especially in scientific
research.

REFERENCES

[1] Hirota T, King BH. Autism Spectrum
Disorder: A Review. JAMA 2023;
329(2):157-168.

[2] Su Q, Wong OW, Lu W, Wan Y, Zhang L,
Xu W, Ng SC. Multikingdom and
Functional Gut Microbiota Markers
for Autism Spectrum Disorder.
Nature Microbiology 2024; 9(9):2344—
2355.

[3] BartaS, GurreaR, Flavian C. Augmented
Reality Experiences: Consumer-
Centered Augmented Reality
Framework and Research Agenda.
Psychology &  Marketing  2025;
42(2):634—-650.

[4] Khowaja K, Banire B, Al-Thani D, Sqalli
MT, Aqle A, Shah A, Salim SS.
Augmented Reality for Learning of
Children and Adolescents with
Autism Spectrum Disorder (ASD): A
Systematic Review. [EEE Access 2020;
8:78779-78807.

[5] Taha BA, Addie AJ, Kadhim AC, Azzahran
AS, Haider AJ, Chaudhary V, Arsad N.
Photonics-Powered Augmented
Reality Skin Electronics for
Proactive Healthcare: Multifaceted
Opportunities. Microchimica Acta
2024; 191(5):250.

[6] Smadi TA, Al-Maitah M. Artificial
Intelligent Technology for Safe
Driver Assistance System.
International Journal of Computer Aided
Engineering and Technology 2020; 13(1-
2):183-191.

[7]1 Omarov N, Omarov B, Azhibekova Z,
Omarov B. Applying an Augmented
Reality Game-Based Learning
Environment in Physical Education
Classes to Enhance Sports
Motivation. Retos 2024; 60:269—278.

[8] Stalheim OR, Somby HM. An Embodied
Perspective on an Augmented
Reality Game in School: Pupil's
Bodily Experience Toward
Learning. Smart Learning
Environments 2024; 11(1):24.

[9] Roggio F, Trovato B, Sortino M, Musumeci
G. A Comprehensive Analysis of the
Machine Learning Pose Estimation
Models Used in Human Movement
and Posture Analyses: A Narrative
Review. Heliyon 2024; 10(21): €39977.

[10] Phalke DA, Kotipalli V, Ranjan P, PawarY,
Bharat P. Artificial Intelligence in
Fitness: Pose Estimation and

jTikrit Journal of Engineering Sciences | Volume 32 | No. SP1! 2025

rage A0



https://tj-es.com/

j Iyas Qaddara, Ahmad Sharieh, Huda Karajeh / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2831. :‘

Movement Correction. Cureus
Journals 2025; 2(1): 1-12.

[11] Kim JW, Khan AU, Banerjee 1.
Systematic Review of Hybrid Vision
Transformer Architectures for
Radiological Image Analysis. Journal
of Imaging Informatics in Medicine 2025;

37(4): 1-15.
[12]Ibadi H, Lakizadeh A. ASDvit:
Enhancing Autism Spectrum

Disorder Classification Using Vision
Transformer Models Based on Static
Features of  Facial Images.
Intelligence-Based Medicine 2025; 11:
100226.

[13] Astafeva D, Syunyakov T, Shapievskii D,
Malashonkova E, Vlasov A, Shport S,
Smirnova D. Virtual
Reality/Augmented Reality (VR/AR)
Approach to Develop Social and
Communication Skills in Children.
Source Not Fully Specified 2024.

[14] Habboush A, Elzaghmouri B.
Methodological Integration of
Machine Learning and
Metaheuristics for Seismic Risk
Assessment of Irregular Buildings.
Asian Journal of Civil Engineering
2025:1—16.

[15] Yang YM, Chang KC, Luo JN. Hybrid
Neural Network-Based Intrusion
Detection  System: Leveraging
LightGBM and MobileNetV2 for IoT
Security. Symmetry 2025; 17(3):314.

[16] Alnabhan M, El-Qasass A, Atoum M, Al-
Haija QA, Habboush A. A Lightweight
Cryptographic Solution for
Enhanced Image Security.
Engineering, Technology & Applied
Science Research 2025; 15(5):27052—

27059.
[17] Al Smadi T. Application of Fuzzy Logic
to Cognitive Wireless

Communications. Journal of Advanced
Sciences and Engineering Technologies
2019; 2(03): 2228-2234.

[18] Zhou Y, Rashid FAN, Mat Daud M, Hasan
MK, Chen W. Machine Learning-
Based Computer Vision for Depth
Camera-Based Physiotherapy
Movement Assessment: A
Systematic Review. Sensors 2025;
25(5):1586.

[19] Qaddara I, Alraba’nah Y. Enhancing
Requirements Classification Using
Machine Learning Techniques. SN
Computer Science 2025; 6(6):649.

[20]Khowaja K, Banire B, Al-Thani D, Sqalli
MT, Aqle A, Shah A, Salim SS.
Augmented Reality for Learning of
Children and Adolescents with
Autism Spectrum Disorder (ASD): A

Systematic Review. [EEE Access 2020;
8:78779-78807.

[21] Cihak DF, Moore EJ, Wright RE,
McMahon DD, Gibbons MM, Smith C.
Evaluating Augmented Reality to
Complete a Chain Task for
Elementary Students with Autism.
Journal of Special Education Technology
2016; 31(2):99—-108.

[22] Latreche K, Kojovic N, Pittet I, Natraj S,
Franchini M, Smith IM, Schaer M.
Gesture Imitation Performance and
Visual Exploration in Young
Children with Autism Spectrum
Disorder. Journal of Autism and
Developmental Disorders 2024:1—14.

[23]Van der Hallen R, Evers K, de-Wit L,
Steyaert J, Noens I, Wagemans J.
Multiple Object Tracking Reveals
Object-Based Grouping
Interference in Children with ASD.
Journal of Autism and Developmental
Disorders 2018; 48(4):1341—1349.

[24]Gilabert-Cerdd A, Lled6 GL, Lorenzo-
Lled6 A, Carreres AL, Pérez-Vazquez E.
Augmented Reality Promotes Social
Responses in Autism Spectrum
Disorder Subjects. Education and New
Developments 2023: 424-428.

[25] Razhkou I. In-Game Reward Systems
and their Effect on the Player. 2024.

[26]Pérez-Fuster P, Herrera G, Vera L, Nadel
J, Tijus C, Lopez-Fernandez A, Leppink J.
Pictogram Room Augmented Reality
Technology Games Improve Body
Knowledge, Imitation, and Joint
Attention Skills in Autistic Children
with Intellectual Disability. Scientific
Reports 2025; 15(1):34966.

[27] Amara K, Boudjemila C, Zenati N,
Djekoune O, Aklil D, Kenoui M. AR
Computer-Assisted Learning for
Children with ASD Based on Hand
Gesture and Voice Interaction. /ETE
Journal of Research 2023; 69(12):8659—
8675.

[28]Lee 1J. Kinect-for-Windows with
Augmented Reality in an Interactive
Roleplay System for Children with
an Autism Spectrum Disorder.
Interactive Learning Environments 2021,
29(4):688-704.

[29] Alcaniz Raya M, Marin-Morales J, Minissi
ME, Teruel Garcia G, Abad L, Chicchi
Giglioli TA. Machine Learning and
Virtual Reality on Body Movements’
Behaviors to Classify Children with
Autism Spectrum Disorder. Journal
of Clinical Medicine 2020; 9(5):1260.

[30]Hu X, Jiang Y, Sun Y, Xu Z, Zheng F, Hu
X. Exploring the Effects of
Augmented Reality on the Emotion
Recognition Skills of Autistic

jTikrit Journal of Engineering Sciences | Volume 32 | No. SP1! 2025

TRy 1



https://tj-es.com/

j Iyas Qaddara, Ahmad Sharieh, Huda Karajeh / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2831. :‘

Children. Journal of Special Education
Technology 2025; 40(3):384—399.

[31] Tang TY, Xu J, Winoto P. An
Augmented Reality-Based Word-
Learning Mobile Application for
Children with Autism to Support
Learning Anywhere and Anytime:
Object Recognition Based on Deep
Learning. International Conference on
Human-Computer Interaction 2019:182—
192.

[32]Abbas AK, Ayop R, Tan CW, Al
Mashhadany Y, Takialddin  AS.
Advanced Energy-Management and
Sizing Techniques for Renewable
Microgrids with Electric-Vehicle
Integration: A Review. Results in
Engineering 2025; 27:106252.

[331Wedyan M, Al-Jumaily A, Dorgham O.
The Use of Augmented Reality in the
Diagnosis and Treatment of Autistic
Children: A Review and a New
System.  Multimedia  Tools  and
Applications 2020; 79(25):18245-18201.

[34]1Koumpouros Y. Digital Horizons:
Enhancing Autism Support with
Augmented Reality. Journal of Autism
and Developmental Disorders 2025:1—17.

[35]Lee 1J, Huang YC. Improving Social
Skills in Children with Autism
Spectrum Disorder Using
Augmented Reality and Mixed
Reality Technology Combined with
Concept Maps. Universal Access in the
Information Society 2025; 24(2):1255—
1281.

[36]McMahon D, Cihak DF, Wright R.
Augmented Reality as a Navigation
Tool to Employment Opportunities
for Postsecondary Education
Students with Intellectual
Disabilities and Autism. Journal of
Research on Technology in Education
2015; 47(3):157-172.

[37]1Fridhi A, Bali N, Rebai N, Kouki R.

Geospatial Virtual/Augmented
Environment: Applications for
Children with Pervasive
Developmental Disorders.

Neurophysiology 2020; 52(3):239—246.

[38]Cheng Y, Bololia L. The Effects of
Augmented Reality on Social Skills
in Children with an Autism
Diagnosis: A Preliminary
Systematic Review. Journal of Autism
and Developmental Disorders 2024;
54(4):1317-1331.

[39]1Liu R, Salisbury JP, Vahabzadeh A, Sahin
NT. Feasibility of an Autism-Focused
Augmented Reality Smartglasses
System for Social Communication
and Behavioral Coaching. Frontiers in
Pediatrics 2017; 5:145.

[40]1Syahputra MF, Arisandi D, Lumbanbatu
AF, Kemit LF, Nababan EB, Sheta O.
Augmented Reality Social Story for
Autism Spectrum Disorder. Journal
of Physics: Conference Series 2018;
978(1):012040.

[41] Nekar DM, Kang H, Alao H, Yu J.
Feasibility of Using Multiplayer
Game-Based Dual-Task Training
with Augmented Reality and
Personal Health Record on Social
Skills and Cognitive Function in
Children with Autism. Children 2022;
9(9):1398.

[42]Rega A, Mennitto A, Vita S, Iovino L. New
Technologies and Autism: Can
Augmented Reality (AR) Increase
the Motivation in Children with
Autism?  INTED2018  Proceedings
2018:4904—4910.

[43]Williams A, Chandramouli M. Virtual
Reality (VR)-Based Training Tool
for Positive Reinforcement &
Communication in Autistic
Children. 2025 International
Conference on Intelligent Computing and
Virtual & Augmented Reality Simulations
(ICVARS) 2025:78—82.

[44]Nekar DM, Lee DY, Hong JH, Kim JS, Kim
SG, Seo YG, Yu JH. Effects of
Augmented Reality Game-Based
Cognitive—Motor Training on
Restricted and Repetitive Behaviors
and Executive Function in Patients
with Autism Spectrum Disorder.
Healthcare 2022; 10(10):1981.

[45]Brandao J, Cunha P, Vasconcelos J,
Carvalho V, Soares F. An Augmented
Reality Gamebook for Children with
Autism Spectrum Disorders. The
International Conference on E-learning
in the Workplace 2015 2015:1—6.

[46]Bhatt SK, De Leon NI, Al-Jumaily A.
Augmented Reality Game Therapy
for Children with Autism Spectrum
Disorder. International Journal on
Smart Sensing & Intelligent Systems
2014; 7(2): 519-536.

[47] Qaddara I, Alraba’nah Y, Hiari MO.
Evaluation of SQL and NoSQL
Databases on Parallel Processing.
Engineering, Technology & Applied
Science Research 2025; 15(4):24298—
24304.

[48]Lu H, Chen J, Zhang Z, Liu R, Zeng R, Hu
X. Emotion Recognition from
Skeleton Data: A Comprehensive
Survey. arXiv preprint 2025:arXiv
:2507.18026.

[49]Qaddara I, Naffar E, Hyassat A, Kenanah
A, Alraban’Ah Y, Abualhaj MM, Alzubaidi
R. Arabic News Text
Summarization: An  Extractive

jTikrit Journal of Engineering Sciences | Volume 32 | No. SP1! 2025

rage A0



https://tj-es.com/

j Iyas Qaddara, Ahmad Sharieh, Huda Karajeh / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2831. :‘

Technique. 2025 12th International
Conference on Information Technology
(ICIT) 2025:571—576.

[50]Li J, Chheang V, Kullu P, Brignac E, Guo
Z, Bhat A, Barmaki RL. Mmasd: A
Multimodal Dataset for Autism
Intervention Analysis. Proceedings of
the 25th International Conference on
Multimodal Interaction 2023:397—405.

[51] Zhang Y, Tian Y, Wu P, Chen D.
Application of Skeleton Data and
Long Short-Term Memory in Action
Recognition of Children with
Autism Spectrum Disorder. Sensors
2021; 21(2):411.

[52] Al-Jubouri AA, Ali IH, Rajihy Y.
Generating 3D Dataset of Gait and
Full Body Movement of Children
with Autism Spectrum Disorders
Collected by Kinect v2 Camera.
Compusoft 2020; 9(8):3791—3797.

[53]Muty N, Azizul Z. Detecting Arm
Flapping in Children with Autism
Spectrum Disorder Using Human
Pose Estimation and Skeletal
Representation Algorithms. 2016
International Conference on Advanced
Informatics: Concepts, Theory and
Application (ICAICTA) 2016:1—6.

[54]1Shin J, Miah ASM, Kakizaki M, Hassan N,
Tomioka Y. Autism Spectrum
Disorder Detection Using Skeleton-
Based Body Movement Analysis via
Dual-Stream Deep Learning.
Electronics 2025; 14(11):2231.

[55]Zahan S, Gilani Z, Hassan GM, Mian A.
Human Gesture and Gait Analysis
for Autism Detection. Proceedings of
the IEEE/CVF Conference on Computer
Vision and  Pattern  Recognition
2023:3328-3337.

[56]1Yazdi SA, Janghorbani A, Maleki A.
Diagnosis of Autism in Children
Based on Their Gait Pattern and
Movement Signs Using the Kinect
Sensor. Journal of Medical Signals &
Sensors 2024; 14(10):29.

[57] Paulo JR, Sousa T, Perdiz J, Pereira L,
Vasen M, Mouga S, Castelo-Branco M. A
Multimodal Dataset Addressing
Motor Function in Autism. Scientific
Data 2025; 12(1):959.

[58]Lemler C, Kleber SK, Polzer L, Raji N,
Kitzerow-Cleven J, Kim Z, Bast N. Semi-
Automated Multi-Label
Classification of Autistic
Mannerisms by Machine Learning
on Post Hoc Skeletal Tracking.
Autism Research 2025; 18(4):833—844.

[59]1Lin WS, Peng XY, Cheng YF. Using
Intelligent Robots to Detect Body
Language and Improve Social
Development in Children with

Autism Spectrum Disorder.
International Journal of Intelligent
Robotics and  Applications  2025;
9(2):592-607.

[60]Goldthorp K, Henderson B, Yogarajah P,
Gardiner B, McGinnity TM, Nicholas B,
Wimpory DC. Increased Temporal
Variability of Gait in ASD: A Motion
Capture and Machine Learning
Analysis. Biology 2025; 14(7):832.

[61] Wu X, Dickin DC, Bassette L, Ashton C,
Wang H. Clinical Gait Analysis in
Older Children with Autism
Spectrum Disorder. Sports Medicine
and Health Science 2024; 6(2):154—158.

[62]Kalam SA, Prome TR, Ullah MA.
Machine Learning Approach for
Identification of Autism Spectrum
Disorder from Video Using
OpenPose. 2024 27th International
Conference on Computer and
Information Technology (ICCIT)
2024:1720—-1725.

[63]Anderson JT, Stenum J, Roemmich RT,
Wilson RB. Validation of Markerless
Video-Based Gait Analysis Using
Pose Estimation in Toddlers with
and without Neurodevelopmental
Disorders. Frontiers in Digital Health
2025; 7:1542012.

[64]Barahona M. Evaluation of an Open-
Source Pose Estimation Tool to
Track Infant Arm Motion. 2025.

[65] Shin J, Miah ASM, Kakizaki M, Hassan N,
Tomioka Y. Autism Spectrum
Disorder Detection Using Skeleton-
Based Body Movement Analysis via
Dual-Stream Deep Learning.
Electronics 2025; 14(11):2231.

[66]Gupta K, Aly A, Ifeachor E. Multi-Modal
Framework for Autism Severity
Assessment Using Spatio-Temporal
Graph Transformers. 18th
International Conference on Health
Informatics (HEALTHINF) 2025,

[67] Zhang J, Xie W, Wang C, Tu R, Tu Z.
Graph-Aware Transformer for
Skeleton-Based Action Recognition.
The Visual Computer 2023; 39(10):4501—
4512.

[68]Anand, Kini. Hybrid Transformer-
CNN Models for Enhanced ASD
Classification. 2024.

[69]Gao L, Wang Z, Long Y, Zhang X, Su H, Yu
Y, Hong J. Autism Spectrum
Disorders Detection Based on Multi-
Task Transformer Neural Network.
BMC Neuroscience 2024; 25(1):27.

[70]1Hiari M, Alraba'nah Y, Qaddara I. A Deep
Learning-Based Intrusion Detection
System Using Refined LSTM for DoS
Attack Detection. Engineering,

jTikn’t Journal of Engineering Sciences | Volume 32 | No. SP1! 2025

TRy o)



https://tj-es.com/

j Iyas Qaddara, Ahmad Sharieh, Huda Karajeh / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2831. :‘

Technology & Applied Science Research
2025; 15(4):25627-25633.

jTikrit Journal of Engineering Sciences | Volume 32 | No. SP1! 2025 Page E



https://tj-es.com/

