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Abstract: Early detection of autism spectrum disorder 

(ASD) increasingly relies on objective movement-based 

biomarkers. This Systematic survey explores the 

confluence of three promising areas: Augmented Reality 

(AR) gameplay for eliciting naturalistic full-body 

movement, skeleton tracking for data extraction, and 

Vision Transformer (ViT) models for analysing 

spatiotemporal movement patterns to detect ASD. This 

survey aims to summarize the current research landscape 

by considering available full-body skeleton datasets and 

transformer-based approaches, such as pure ViTs, 

spatiotemporal transformers, graph transformer variants, 

hybrid CNN-ViT models, and physics-informed 

approaches for AR systems that elicit ASD-relevant motor 

and social behaviors, and to organize them into a 

taxonomy. Our results reveal that models from the 

transformer learning family are better than traditional 

deep learning methods at all aspects of modelling 

coordination, time irregularity, and joint-dependency 

patterns related to ASD; however, this is limited due to a 

lack of AR gameplay data sets, pose-estimation accuracy, 
heterogeneity in task design, and a lack of clinically 

validated benchmarks. Building upon these results, we 

present a reference end-to-end pipeline for AR-collected 

movement analysis taking into account standardized task 

design, robust skeleton preprocessing, motion 

tokenization, and classifier through transformers and 

targeted suggestions for future research such as the 

development of shared AR-based datasets, multimodal 

fusion approaches (e.g., gaze + skeleton), self-supervised 

vital transformer pretraining with large motion datasets, 

physics-informed modeling, and clinically aligned 

evaluation protocols to ensure the development of 

scalable, robust and clinically meaningful vit-based 

autism detection systems. 
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1.INTRODUCTION
Autism Spectrum Disorder (ASD) is a complex 
neuro-developmental disorder in which there 
are chronic differences in social 
communication, sensory integration, and 
motor control. Over the past 20 years, clinical 
researchers have increasingly recognised that 
motor behavior, particularly full-body 
movement patterns, is a valuable indicator of 
the underlying mechanisms of ASD. It has been 
consistently shown that autistic individuals 
exhibit atypicalities in balance, gesture 
production, timing, coordination, postural 
stability, and whole-body motor planning. 
These differences are evident early in childhood 
and are highly informative for both screening 
and assessment, making motor behaviour one 
of the most promising objective indicators in 
the early identification of ASD [1]. Traditional 
methods for measuring motor behaviour in 
clinical settings rely on human observation, 
structured tasks, or standardised rating scales. 
While these approaches are valuable, they are 
subject to inter-rater variability. At the same 
time, children, especially those with ASD, may 
respond differently in clinical settings due to 
anxiety, unfamiliarity, or reduced engagement. 
These limitations have motivated a shift 
towards more naturalistic, technology-assisted 
assessment environments in which behaviour 
can be elicited more spontaneously, recorded 
more consistently, and analysed more 
objectively [2]. Augmented Reality (AR) 
gameplay has become a highly effective 
medium for this purpose. AR Tasks can be 
designed to elicit ASD-relevant behaviours, 
such as imitation, joint attention, gesture 
following, social orienting, and whole-body 
motor coordination, in an engaging, gamified, 
and ecologically valid environment [3]. Despite 
the potential of AR gaming, skeleton tracking, 
and transformer models, research at the 
intersection of these three remains in its 
infancy and is dispersed. Existing AR systems 
vary significantly in task design, sensing 
modalities, gameplay duration, and 
behavioural targets. Similarly, available 
datasets are limited in quantity, size, diversity, 
and clinical labelling [4]. Given this lack of 
fragmentation, there is a clear need for a 
structured, systematic synthesis that unifies the 
literature on AR-based movement elicitation, 
skeleton data representation, and transformer-
based modeling approaches for ASD detection. 
A good mapping of this new domain, however, 
can help reveal methodological weaknesses, 
identify gaps in existing datasets, highlight 
interesting transformer architectures, and, 
indeed, unravel how AR gameplay can be 
standardised to enable more consistent 
behavioural evaluation. Such synthesis is of 
special significance as the field moves towards 
clinically meaningful, scalable, and privacy-

preserving digital assessment tools [4]. To help 
fill this gap, this systematic survey provides an 
exhaustive review of AR systems deployed for 
the evaluation of ASD, complete-body skeleton 
datasets, movement representations, 
preprocessing approaches, and models in the 
transformer family, with a focus on motion 
analysis. It establishes a coherent taxonomy of 
transformer-based architectures, synthesises 
their advantages and limitations, and presents 
a consolidated end-to-end pipeline, with 
collected movement data in mind, developed by 
AR. The survey also highlights several 
challenges, including a dearth of datasets, the 
diversity of pose-tracking methods, the lack of 
clinical validation, and privacy concerns, and 
concludes with specific recommendations for 
future research directions. 
2.BACKGROUND 
Understanding the technological and 
behavioural basis of autism detection based on 
full-body movement requires understanding 
the elements underlying this field of study. This 
section contains the basic background 
necessary to understand the context of the rest 
of the survey, including evaluation of three 
basic dimensions: (i) the nature of behavioral 
and motor characteristics typically associated 
with ASD, (ii) augmented reality (AR) 
environments as naturalistic platforms for 
evoking some measurable whole-body actions, 
and (iii) the computational models and pose-
estimation techniques used to translate raw 
movement to analyzable skeletal 
representations. Together, these components 
have provided the conceptual basis for the 
modern transformer-based ASD detection 
systems. 
2.1.Autism and Motor Behaviour 
Characteristics 
Autism Spectrum Disorder (ASD) is gaining 
widespread attention as a condition that 
includes not only a difference in social 
communication, but characteristic motor and 
coordination patterns that occur early in 
development. A growing body of literature 
indicates that autistic individuals exhibit 
measurable differences in full-body movement, 
including postural stability, gesture execution, 
bilateral coordination, gait regularity, and the 
timing and smoothness of limb trajectories. 
These movement atypicalities can be observed 
in both structured tasks and spontaneous play 
and often precede symptoms in verbal and 
social behaviours, thus motor behaviour 
appears as a good channel for screening at an 
early stage [5]. Full-body skeleton tracking 
enables these. Computational behavioral 
patterns are to be characterised as joint 
trajectories (2D or 3D) over time, and 
computational models can be used to analyse 
joint velocities, accelerations, relative joint 
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angles, symmetry differences, and temporal 
coordination. These representation formats 
preserve essential information about 
kinematics relevant to the distinction between 
ASD-Typical and Neurotypical movement 
dynamics. Since the motor patterns are less 
susceptible to cultural, linguistic, and 
environmental variability, they provide the 
foundation for a stable and objective basis for 
two-way automated detection of ASD, mainly 
when elicited naturally, through interactive and 
engaging AR experiences [6]. 
2.2.Augmented Reality for ASD 
Assessment 
Augmented Reality (AR) has become an 
increasingly exciting platform for behavioral 
assessment when investigating autism due to 
its capacity to combine elements of the digital 
world with aspects of the real environment, 
while still preserving the naturalistic 
interaction. Unlike traditional clinical settings, 
with their tasks that can seem rigid, artificial, 
and anxiety-inducing, AR is an engaging, play-
based medium that encourages spontaneous, 
full-body movement. This makes it particularly 
useful for eliciting behaviors relevant to ASD, 
including imitation, gesture following, social 
orienting, joint attention, response inhibition, 
and whole-body coordination [7]. AR gameplay 
has actions. These tasks can be standardized for 
timing, difficulty, and structure and are 
reproducible, but have ecological validity. 
Importantly, because AR-based environments 
allow for free movement on the part of the 
children, barriers to compliance are mitigated, 
and opportunities for attaining movement 
patterns translatable to in-the-world behavior 
are increased [8]. Overall, AR offers a robust, 
child-friendly, and high ecological validity 
platform to capture complete body movement 
data that will be required to foster the 
automated detection of ASD, which is an 
essential bridging platform between 
naturalistic behavior. 
2.3.Skeleton Tracking and Pose 
Estimation 
Skeleton tracking and pose estimation are the 
backbone of any movement-based system for 
ASD detection. These techniques range from 
converting the raw visual input, usually RGB, 
depth, or RGB-D stream, into structured 
representations at the joint level and therefore 
enabling the analysis of full body motion 
accurately and consistently. At the heart of each 
of these processes lies the extraction of a set of 
anatomical keypoints (e.g., head, shoulders, 
elbows, wrists, hips, knees, ankles) and their 2D 
or 3D trajectories over time. As discussed, these 
trajectories preserve identifiable facial details, 
making the skeleton-based representations 
significantly more private than the raw video 
recording [9]. Modern pose estimation 
frameworks such as OpenPose, MediaPipe, 

VNect, and the Kinect SDK employ deep neural 
networks that can detect joint positions despite 
occlusions, varying lighting conditions, and fast 
movement. Depth sensors (e.g., Kinect Azure, 
Intel RealSense) provide geometric 
information that improves the accuracy and 
temporal stability of 3D joints. These 
technologies enable the recording of complex 
movement patterns important for ASD, such as 
irregularities in rhythm, asymmetries, 
hesitations, repetitive movements, and 
deviations in velocity or joint coordination [10]. 
2.4.Vision Transformers and 
Spatiotemporal Modeling 
Vision Transformers (ViTs) have become one of 
the most important architectural innovations in 
the fields of computer vision and sequence 
modeling, and possess powerful capabilities for 
analysing full-body movement data. Unlike 
convolutional neural networks (CNNs), which 
model dependencies among meaningful 
elements in space using fixed receptive fields, 
transformers rely on mechanisms of global self-
attention between joints and across the entire 
temporal sequence. This is a property that 
makes them particularly suitable for the 
detection of ASD, in which there may be slight 
abnormalities in timing, coordination, or cross-
limb interactions with diagnostic value [11]. 
More advanced madiapproaches include Graph 
Transformers, which incorporate skeletal 
connectivity as a constraint in the attention 
mechanism; Hybrid CNN-ViT, which uses a 
CNN to extract low-level motion cues and then 
a transformer to refine the results; and Physics-
informed Transformers, which incorporate 
biomechanical constraints to improve 
interpretability and robustness. Additionally, 
the self-supervised version of ViTs on large-
scale motion datasets has demonstrated 
excellent generalisation ability—important 
given the limited availability of labelled data for 
ASD [12]. Vision Transformers (ViTs) have 
several benefits over a more traditional deep-
learning architecture when modeling skeleton-
based ASD motor patterns. CNN-based 
approaches are good at learning local spatial 
structures of joints. Still, they cannot learn 
long-range interactions between distal body 
parts, which are critical for comprehending full-
body coordination. RNNs and LSTM variations 
can capture the dynamics of time series. Still, 
they are more susceptible to timing anomalies 
and differences in movement velocity, as well as 
to the presence of noise and missing frames, 
which are typical of the motor behavior of 
autistic children. Conversely, since ViTs have a 
self-attention mechanism, the model can 
simultaneously analyze all joints and time steps 
and extract global spatiotemporal correlations, 
which are not limited by locality or the order of 
the sequence. This renders ViTs especially 
appropriate to ASD movement analysis, in 
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which abnormal patterns tend to encompass 
distributed postural asymmetries, retarded or 
irregular time relations among limbs, and long-
range joint interactions, which grow over the 
temporal span of a movement sequence. 
2.5.Research Questions (RQ) 
To steer this systematic survey and organize the 
analysis in the categories of AR systems, 
skeleton-based representations, and 
transformer-family models, the following 
research questions were formulated: 
RQ1. AR Systems: How are augmented 
reality (AR) environments being utilized to 
induce clinically relevant individuals with ASD 
to exhibit full-body movement behavior, and 
what tasks, sensors, and design paradigms 
predominate current investigation approaches 
using AR-based assessments? 
RQ2. Skelton-Based Movement Analysis: 
What are the types of full-body skeleton 
datasets, movement tasks, and preprocessing 
strategies for collecting ASD relevant motor 
patterns, and what are the limitations of the 
current collected data sources? 
RQ3. Transformer Models: How have 
Vision Transformers, spatiotemporal 
transformers, graph transformer architectures, 
and CNN-ViT hybrid modeling approaches 
been employed to tackle challenges in object 
recognition of full-body movement data in the 
scope of ASD detection, with the modeling 
strategy that shows the most promising 
success? 
RQ4. Gaps and Future Needs: What are the 
major challenges, methodological in nature, 
and open research opportunities at the 
intersection of AR gameplay, modeling based 
on skeletons, and ASD detection via 
transformers? 
3.SURVEY METHODOLOGY 
Conducting a systematic survey across the 
domains of AR-based behavioral elicitation, 
skeleton-tracking technologies, and transform-
based ASD detection requires a structured, 
transparent methodology. This chapter 
describes the process of identifying, selecting, 
and analyzing the relevant literature, including 
the databases searched, the search strategies 
used, the inclusion and exclusion criteria, and 
the multi-stage screening procedure. The 
forging of a rigorous methodological base in 
this section ensures that the synthesis 
presented in the following chapters is 
comprehensive, reproducible, and consistent 
with the formulation of research questions 
earlier in this study. 
3.1.Databases and Sources 
To ensure coverage of as much literature as 
possible, several academic databases were 
used, including IEEE Xplore, ACM Digital 
Library, PubMed, Scopus, ScienceDirect, and 
arXiv. Searches focused on peer-reviewed 
journals, conferences, and preprints that have 

content related to AR systems, full-body 
movement analysis, skeleton tracking, and 
transformer-based modeling used for the 
detection of ASD. Backwards and forward 
reference tracing was also conducted to identify 
studies that could not be obtained through the 
direct search process. By using a variety of 
databases, both the technical and clinical 
domains are covered. IEEE and ACM for 
engineering, robotics, AR, and computer vision 
studies, while PubMed and ScienceDirect have 
medically oriented ASD research. Scopus offers 
cross-disciplinary indexing with an emphasis 
on identifying the studies that use AR-based 
behavioral tasks combined with computational 
modeling. The inclusion of arXiv is critical 
given how fast-paced transformer architectures 
are changing, with many seemingly published 
first as preprints. This use of many sources 
addresses biases and helps identify emerging 
applications for AR-skeleton-transformer 
intersections. 
3.2.Search Strategy 
A defined keyword approach was applied. 
Searches for combinations of terms related to 
ASD, augmented reality, movement analysis, 
skeleton tracking, and transformer 
architectures. Examples of representative 
search phrases were: 
Autism" OR "ASD" AND "augmented reality”. 
Autism motor behavior" AND "skeleton 
tracking”. Vision Transformer" OR 
"spatiotemporal transformer" AND "movement 
analysis”. AR gameplay" AND "pose 
estimation". 
Search strings were progressively refined to 
maximise recall while excluding irrelevant 
literature. 
Keyword combinations were modified 
repeatedly by reference to initial search results. 
Adding terms such as "pose estimation", 
"skeleton data", "Kinect", and "joint 
trajectories" increased the retrieval of 
movement analysis papers relevant to ASD to a 
large extent. Likewise, terms like "transformer 
encoder, "attention mechanism, and "graph 
transformer" appeared in recent studies on 
specific models. Boolean operators and 
symbols for wild cards were used to represent 
different terminology embraced by different 
communities (e.g., "motion capture", "body 
tracking", "movement disorder", "ViT-based. 
This became a refinement that ensured 
maximum precision without sacrificing recall. 
3.3.Inclusion and Exclusion Criteria 
Defining specific inclusion and exclusion 
criteria is key to ensuring that the selected 
studies are meaningful to the goals of the survey 
and the research questions that have been 
developed earlier. Because the intersection of 
AR gaming, skeleton-based analysis of the 
movement, and transformer-based detection of 
ASD lies across multiple disciplines, it is 
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important to filter the literature in a systematic 
way to retain only such studies that offer 
empirical, methodological, or technical 
relevance to this field. The criteria below set a 
high bar, distinguishing between ASA research 
based on movement and unrelated to AR, 
clinical experiments, or machine learning 
research, and therefore, such a synthesis is 
focused, coherent, and scientifically valid. 
Inclusion criteria: Studies either focused on 
ASD assessment, behavioural modelling, or the 
movement-based detection, works that involve 
AR environments, motion-eliciting tasks, or 
interactive gameplay, Studies on skeleton-
based representations (skeleton-based or pose-
estimation-based pipelines), Machine learning 
or deep learning models such as ViTs or the like, 
and Papers that provide some empirical data, 
evaluation metrics, or some methodological 
contributions. Exclusion criteria: Studies not 
related to ASD or movement behavior, AR 
research without complete body analysis of 
motion, on-ASD relevant motion-analysis 
papers, and Non-technical work, reviews 
without data or opinion work. Together, these 
inclusion and exclusion criteria provide a 
focused, methodologically sound basis for the 
survey. By limiting the research sample to the 
space between AR-based behavior elicitation, 
skeleton-driven movement analysis, and 
transformer family modelling, the selected 
literature aligns directly with the survey's 
research questions. This helps to make sure that 
the resulting synthesis is both coherent and 
relevant to helping to ensure the coherence of 
the next stage - the structured screening and 
selection of eligible studies - to proceed with 
clarity and coherence. 
3.4.Study Selection and Screening 
Process 
A structured process with multiple screening 
stages was used to ensure that studies directly 
relevant to AR-based behavioural elicitation, 
skeleton-tracking methodologies, and 
transformer-driven ASD detection were 
included. Given the heterogeneity of research 
on the topics of interest, spanning clinical, 
computational, and interaction design 
disciplines, a stepwise selection workflow was 
needed to screen out studies that were 
unrelated or methodologically weak. This 
process helps make the survey as scientific as 
possible and ensures that the final collection of 
papers is informative and meaningful in 
relation to the research questions. 
The three successive phases of the selection 
pipeline included: 
a) Title and Abstract Screening: Initial 

filtering to identify studies mentioning 
ASD, AR interaction, movement analysis, 
pose estimation, or transformer-based 
modeling. Papers that were obviously 
irrelevant were discarded at this stage. 

b) Full-Text Evaluation: Detailed study of 
methodology, such as movement elicitation 
paradigm, data collection setup, skeleton 
extraction method, and machine learning 
methods. Studies with inadequate 
methodological information or lacking 
information on movement were excluded. 

c) Final Eligibility of Final Filtering: 
Papers that met all the inclusion criteria 
were kept for review. Ambiguous cases 
(e.g., partial AR tasks, limited joint-
tracking detail, hybrid behavioral setups) 
were double-checked through secondary 
review to ensure consistency and minimize 
subjectivity in the measures. 

The multi-stage screening procedure ensures 
that the final body of literature, which is part of 
this survey, is methodologically reliable and 
strictly relevant to the intersection of AR-based 
behavioral elicitation, skeleton-driven motion 
analysis, and transformer-family modeling. By 
narrowing selection increasingly from the 
keyword filtering to the full-text evaluation and 
eligibility checking, the selection process 
minimizes the bias and prevents inclusion of 
studies that don't have the empirical rigour or 
that don't align with the research questions. 
This approach to structuring a set of studies 
provides a clean, validated set on which the 
synthesis in the next section can be constructed. 
3.5.Synthesis Approach 
A well-organized synthesis approach was 
required to combine the wide variety of 
research in the fields of AR-based behavior 
tasks, skeleton-based movement 
representations, and transformer-based 
modeling approaches. Because the included 
studies span disciplines such as clinical science, 
computer vision, AR interaction design, and 
deep learning research, a common analytical 
framework is needed to derive meaningful 
patterns and answer the survey's research 
questions. This section describes the 
methodology employed to categorise, compare, 
and interpret the chosen literature, to allow a 
coherent understanding of the intersections 
between these domains that support the 
development of a coherent understanding of 
the detection of ASD. To achieve this, each of 
the studies was mapped onto one of three 
analytical dimensions relating to the survey 
RQ's (Research Questions) 1-4. First, AR-based 
ASD systems were analyzed in reference to their 
task structures (e.g., gesture imitation, object 
tracking, spatial navigation), hardware 
platforms (e.g., Kinect, ARCore/ARKit, depth 
cameras), and behavioral goals. Second, data 
characteristics, joint representations, 
preprocessing strategies, and types of motor 
features extracted were reviewed in the 
skeleton-based ASD studies. Third, models of 
the transformer family were synthesized taking 
into consideration the architecture type (Vision 
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Transformers, spatiotemporal transformers, 
graph transformers, or hybrid CNN-ViT 
structures), tokenization formats, attention 
mechanisms, and evaluation methodology. To 
specify the synthesis process, the studies 
included were then classified into three fields of 
analysis with respect to their primary 
contribution to methodology: (i) AR-based 
behavioral elicitation systems, (ii) skeleton-
based movement data and pose-extraction 
pipelines, and (iii) transformer-based modeling 
methods. All studies were grouped into one or 
more categories based on the introduction of a 
new AR task paradigm, the presentation of 
structured skeletal motion data, or the 
application of a modeling method to the 
analysis of movement in ASD. In this 
categorization, a structured comparison was 
possible according to the research questions of 
the survey. In this way, it was able to support 
the necessity to guarantee the integration of 
insights from heterogeneous fields in a 
coherent manner. An additional flow diagram is 
presented to depict this classification process 
and visualize the idea of how the studies moved 
in the direction of first identification and 
further division into domain-specific grouping 
into AR systems, skeleton data, and 
transformer models. Through this framework 
of a structured synthesis, the survey brings 
together the learnings of different fields of 
research into a single perspective, paving the 
way for a better understanding of the concerted 
effort coming from limb skeletal 
representations, transformer-driven models, 
and gameplay with AR games to tackle the 
problem of ASD detection. This integrative 
approach not only organizes the current 
findings but also lays the groundwork for the in-
depth analysis presented in the following 
chapters. 
4.AR SYSTEMS FOR AUTISM 
ASSESSMENT 
Augmented Reality (AR) has very quickly 
become one of the most promising platforms 
for providing naturalistic, measurable full-body 
movement behaviors to people with autism 
spectrum disorder (ASD). Unlike the 
conventional assessment environment, which 
is based on structured clinical tasks or lab-style 
environments, AR allows immersive, game-like 
interactions that encourage children to move 
around freely while keeping a task structure 
consistent. This puts AR in a unique position to 
facilitate behavioral assessment and motor 
analysis, as well as providing the early 
screening - especially when paired with modern 
skeleton tracking frameworks and learning-
based models [13]. This chapter provides a 
review of the existing AR systems that have 
been developed for ASD research, with special 
emphasis on the type of interactions each can 
incorporate, the types of sensors employed to 

capture movement in the world, the behavioral 
objectives each system aims to measure, and 
the methodological gaps that have motivated 
the development of AR-based ViT-driven 
assessment pipelines. 
4.1.AR Interaction Paradigms Used in 
ASD Research 
AR systems dedicated to autism assessment 
usually use interaction paradigms that 
encourage children to complete actions 
involving whole-body responses to virtual cues, 
objects, or characters [14,15]. These paradigms 
fall into several recurring categories: 

• Gesture-Imitation Tasks: Where the 
child is asked to mimic poses, arm 
movements, or whole-body gestures that an 
avatar performs. 

• Tasks of Object-Based Interaction: 
AR elements (balls, shapes, targets) pop up 
around the child. 

• Navigational/spatial-complexity 
Exploration Tasks: Children do physical 
movements in a specific space in front of 
AR overlays. 

• Social-Response AR Tasks: Some 
systems use AR avatars that call the child’s 
name, point to objects, and give 
instructions. 

• Reward-Based AR Gameplay: 
Gamified AR tasks that play animations if 
the child makes the correct movement. 

These paradigms show, in total, how AR can 
efficiently induce reliable motor patterns 
required for automated detection of ASD [16]. 
In Figure 1, the five primary AR interaction 
categories above, identified for use in ASD 
research, are summarized. 

 
Fig. 1 Overview of AR interaction Paradigms 

for ASD. 
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4.2.Sensors Used in AR-Based ASD 
Systems 
AR systems for autism assessment make good 
use of sensing technologies to capture full-body 
movement with sufficient accuracy, temporal 
resolution, and robustness for clinical or 
computational analysis. The selection of the 
sensor directly influences the quality of the 
extracted skeleton data, the description of 
details in joint trajectories, and the generic 
suitability of the system overall for ASD-related 
tasks, not least because autistic children may be 
in unpredictable motion, speed, and even 
irregular motion profiles. This section provides 
an overview of the most common sensing 
platforms for AR-based ASD-related research 
and notes the strengths and limitations of each 
[17]. 
Depth Cameras (as mentioned above, 
e.g., Microsoft Kinect, Intel RealSense) :  
Depth cameras are the most popular type of 
sensor for AR-for-ASD systems because they 
provide high-quality 3D joint information, 
robust skeletal tracking, and good resistance to 
lighting differences. Specific examples of the 
applications of Kinect-based systems include: 
gesture imitation, movement copying, and 
balance tasks[18,19]. 
RGB -D Sensor Incorporated as AR 
Glasses / Mobile AR Platform: Modern AR 
systems (ARKit, ARCore) use body trackers, 
which are based on camera data, to estimate the 
2D or pseudo-3D skeletons in real-time. 
RGB Cameras and Models for Pose 
Estimation using OpenPose and 
MediaPipe: Some AR systems combine 
simple RGB cameras with pose estimation 
software to extract joint trajectories. 
Multi-Sensor Fusion: Few advanced 
systems use a combination of sensors (RGB + 
depth) to enhance the accuracy of the joints 
further. 
Wearable Sensors (less ASD-focused 
AR): Some research uses IMUs or other 
wearable motion sensors, but they aren't as 
suitable for children with ASD because autistic 
children often don't like to wear devices due to 
tactile discomfort and sensory sensitivities. 
4.3.ASD-Related AR Tasks 
AR systems intended for autism evaluation are 
usually embedded systems that incorporate 
structured activities within interactive, game-
like environments that motivate children to 
make specific full-body movements in response 
to a virtual cue. These tasks are designed to 
intentionally elicit the motor patterns known to 
be different in individuals with autism than in 
those who are neurotypical to measure behavior 
in a naturalistic, but standardized, way[20]. 
Below are the main types of tasks used in the AR 
field of ASD research aimed at different types of 
motor or cognitive behavior [21]:  

Gesture-Imitation Tasks: In these tasks, a 
virtual avatar or AR character performs a 
movement—such as raising an arm, stepping to 
the side, or assuming a full-body pose—and the 
child must imitate it. Measures: Motor 
imitation ability, Bilateral coordination, 
Upper/lower limb timing. 
Pointing, Reaching, and Locomotor 
Interaction: Here, AR objects appear at 
different spatial locations (front/back, 
left/right, high/low), requiring the child to 
reach, tap, move toward, and swipe virtual 
objects. Measures: Reaction time, spatial 
orientation, and range of motion. 
Target-Following and Path-Tracking 
Tasks: AR cues (arrows, footsteps, glowing 
markers) appear in the physical environment, 
instructing the child to walk, step, or follow a 
path. Measures: Gait stability, Dynamic 
balance, and step timing. 
Multi-Step Action Tasks: Some AR setups 
require the child to combine multiple actions—
for example, raise a hand, touch a virtual object, 
and step back. Measures motor planning, 
sequencing skills, and transition between sub-
actions. 
Socially AR Tasks: AR characters may: point 
to cues, ask the child to perform actions, and 
display emotional expressions. Measures: joint 
attention and social response time. 
Reward-Based AR Gameplay: Many systems 
embed simple rewards, such as animations, 
sound, stars/tokens, and character reactions. 
4.4.Summary of AR-Based ASD Studies 
To provide a structured understanding of how 
augmented reality has been implemented in 
autism research, this section will provide an 
overview of the key studies that implemented 
AR environments to elicit full-body movement 
behaviors in individuals with ASD. Unlike the 
conceptual overview in the previous section, 
this section is concerned with concrete research 
evidence - namely, the details of the various 
studies about their specific objectives, 
characteristics of participating individuals, 
registration style of AR interaction, sensing, 
movement tasks, and main findings. By placing 
these studies into the types of tasks and sensors 
discussed in Sections 4.1-4.3, this summary 
provides a solid ground where one can gather 
some immutable trends of the methods under 
consideration, examine those systems’ 
effectiveness, and recognize gaps that help to 
spur the development of far more advanced AR-
based assessment pipelines. 
Gesture-Imitation Tasks: Gesture-
imitation studies consistently demonstrate that 
AR environments enhance children’s ability to 
reproduce whole-body actions. For example, 
Pérez-Fuster [26] showed improved imitation 
accuracy and joint attention in full-body 
pictogram-guided actions. At the same time, 
Amara [27] reported increased engagement and 
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better hand–eye coordination during AR-based 
hand-gesture tasks. Similarly, Lee [28] 
observed notable gains in role-play imitation 
using a Kinect-based AR avatar. These findings 
collectively indicate that AR-guided imitation 
tasks can reliably elicit repeatable motor 
patterns and expose core ASD-related 
difficulties such as delayed motor copying and 
reduced body-schema awareness—patterns 
clearly reflected across the Gesture-Imitation 
studies summarized in Table 1.  
Object-Based Interaction Tasks: Object-
based AR tasks converge on a common 
outcome: improved attentional engagement 
and interaction with physical–virtual objects. 
Tang [31,32] demonstrated that AR-supported 
object recognition improves vocabulary 
acquisition and object learning, while Wedyan 
[33] highlighted the need for standardization in 
multi-sensor AR object systems. Koumpouros 
[34] further showed cognitive accessibility 
gains when autistic learners interacted with 
AR-enhanced objects. Together, these studies 
(listed in Table 1) underscore that object-based 
AR tasks are effective at drawing and sustaining 
attention while eliciting fine-motor planning 
sequences, making them particularly useful for 
structured ASD motor assessments.  
Social-Response AR Tasks: Social-
response AR systems integrate motor actions 
with social cues, and the studies listed in Table 
1 consistently show improvements in joint 
attention and social-motor alignment. Cheng & 
Bololia [38] synthesized multiple AR social-
interaction tasks and found consistent 

improvements in following social cues, while 
Liu [39] demonstrated enhanced social 
communication and gaze stability using AR 
smart glasses. These findings align with the 
tabled results, highlighting that embedding 
social agents or avatars within AR 
environments generates more ecologically valid 
motor responses—responses that better reflect 
real-world social–motor challenges 
experienced by autistic children.  
Reward-Based AR Gameplay: visual and 
auditory rewards increase participation, 
consistency, and the quality of motor data 
collected. The study by Pérez-Fuster (listed 
under multiple categories due to cross-task 
design) demonstrates that immediate 
reinforcement promotes more stable whole-
body imitation. In contrast, others indicate that 
reward-triggered movement repetition 
improves data density and reduces behavioral 
variability. As reflected in Table 1, reward-
driven systems achieve higher engagement 
levels and produce cleaner motor sequences, 
making them ideal for collecting standardized 
full-body data for ASD motion analysis.  
Table 1 summarises the studies reviewed in the 
context of the five AR interaction paradigms. 
Each entry focuses on the essential elements 
within these areas, required for systematic 
comparison of outcomes, such as the type of 
task, the type of sensing modality, target skills, 
and key outcomes. This table is the basis of the 
answer to RQ1, and the lack of information in 
the AR-based assessment of ASD. 

Table 1 Summarize Studies in AR Interaction Paradigms. 
Category Study / Citation AR Task Type Sensors 

Used 
Targeted Skills / 
Behaviors 

Key Findings 

1. Gesture-
Imitation Tasks 

Pérez-Fuster et al. 
(2025) [26] 

Whole-body 
imitation, 
pictogram-guided 
actions 

Depth 
camera / AR 
room 

Imitation, joint 
attention, body 
knowledge 

AR improved 
imitation accuracy 
and social attention 

 
Amara et al. 
(2023) [27] 

Hand-gesture + 
voice AR tasks 

RGB camera 
+ gesture 
tracking 

Gesture recognition, 
hand–eye 
coordination 

AR increased 
engagement + 
gesture learning  

Lee (2021) [28] Kinect-based role-
play with AR 
avatar 

Kinect depth 
sensor 

Imitation, role-play 
skills 

Notable 
improvement in 
motor copying  

Alcaniz Raya et al. 
(2020) [29] 

VR/AR body-
movement 
classification 

Kinect Full-body movement 
patterns 

ML classified ASD vs 
NT with good 
accuracy  

Hu et al. (2025) 
[30] 

AR emotion-
driven imitation 

Mobile AR Emotional imitation, 
expression 

Better recognition of 
emotional cues 

2. Object-Based 
Interaction 
Tasks 

Tang et al. 
(2019a) [31] 

AR vocabulary 
with object 
recognition 

Mobile RGB Object learning, 
attention 

AR improved 
engagement with 
objects  

Tang et al. 
(2019b) [32] 

Lightweight AR 
object detection 

Mobile 
camera 

Object recognition Faster learning of 
new vocabulary  

Wedyan et al. 
(2020) [33] 

AR system review 
+ prototype 

Mixed 
sensors 

Object-interaction, 
recognition 

AR is promising, but 
needs 
standardization  

Koumpouros 
(2025) [34] 

AR tools for 
autism 

Mobile 
devices 

Object interaction, 
basic motor 
coordination 

AR enhanced 
cognitive accessibility 

3. Navigational 
/ Spatial AR 
Tasks 

Lee & Huang 
(2025) [35] 

AR + MR map-
based navigation 

Kinect / MR Social cues, spatial 
sequencing 

Improved sequencing 
and cues following 
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McMahon et al. 
(2015) [36] 

AR navigation for 
employment 

Mobile AR Real-world 
navigation 

Increased 
independence and 
planning  

Fridhi et al. 
(2020) [37] 

Geospatial AR 
exploration 

Mixed 
VR/AR 

Spatial–motor 
integration 

Better exploration 
and direction 
following 

4. Social-
Response AR 
Tasks 

Cheng & Bololia 
(2024) [38] 

Systematic review 
of AR social tasks 

Various Joint attention, 
social cues 

AR improves social 
interaction 
consistency  

Liu et al. (2017) 
[39] 

AR smartglasses 
system 

AR glasses Social 
communication, 
gaze 

High feasibility + 
child compliance 

 
Syahputra et al. 
(2018) [40] 

AR social stories Mobile AR Social rules, social 
understanding 

Improved story 
comprehension  

Nekar et al. 
(2022) [41] 

Multiplayer AR 
dual task 

AR tablet + 
sensors 

Social + cognitive 
motor 

Significant social-
cognitive gains  

Rega et al. (2018) 
[42] 

AR motivation 
enhancer 

Mobile AR Motivation, 
engagement 

AR increased 
willingness to 
participate 

5. Reward-
Based AR 
Gameplay 

Williams & 
Chandramouli 
(2025) [43] 

VR/AR reward-
training 

VR + 
sensors 

Positive 
reinforcement, 
communication 

Increased 
engagement + 
response stability  

Nekar et al. 
(2022) [44] 

Cognitive-motor 
AR game 

AR game Cognitive control, 
RRBs 

Reduction in 
repetitive behaviors  

Brandão et al. 
(2015) [45] 

AR gamebook Mobile AR Motivation, 
reading/action 
coupling 

Improved task 
initiation 

 
Bhatt et al. (2014) 
[46] 

AR game therapy Mixed 
sensors 

Engagement, basic 
motion 

AR games increased 
participation 

As shown in Table 1, the five categories of AR 
interaction exhibit clear patterns in the 
approaches used across studies to elicit motor 
and social behavior for the assessment of ASD. 
Tasks of gesture imitation demonstrate a good 
consistency across the literature, with most 
studies focusing on coordination, timing, and 
joint synchronization, key signs of the ASD-
related motor atypicalities. Object-based 
interaction and locomotor navigation tasks 
tend to utilise a wider range of whole-body 
motions and are suitable for analysing 
vasomotor integration and dynamic balance. 
5.SKELETON-BASED ASD DETECTION 
The skeleton-based method for ASD detection 
has become one of the most promising signals 
for the acquisition of objective and quantitative 
indicators of autistic motor behavior. Instead of 
relying on subjective observation or manual 
rating scales, skeleton analysis takes the full-

body movement. It converts it into a structured 
and joint-level data - in other words, it tracks 
how each limb is moving, aligning, accelerating, 
and coordinating with time. Because autistic 
people tend to have measurable differences in 
timing, fluidity, balance, gait, postural control, 
and the synchronization of the joints, the 
trajectories of the skeleton are also a rich source 
of behavioral information that is both 
standardized and unobtrusive [47,48]. This 
chapter provides an overview of the current 
state of the art in skeleton-based ASD detection, 
covering available datasets, movement tasks for 
motor elicitation, feature-representation 
methods, preprocessing pipelines, and the 
limitations of these datasets. Together, these 
components make up the structural backbone 
of the transformer-based movement analysis 
investigated in the next chapter. Figure 2 shows 
the Skeleton-Based ASD Detection Pipeline. 

 
Fig. 2 Skeleton-Based ASD Detection Pipeline. 
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5.1.Datasets  
Skeleton-based ASD detection requires full-
body movement data to be available, of high 
quality, and of a specific structure. Due to the 
subtlety, heterogeneity, and context-
dependence of autistic motor behavior, high-
resolution joint trajectories across a range of 
tasks, participants, and movement conditions 
are important for data sets. Yet the field is 
plagued by having far too few publicly available 
datasets of autistic people, and most were 
originally designed for more general human-
action recognition, which are not intended for 
clinical assessment. This section reviews the 
datasets that are currently used for the 
skeletons in a way related to ASD. It makes a 
distinction between (i) datasets that are 
converted to use specifically for ASD, (ii) 
general human movement data sets that are 
frequently adopted for model pretraining, and 
(iii) custom-built in-house data sets that are 
designed for small-scale clinical usage. 
5.1.1.ASD-Specific Skeleton Datasets 
ASD-specific skeleton datasets directly capture 
the full-body motion of autistic children during 
controlled and naturalistic tasks, yielding joint-
level trajectories suitable for computational 
movement analysis. Table 2 presents the main 
datasets available in the literature for ASD 
research. 
5.1.2.RRB-Based Skeleton Datasets 
Repetitive and stereotypical behaviors (RRBs), 
e.g., hand flapping, rocking, and cyclic 
movements of a particular limb, are among the 
most typical motor patterns observed in ASD. 
Skeleton-based datasets targeted at RRBs yield 
useful information about the temporal 
regularity, amplitude, and spatial repetition of 
these behaviors such that machine learning 
models can recognize stimming patterns 
directly from the joint trajectories. The 
following studies are primary efforts made to 
capture and analyze RRB movements by using 
pose estimation and skeletal tracking. 
5.1.3.Gait & Full-Body Movement ASD 
Datasets 
Gait-based locomotor patterns for the whole 
body are another major source of motor 
signatures associated with ASD. Datasets in this 
category are concerned with walking cycles, 
balance control, stride variability, and global 
coordination; in many cases, obtained via depth 
cameras or a motion capture system. These 
datasets offer rich temporal-spatial joint 
information for the quantitative analysis of the 
postural stability and movement variability of 
autistic individuals. 
5.1.4.Markerless Pose-Estimation 
Datasets (Open Pose/Validation) 
Markerless pose estimation algorithms extract 
joint lesions in the form of skeletal trajectories 
directly from RGB no-deep-sense video. These 
datasets are important because they closely 

reflect the real-world conditions of AR-based 
assessment, where children move freely, and 
only a single camera may be available. The 
following studies are among the markerless 
datasets and validation efforts that are key to an 
ASD motor behavior analysis. 
5.2.Movement Tasks 
Skeleton-based ASD studies use a wide range of 
movement tasks to elicit a motor pattern that 
can be analyzed from joint-level movement 
trajectories. Each task category focuses on 
specific aspects of motor coordination, timing, 
posture, and repetitive behavior. 
Understanding these types of tasks is crucial 
before the features and preprocessing steps of 
ASD movement classification can be defined. 
Figure 3 shows the Movement Task Categories 
Used in Skeleton-Based studies of ASD. 

 
Fig. 3 Movement Tasks. 

5.3.Skeleton Features 
 Skeleton-based ASD studies use a variety of 
motion features derived from joint trajectories 
to describe motor coordination, temporal 
stability, and spatial consistency. These 
features provide quantitative representations of 
gait, gesture execution, upper-limb control, and 
repetitive behavior. The following categories 
summarize the most commonly used feature 
types in the literature on skeleton analysis in 
ASD, as shown in Figure 4. 

 
Fig. 4 Skeleton Features. 
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In summary, the range of features of skeleton 
use goes from the raw implementation of joint 
coordinates to the advanced implementation of 
relational or frequency-domain features. Each 
feature category involves social and unique 
aspects of how kids with ASD move, which form 
the basis for the preprocessing and feature 
engineering steps outlined in the next section.  
5.4.Preprocessing 
Raw skeleton data obtained from RGB cameras, 
depth sensors, or markerless pose estimation 
models often contain noise, missing joints, 
variable frame rates, and variable sequence 
lengths [49]. Preprocessing is thus admitted to 
be crucial for the purpose of transforming the 
heterogeneous motion recordings into clean, 
standardized input that is ready to be fed into 
the feature extraction and the transformer-
based modeling. Figure 4 provides an overview 
of the (typical) preprocessing steps applied to 
skeleton-based ASD datasets, including 
missing-joint handling, smoothing and 
normalization, temporal alignment, sequence 
segmentation, and data augmentation. The 
following steps summarize the most common 
preprocessing strategies that are used across 
the skeleton data sets with a connection to the 
study of ASD:  

 
Fig. 5 Preprocessing Pipeline. 

Before discussing dataset limitations, here is an 
integrated summary of all the datasets of 
skeletal-based ASDs included in this survey. 
Table 2 summarizes the comprehensive 
coverage of available datasets by bringing 
together ASD-specific datasets, datasets 
specifically about repetitive behaviours, 
datasets specifically about gait, and datasets on 
markerless pose estimation. This unified 
tabulation highlights the diversity of sensing 
modalities, participant experience, and motor 
tasks across the existing literature and serves as 
a useful reference point for understanding 
methodological differences before exploring 
their limitations. 

Table 2 Unified Skeleton-Based ASD Dataset Summary. 
Dataset 
Type 

Study Year Sensor / 
Extraction 

Participants Task Type Notes Publicly 
Available 

 
 
 
 
 
 
 
 
Type 1 — 
ASD- 
Specific 

Li et al. [50] 2023 RGB + Depth + 
Skeleton 

ASD children Free-play, 
therapy 

Multimodal 
dataset 

YES 

Zhang et al. 
[51] 

2021 Pose Estimation (2D) ASD children Gesture 
imitation 

LSTM-
based 

YES 

Al-Jubouri et 
al. [52] 

2020 Kinect v2 (3D) ASD children Gait Structured 
dataset 

YES 

Muty & 
Azizul [53] 

2016 Pose Estimation ASD children Arm-
flapping 

Early RRB YES 

Shin et al. 
[54] 

2025 Pose Estimation ASD children Motor tasks Dual-
stream DL 

YES 

Zahan et al. 
[55] 

2023 Pose Estimation ASD/Non-
ASD 

Gait + 
gesture 

Large 
dataset 

YES 

Yazdi et al. 
[56] 

2024 Kinect ASD children Gait Spatial 
temporal 

NO 

Paulo et al. 
[57] 

2025 RGB+Depth+Skeleton ASD 
individuals 

Motor tests Clinical NO 

Type 2 — 
RRB 
 

Lemler et al. 
[58] 

2025 Post-hoc Skeleton ASD children Mannerisms Multi-label NO 

Muty & 
Azizul [53] 

2016 Pose Estimation ASD children Arm-
flapping 

RRB YES 

Lin et al. [59] 2025 Robot vision ASD children Body 
language 

Robot-
assisted 

YES 

Type 3 — 
Gait 
 

Goldthorp et 
al. [60] 

2025 Motion-capture ASD/Non-
ASD 

Gait Variability NO 

Wu et al. [61] 2024 Markerless tracking ASD children Gait Clinical YES 
Type 4 — 
Markerless 
 

Kalam et al. 
[62] 

2024 OpenPose ASD/Non-
ASD 

General 
movement 

Video-
based 

NO 

Anderson et 
al. [63] 

2025 Markerless gait Toddlers Gait Validation NO 

Barahona[64] 2025 Open-source pose Infants Arm motion Tracking NO 

5.5.Dataset Limitations  
Although this new and greater access to 
skeleton-based ASD datasets provides a 
significant improvement, it is still limited in 
several ways, which have not allowed for 
generalisation of the models or diagnostic 

validity. To begin with, the available datasets 
tend to be very small, including fewer than 50 
people with autism, leading the a loss of 
statistical power and the failure of deep 
learning models to trigger learning across the 
full range of motor variability. Second, 
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numerous datasets are biased in terms of 
demographics, particularly with respect to age, 
gender, and levels of ASD severity. As a result, 
biased representations of motion and, 
consequently, may not be generalizable in other 
subpopulations. The other great limit is that the 
composition of senses one to themselves is very 
different. Data obtained using Kinect, 
OpenPose, motion capture laboratories, and 
custom-engineered depth cameras differ 
enormously in the definition of joints, sampling 
rate, noise level, and coordinate system. These 
discrepancies make the comparison of various 
studies and the training of single models 
without a significant amount of preprocessing 
more difficult. A few are also task-specific (e.g., 
gait-only, arm-flapping-only), which constrains 
the range of motor behaviors that can be 
studied with them and the creation of holistic 
classifiers of ASD movements. Lastly, each 
dataset has a different level of annotation 
quality. Others are founded on the manual 
tagging of motion episodes or stimming 
incidences, whereas others are linked with 
feeble or crude tags when reducing the accuracy 
of supervised study. The combination of these 
constraints demonstrates the need not only to 
use standardized acquisition procedures, but 
also to use larger and more varied samples and 
rich, multi-task skeleton datasets in future 
studies of ASD movement. 
6.TRANSFORMER MODEL TAXONOMY  
Among the latest developments in transformer-
based architectures has come a fundamental 
restructuring of the skeleton-based movement 

analysis field, providing the skeleton-based 
motor behavior researchers with potent ways to 
model whole-body motor behavior with autism 
spectrum disorder (ASD). A transformation of 
local spatial patterns or short-term time 
relations, as is the case with deep-learning 
models such as CNNs, RNNs, or graph 
convolutional networks, transformers use self-
attention mechanisms that are capable of 
jointly modelling long-range dependencies and 
long-range time dynamics on a global scale. The 
latter is especially applicable in the case of ASD 
detection, where subtle anomalies in 
coordination, timing, balance, bilateral 
synchronization, and posture are observed in 
long sequences of movements. To offer the 
systematic overview of this new domain, this 
chapter offers a taxonomy of the transformer-
based methods employed to analyze the ASD-
related skeleton, grouping the literature in five 
broad categories: Vision Transformers, 
Spatiotemporal Transformers, Graph 
Transformers, Hybrid CNN-Transformer 
models, and Self-Supervised or Pertained 
Transformer models as shown in Figure 6. We 
summarize representative studies in each 
category in Table 3. Altogether, the literature 
review has shown that transformer-based 
models have great potential in ASD analysis, 
especially in cases when both temporal and 
structural data are considered. Table 4 
Comparative Summary of AR, Skeleton, and 
Transformer Approaches in ASD Movement 
Assessment. 

 
Fig. 6 Transformer Model Taxonomy. 

Table 3 Summary of Transformer-Based Approaches for ASD Analysis. 
Category Study Data Type Task Key Outcome 

Vision 
Transformer 

Shin,et al. (2025)[65] Facial images ASD classification ViT outperformed CNNs in 
spatial feature extraction 

Spatiotemporal 
Transformer 

Gupta et al. (2025)[66] Multi-modal 
behavioral 

ASD severity 
assessment 

Improved robustness through 
spatiotemporal attention 

Graph 
Transformer 

Zhang et al. (2023)[67] Skeleton action data Action recognition 
(relevant to ASD) 

Graph-aware attention captured 
joint dependencies 

Hybrid (CNN–
Transformer) 

Anand & Kini (2024)[68] Clinical + 
Neuroimaging 

ASD classification The hybrid model outperformed 
the standalone CNN/Transformer 

Multi-Task 
Transformer 

Gao et al. (2024)[69] Behavioral/clinical ASD detection across 
multiple tasks 

Multi-task learning improved 
generalization 
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Table 4 Comparative Summary. 

Dimension AR-Based Systems Skeleton-Based Analysis Transformer-Based Models 

Engagement 
Level 

Very high; interactive, 
motivating, suitable for 
children with ASD 

Moderate; passive capture without 
active interaction 

Low by itself; it depends on the 
upstream data source 

Data 
Standardization 

Low; tasks vary widely, 
sensors differ, no 
consistent protocols 

Medium; structured joint coordinates 
but heterogeneous sensors (Kinect, 
OpenPose, MoCap) 

High requirement; needs clean, 
uniformly structured sequences 

Modeling 
Complexity 

Low to moderate; mostly 
rule-based or traditional 
ML 

Moderate; CNN/RNN/LSTM/GCN 
pipelines; limited long-range 
modeling 

High; self-attention enables 
global temporal–spatial 
reasoning 

Clinical 
Readiness 

Promising but inconsistent; 
limited formal clinical 
validation 

Growing; used in gait and motor-
control studies but not standardized 

Emerging; strong potential but 
still exploratory in ASD research 

Key Limitations Lack of standard tasks; 
variable environments; 
inconsistent recording 
quality 

Small datasets; demographic bias; 
different joint definitions and frame 
rates; task-specific 

Requires large, clean datasets; 
sensitive to noise; high compute; 
few clinical benchmarks 
available 

7.PROPOSED PIPELINE 
This paper suggests the development of an 
integrated pipeline that incorporates the 
augmented reality (AR) gameplay, movement 
capture using skeletons, and classification 
based on transformers to aid in autism 
detection. The pipeline will fill in the gaps in the 
literature, especially the gap in the 
unstandardized data on motor tasks and the 
paucity of more advanced temporal and 
structural modeling approaches to movement 
analysis in relation to ASD. By shaping the 
participants to perform the structured AR tasks 
and converting the recorded movement 
sequences to the representation that 
transformers can accept, the proposed system 

aims at the creation of credible behavioral 
indicators and at preserving the engaging and 
child-friendly environment. The suggested 
pipeline combines the AR-motor task with 
whole-body skeleton tracking and transformer 
analysis, offering a stepwise workflow for 
evaluating motor movement in ASD. During the 
gameplay, participant actions are captured as 
indicated in Figure 7, and their sequence is 
converted into skeletal joint sequences and 
processed, which is then classified using a 
transformer model. The design enables 
standardized data collection in an engaging 
environment and the analysis of movement 
patterns. 

 
Fig. 7 Proposed Pipeline.

7.1.AR Gameplay Design 
It is suggested that the AR game be created to 
encourage children to perform certain upper- 
and lower-limb movements in a controlled yet 
naturalistic environment. The gameplay 
features will encourage the users to reach, 
point, step, imitate gestures, and follow 
movement patterns, allowing a gathering of 
consistent motor data among the participants. 
Engagement and anxiety will be ensured 
through visual and auditory feedback [70]. In 
contrast, the difficulty of tasks will be altered 
dynamically based on the performance of the 
user to support people of different levels of 
ability. The AR setting tries to provide 
equilibrium between structure and playfulness, 
where they can ensure meaningful motor 

patterns are captured without affecting the 
comfort of the users. 
7.2.Data Collection 
Video streams will be captured during the 
gameplay sessions of ASD and typically 
developing participants by the system. The 
protocols to be used in each session will remain 
constant to maintain uniformity across 
individuals, including the task sequence, time 
duration, and distance. The sample will 
comprise 30 participants (15 with ASD, 15 
controls), consistent with the recent literature. 
Data collection will occur before acquiring 
ethical approval and parental consent. All 
videos will be safely stored and anonymized to 
ensure the privacy of participants. 
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7.3.Skeleton Extraction 
The body joints will be tracked to provide 
upper- and lower-limb and trunk movement 
with the help of skeleton data being extracted at 
the level of recorded videos based on either a 
Microsoft Kinect camera or a similar pose 
estimation system. The skeleton data will be 
used to provide full-body movement at the 
frame rate, using the 25-joint Kinet model. 
Such representation allows organizing the 
analysis of coordination patterns and mobility 
dynamics. 
7.4.Preprocessing 
Noise filtering, joint coordinates normalization, 
and sequence-to-sequence temporal alignment 
will be part of the preprocessing. Missing or 
fluctuating joint estimates will be interpolated, 
and segments with low tracking quality will be 
removed. The purpose of these steps is to 
enhance the reliability of the data as well as 
minimize sensor noise. 
7.5.Tokenization 
The skeleton sequences obtained after 
processing are converted into a form that could 
be read directly by the transformer model. The 
movement records are initially broken into 
small time clusters, which in turn record a short 
continuous part of the movement of the child. 
In each of the segments, a video frame is an 
individual token. The 3D joint positions of that 
frame are flattened into a solitary feature vector 
and are fed through a learnable projection layer 
that transforms it into a small numerical 
embedding that is processed by transformers. 
Positional information is then added to make 
the model aware of the sequential arrangement 
of frames, and an optional classification token 
can be added at the start of the sequence to 
provide an overview of the entire segment. The 
resulting design, based on one token per frame 
and partially overlapping segments, will ensure 
that the transformer can capture a wider range 
of patterns over time, relationships in the world 
between joints that are distant to one another, 
and low-level timing anomalies. The latter 
features of the tokenization strategy render it 
particularly suitable for the analysis of ASD 
motor behavior, where the lack of proper 
coordination, weak time consistency, and 
distributed joint dependency is frequent over 
large parts of the movement routine. 
7.6.Transformer Model 
The array of proposed classifications will utilize 
a transformer-based framework that is 
developed to learn long-range temporal 
dynamics and the interactions among limbs. 
The self-attention systems will help the model 
to detect the lack of coordination, timing 
disparities, and unusual movement 
organization, which is commonly linked to 
ASD. It will train the model to differentiate 
between the ASD and control groups using 
extracted movement features, leveraging 

transformer capabilities described in recent 
literature. 
7.7.Evaluation Plan 
The system will be tested based on the normal 
performance measures, including accuracy, 
precision, recall, and F1-score. The cross-
validation will be done to determine the 
generalization, and it will be compared to the 
baseline models that include CNN or LSTM 
architectures. The objective of the evaluation is 
to know whether the transformer-based 
representations can be used to achieve 
quantifiable gains in the ASD classification. 
7.8.Summary 
Overall, the suggested pipeline is a combination 
of AR-driven motor activity and transformer-
enhanced movement tracking, which will be a 
systematic and innovative method of assessing 
autism. The system should produce significant 
behavioral understanding and help create more 
useful computational means for ASD 
assessment.  
8.COMPARATIVE ANALYSIS 
In this chapter, the author discusses the three 
main directions of research considered to take 
place in the context of this survey: AR-based 
systems, skeleton-based, and transformer-
based models. It aims to determine their 
respective strengths and weaknesses and to 
emphasize how their results are applied to the 
development of the proposed pipeline. This 
section summarizes the lessons learned in the 
preceding chapters, explains the 
methodological gap the present research should 
address, and provides the rationale for 
combining the AR-guided tasks with the full-
body skeleton capture and a transformer 
architecture. 
8.1.Research Directions Comparison 
AR-based systems have shown considerable 
potential to raise the engagement and 
motivation levels of children with ASD, 
especially by using interactive and gamified 
systems. Nonetheless, most AR solutions have 
no standardized data acquisition, which leads 
to the inconsistency of movement records and 
the inability to apply them to objective 
evaluation. Conversely, skeleton-based 
techniques offer positional descriptions of 
motor behaviors and can be used to make 
quantitative assessments of coordination, 
posture, and movement performance. 
However, most of these approaches are based 
on conventional classifiers or sequence models 
like CNNs or LSTMs, which do not 
conceptualize long-range temporal interactions 
and complicated inter-limb interactions. 
Transformer models overcome these 
limitations in that they provide better 
performance in the context of modeling the 
temporal patterns and structural dependencies 
between joints. The literature consulted in 
Chapter 6 indicates that the spatiotemporal 
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transformer and the graph-based transformer 
are superior to traditional models for detecting 
abnormal movement patterns associated with 
ASD. Nonetheless, these models require high-
quality, consistent input data and are not often 
implemented in controlled task environments, 
which limits their usability. 
8.2.Integrated Insights 
The comparative results have shown that there 
is no single direction of research that can offer 
a comprehensive solution to ASD movement 
assessment. AR-based solutions are the most 
effective for engagement; skeleton-based 
solutions provide quantitative analysis of 
muscular movements but have less developed 
modeling; and transformer-based models have 
excellent representational capability but 
heavily rely on high-quality inputs. Such 
strengths can be used to overcome some of their 
weaknesses, suggesting that a synthesised 
framework may yield more valid and apparent 
assessment results. 
8.3.Recommendations to the Proposed 
Pipeline 
As a result of this investigation, the pipeline 
proposed in Chapter 7 is directly aligned with 
the most promising research direction. The 
system guarantees a controlled and 
standardized data collection and keeps the 
participants motivated using AR-guided tasks. 
Whole-body skeleton capture offers structured 
data on movement that is useful in 
computational modeling, and transformer-
based structures allow modeling of both 
temporal and structural dependencies. Such a 
combination addresses gaps identified in the 
current literature and provides a unified 
method that balances usability and analytical 
rigor. In general, this course of comparison 
shows that current available methods offer 
quality but incomplete solutions to the 
assessment of ASD movement. AR systems 
enhance interactivity without structured data, 
skeleton-based methods have a quantitative 
representation of movements but only limited 
modeling techniques, and the transformer-
based models allow more complex analysis but 
demand steady inputs. All these restrictions 
underscore the necessity of a combined 
framework, which is at the foundation of the 
troubles in the following chapter. 
9.CHALLENGES AND LIMITATIONS 
Although the integration of AR-guided motor 
tasks, fully capturing the skeleton, and 
transformer-based analysis takes a promising 
direction, there are several challenges and 
limitations. First, not many high-quality 
records of movement among children with ASD 
exist, because recruiting, seeking ethical 
approval, and control of data gathering take 
much time and need organization with clinical 
and educational facilities. Such a lack of 
standardised data can affect the generalisability 

of models and limit large-scale validation. 
Second, skeleton-tracking systems like Kinetect 
or pose-estimation systems may introduce 
noise, occlusions, or missing joints, especially 
when children behave chaotically or lose 
attention during tasks. Such tracking anomalies 
can decrease the accuracy of movement 
features being extracted and can affect the 
performance of transformers, which also 
depends on a reliable temporal and structural 
input. Third, behavioral heterogeneity among 
the ASD population is a given challenge. 
Variations in cognitive capacity, motor 
dexterity, attention span, and sensory 
sensibilities might also affect the performance 
of the tasks, and it may not be easy to determine 
a common pattern of movement among the 
participants. Due to these factors, models may 
not fully represent the full range of ASD-related 
motor characteristics. Lastly, the suggested 
pipeline is yet to be proven empirically, and the 
future application and appraisal will determine 
its efficiency. The assessment of real-world 
performance, usability, and clinical relevance, 
especially across a variety of settings, needs to 
be further conducted. 
10.FUTURE DIRECTIONS 
The work will be conducted in the future to 
apply and verify the proposed AR-skeleton-
transformer pipeline and implement it in the 
real-world environment. Sensory modalities 
can be extended by including audio or facial 
expression analysis to increase the capability of 
the system to detect multimodal behavioral 
signals that are linked to ASD. The deepening of 
the sample of participants and longitudinal 
research may also enhance the generalizability 
of the model and help to determine the 
developmental patterns across the years. The 
metrics used in clinically aligned evaluation 
protocols must enable the comparative, 
meaningful representation of the 
computational model relative to pre-existing 
diagnostic practices. This involves correlation 
of model output with standardized clinical 
scales like ADOS, ADI-R, or SRS-2 so that 
atypicality of motor manifestation at the 
predicted level can be said to be in line with 
severity scores that are clinically sound. Also, 
ASD motor subtypes should be evaluated 
sensitively in that they determine patterns 
between bilateral coordination problems, gait 
abnormalities, the lack of postural stability, and 
repetitive motor behaviours, and not give a 
single global prediction. Longitudinal 
validation should also be included: it is 
necessary to test the models with movement 
data measured on several sessions to confirm 
their stability over time and be able to observe 
the changes in development or the effect of the 
intervention. More measures can be tested, 
including retest reliability, agreement with 
clinician-rated video measures, and the ability 
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to identify small within-child differences 
associated with familiar clinical indicators. The 
combination of these elements guarantees the 
statistical accuracy of computational 
predictions, as well as their clinical 
interpretability, clinical reproducibility, and 
true relevance to real-world ASD assessment 
procedures. 
11.CONCLUSION 
This survey has reviewed three significant 
research directions in the field of assessing the 
movement of ASD, which are AR-based 
systems, skeleton-based analysis, and 
transformer-based models. AR solutions are 
highly interactive but lack standardized data-
acquisition procedures. In contrast, skeleton-
based methods offer organized motor data at 
the expense of traditional models with limited 
ability to model the complex temporal and 
inter-joint relationships. A transformer-based 
strategy presents better modeling abilities, 
especially long-range temporal-spatial 
relationships, though it needs clean and 
consistently structured input data, which most 
present ASD datasets lack. Together, these 
results indicate the obvious methodological 
gap: there is no current framework that can 
combine the control of task conditions, full-
body behavior in an ecologically valid way, 
measure standard bone motions, and use the 
advanced transformer architectures to 
understand the movement deeply. The 
proposed AR-Skeleton-Transformer pipeline 
directly fills this gap by providing a well-
controlled and clinically equivalent behavioral 
elicitation with the use of AR tasks, generating 
high-quality and standardized skeleton data 
that can be used in further modeling, and using 
transformer models to obtain rich and 
temporal-structural biomarkers that are not 
accessible in other modalities. This combined 
workflow is not only able to overcome the space 
between the existing studies of ASD movements 
but also offers a scalable, reproducible, and 
clinically promising basis for next-generation 
computational ASD diagnostics, making the 
pipeline a formidable and visionary future 
research choice. 
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