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Abstract: This article considers matrix multiplication in the 

problem of finding the transitive closure of a binary relation with 

the transitivity property, as well as in the construction of the 

reachability and counter-reachability matrices in general graphs. 

An analysis of approaches to practical implementation for finding 

the transitive closure of a binary relation is presented: the Floyd-

Warshall algorithm and raising the adjacency matrix to a power 

until it stabilises. The problem of processing large (thousands to 

millions of elements) graph diagrams of parallel algorithms on a 

processor (CPU), and the primary methods for optimising matrix 

calculations at both the software (algorithmic) and hardware 

levels, are considered. The main types of digital devices based on 

the parallel-pipeline data-processing principle are identified, and 

their advantages and disadvantages are outlined. A specialised 

computing device for fast multiplication of square binary 

matrices of size n × n is considered, whose distinctive feature is 

pipelining the data read operation from a specialised multiport 

memory. A mathematical model and a method for organising the 

parallel-pipeline memory of a specialised square binary matrix 

multiplication device are presented. An estimate of the matrix-

processing time and hardware complexity for the developed and 

prototype devices is presented. Computational experiments 

showed that, despite a slightly higher hardware complexity (up to 

8.8×) than the prototype device, the proposed device multiplies 

square binary matrices of size n ≤ 512 up to 52.4× faster. This 

represents a significant advantage when implemented in a semi-

custom design using field-programmable gate arrays or a custom 

design based on application-specific integrated circuits. In this 

paper, we present a novel systolic device whose core innovation 

is a pipelined multiport memory architecture. By ensuring a 

continuous, high-bandwidth data flow to the processing 

elements, our contribution enables the systolic array to operate at 

its theoretical peak performance. 
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1.INTRODUCTION
Many computationally intensive tasks involve 
matrix multiplication. The effectiveness of its 
implementation determines how quickly these 
tasks are solved. The applications of high-
performance computing based on matrix 
computing include: real-time systems that 
make decisions in a short time interval (no 
more than a few tens of milliseconds), 
computer-aided design (CAD) systems [1], 
satellite and inertial navigation systems, UAV 
swarm control algorithms with cluster analysis 
elements [2], and graph problems with building 
routes and using adjacency matrices in graphs 
[3]. When solving many issues in separate 
mathematics, it is necessary to multiply binary 
matrices. These include constructing a 
reachability-counter-reachability matrix in 
general graph-theoretic graphs [4] and 
computing the transitive closure of a binary 
relation [5]. There are two approaches to the 
practical implementation of the transitive 
closure search. The first one is based on the 
Floyd-Warshall algorithm [6, 7]. This algorithm 
implements a special order of consideration of 
matrix elements, which allows you to find the 
reachability matrix in one pass, which is a key 
advantage of this algorithm, but, along with 
this, there is a disadvantage because the Floyd-
Warshall algorithm cannot be parallelised, as it 
depends on the order in which multiplication 
operations are performed. The temporal 
asymptotics of the Floyd-Warshall algorithm 
are O(n3). The second approach is based on 
squaring the adjacency matrix until it stops 
changing. The resulting value of a matrix with 
the property of transitive closure will be 

obtained in the worst case in ⌈log
2

n⌉steps 

(squaring the matrix), and the time asymptotic 
value of the algorithm will be O(n3logn). From 
this, we conclude that the time complexity of 

this approach is higher than that of the Floyd-
Warshall algorithm; however, it allows effective 
parallelisation because it does not depend on 
the order of operations. Based on this analysis 
of two algorithmic approaches, the subsequent 
methodology will involve a comparative 
evaluation to determine the optimal 
implementation strategy for different practical 
scenarios. This evaluation will be conducted by 
theoretically assessing both time and space 
complexity and by implementing algorithms to 
test their performance on a set of sample 
relations of varying sizes and densities. The 
parallelizable nature of the matrix squaring 
approach will also be explored by 
benchmarking its performance in a multi-
threaded computing environment against the 
serial execution of the Floyd-Warshall 
algorithm. 
2.METHODOLOGY 
Processing large graph circuits (thousands to 
millions of elements) for parallel algorithms on 
modern CPUs can take several minutes to 
several hours. In this context, software and 
hardware approaches are employed to optimise 
matrix calculations. The software 
implementation employs a basic approach to 
matrix multiplication: classical multiplication. 
This approach is ineffective when the matrices 
exceed the CPU cache size. Based on this, 
various algorithmic methods are used in 
practice to reduce CPU cache misses and 
improve overall system performance. For 
example, matrix column-buffered 
multiplication (Fig. 1) or block multiplication 
(Fig. 2) enables efficient use of the CPU cache 
[8]. Figure 1 demonstrates that buffered 
multiplication significantly outperforms the 
classical method for large matrices by reducing 
cache misses. 

 
Fig. 1 Performance Graphs of Classical and Buffered Multiplication of Real Matrices. 
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Fig. 2 Graphs of the Performance of Block Multiplication of Real Matrices Depending on the Block 

Size. 

Another well-known approach to reduce the 
time spent on matrix computations is to 
perform matrix multiplication on graphics 
processing units (GPUs) with shared memory 
(GPGPUs). The use of parallel software 
implementations, such as CUDA, OpenCL, and 
STREAM, for GPU computing [9-11] also 
enables higher system performance. If, at the 

software level, the execution time of the matrix 
multiplication operation is unacceptably long, 
then it is justified to transfer this operation to 
the hardware level. Approaches to 
implementing matrix operations at the 
hardware level are divided into three main 
groups, as presented in Table 1. 

Table 1 Types of Matrix Processing Devices. 
Group Description 
Devices based on optical elements [12-14] Devices in this group are not currently used in practice. 
Devices based on analogue probabilistic principles of signal 
processing [15] 

Noncompliance with IEEE 754 standards and low 
computational accuracy in this group limit their use in 
computing. 

Digital devices based on parallel pipeline architecture [16-18] The devices in this group are based on parallel and pipelined 
data processing. On these devices, matrix multiplication is 
performed in linear time, yielding significant performance 
gains. 

There is a separate class of tasks aimed at 
processing binary matrices. These include, for 
example, the above-described functions for 
constructing reachability and counter-
reachability matrices in graphs and for 
computing the transitive closure of binary 
relations with the transitivity property. In their 
hardware implementation, it is possible to 
significantly reduce hardware complexity and 
improve the performance of specialised 
computing devices. These devices can be 
classified into two categories: systolic and 
iterative. Computing devices with a systolic 
structure are characterised by high 
performance, ease of implementation due to 
their regularity, and ease of reconfiguration; 
however, they exhibit significantly greater 
hardware complexity, which is an obstacle to 
their practical implementation when 
multiplying large matrices. Iterative binary 
matrix processing devices, focused on the 
hardware implementation of classical 

multiplication algorithms, are characterised by 
moderate speed and low hardware complexity.  
In each specific case (matrix size, matrix 
density, and hardware-complexity limitations), 
one of the above software or hardware 
approaches can be selected to implement 
matrix multiplication in practice. 
3.RESULTS 
Based on the above information, this article 
proposes a device that implements the systolic 
multiplication principle to reduce the time 
spent reading data using a specialised multi-
port memory. In the prototype device [19], a 
corresponding structural and functional 
organisation of a multi-port memory was 
proposed, enabling the reading of 2n pairs of 
matrix coefficients per clock cycle, significantly 
outperforming classical memories (DDR or 
GDDR), which read only one operand per clock 
cycle. During the performance evaluation [20], 
it was found that for matrices with n ≥ 64, the 
device's operating time (conveyor cycle) is 

https://tj-es.com/
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limited by the rate of data transfer from 
memory. Based on the performed analysis, to 
reduce the time spent on reading data from 
multiport memory, a device is proposed (see 
Figs. 3 and 4) based on the systolic 
multiplication principle, a distinctive feature of 
which is pipelining data reading [21]. Figure 3 
shows a functional diagram of the proposed 
device, which includes n × n cells of operating 
blocks (OUC), where n is the size of the square 
matrices being multiplied, blocks of matrix 
coefficients (BMC) 2, 3, a shift register 4, and a 
group of n two-stage registers 5. Figure 4 shows 
the cell diagram of the device's operating unit, 
consisting of two-stage triggers 6, 7, 8; logic 
gates OR 10, 13; logic gates AND 9, 11, 12; and 
an inverter 14. Figure 5 shows a diagram of a 
single memory-cell storage unit (specialised 

pipelined multiport memory) consisting of 
trigger 16, logic element AND 17, a group of n 
elements AND 18, a group of n elements OR 19, 
and blocks of n two-stage triggers 28, 29, 30. 
Figure 6 shows a diagram of a matrix coefficient 
block (one cell for storing one matrix coefficient 
within a multiport memory), which contains n 
× n storage blocks 15, two groups of (n 1) two-
stage registers 39, 40, a group of n × n two-stage 
triggers 41, and a group of n × (n 1) logic gates 
OR 42. Here is a description of a mathematical 
model for organising the operation of a 
specialised multiport conveyor memory (Fig. 
6), comprising n × n storage units (Fig. 5) [22]. 
The proposed specialised device memory 
operates according to the following 
mathematical model:

39
i

(t)
 := Rg 39

i-1

(t-1)
, i = 2, n̅̅ ̅̅ ̅̅ , (1) 

40
j

(t)
 := Rg 40

j-1

(t-1)
, j = 2, n̅̅ ̅̅ ̅̅ , (2) 

29
k

(t)
[i, j] := TT 29

k

(t-1)
[i, j–1], i = 1, n̅̅ ̅̅ ̅, j = 2, n̅̅ ̅̅ ̅̅ , k = 1, n̅̅ ̅̅ ̅, (3) 

28k
(t)

[i, j] := TT 28k
(t-1)

[i – 1, j], i = 2, n̅̅ ̅̅ ̅̅ , j = 1, n̅̅ ̅̅ ̅, k = 1, n̅̅ ̅̅ ̅, (4) 

TT 30
k

(t)
[i, j] := D[i, j] & TT 29

k

(t)
[i, j] & TT 28k

(t)
[i, j] ∨ TT 30

k

(t-1)
[i – 1, j], i = 2, n̅̅ ̅̅ ̅̅ , 

j = 1, n̅̅ ̅̅ ̅, k = 1, n̅̅ ̅̅ ̅, 
(5) 

TT 41(t)[k, 1]:= TT 30k
(t-1)

[n, 1], k = 1, n̅̅ ̅̅ ̅, 41(t)[k, j] := TT 41(t-1)[k, j – 1] ∨ TT 30k
(t-1)

[n, j], j = 

2, n̅̅ ̅̅ ̅̅ , k = 1, n̅̅ ̅̅ ̅. 
(6) 

Here, i, j = 1, n̅̅ ̅̅ ̅ Are the numbers of the current 
storage unit, k = 1, n̅̅ ̅̅ ̅ Is the read port number, 
and t is the clock cycle number. Formula (1) 
corresponds to the conveyor principle of 
advancing addresses by columns, and formula 
(2) corresponds to the conveyor principle of 
advancing addresses by rows (addresses are 
specified in a unitary code of the form 00... 
01000...00, where one indicates the row and/or 
column number of the selected storage unit). 
Formulas (3) and (4) describe the pipelining of 
these addresses through the storage units of 
memory cells, and formula (5) describes the 
reading and subsequent pipelining of data from 
the selected storage unit down the columns. 
Formula (6) describes the further pipelining of 
the read data to the output of the matrix 
coefficient block. During software processing, 
the matrix is stored in RAM as a two-
dimensional array of binary values (0 or 1). The 
matrix elements are stored in memory in row 
order, and address calculations are required to 
access them. In hardware-oriented processing, 
data are transferred from RAM to a specialised 
multiport, parallel-pipelined memory within a 
computing device, which can partition a model 
in space by stage. Next, the matrices are fed into 
the systolic computing device, one top-down 
and the other left-to-right, where they are 

multiplied in linear time. During the 
assessment of the time spent processing 
matrices on the specialised computing device 
developed, the following results were obtained 
[23] and are presented in Tables 2–6. Figures 7 
and 8 present time diagrams that explain the 
logic of the developed device. The time-cost 
values for each work stage of the developed 
specialised computing device and the prototype 
device, calculated for various n values with t0 = 
1 ns, are shown in Table 2. Based on the data in 
Table 2, the loading and unloading times for the 
source and result data of the proposed device 
are significantly higher than the matrix 
multiplication time, making frequent matrix 
loading and unloading impractical. For 
example, when performing the transitive 
closure of a binary relation represented as a 
binary matrix, the initial matrix is loaded once, 
followed by a series of squarings, which is 
effectively implemented by the proposed 
device. A comparative estimate of the time 
spent operating the developed specialised 
computing device and prototype, computed for 
various n values with t0 = 1 ns, is shown in Table 
3. A time diagram illustrating the operational 
stages of the developed specialised computing 
device is shown in Fig. 7. 
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Fig. 3 Structural and Functional Diagram of a Specialised Computing Device for Multiplying Square 

Binary Matrices. 

 
Fig. 4 The Cell Diagram of the Operational Unit of the Computing Device for Multiplying Binary 

Matrices. 
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Fig. 5 Cell Diagram of the Storage Unit of the Computing Device for Multiplying Binary Matrices. 

 

Fig. 6 Diagram of the Matrix Coefficient Block of the Binary Matrix Multiplication Computing Device. 
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Table 2 Time Cost Values for Each Stage of the Device Operation. 

n writing, ms 
writing 

prototype, ms. 
working, 

Ms 
working of 

prototype, ms 
twinning, ms 

twinning prototype, 
ms 

tgen. prototype, 
ms 

tgen., ms 

2 0.000032 0.00003 0.000015 0.000024 0.000073 0.000088 
4 0.000128 0.00007 0.000056 0.000096 0.000282 0.000296 
8 0.000512 0.00015 0.000195 0.000384 0.00109 0.00104 
16 0.00205 0.00031 0.00068 0.00154 0.00427 0.00389 
32 0.00819 0.00063 0.00245 0.00614 0.0168 0.0149 
64 0.0327 0.00127 0.00914 0.0246 0.0664 0.0586 
128 0.131 0.00255 0.0349 0.0983 0.264 0.232 
256 0.524 0.00511 0.135 0.393 1.05 0.922 
512 2.09 0.0102 0.535 1.57 4.21 3.68 
1024 8.39 0.0204 2.12 6.29 16.8 14.7 
2048 33.5 0.0409 8.44 25.2 67.1 58.7 

Table 3 Comparative Assessment of the Time Spent on the Operation of the Devices. 

n Tgen. prototype, ms tgen, ms 
Winning 
Times % 

8 0.00109 0,00104 1.04 4 
16 0.00427 0.00389 1.10 10 
32 0.0168 0.0149 1.12 12 
64 0.0664 0.0586 1.13 13 
128 0.264 0.232 1.14 14 
256 1.05 0.922 1.14 14 
512 4.21 3.68 1.14 14 
1024 16.8 14.7 1.14 14 
2048 67.1 58.7 1.14 14 

 
Fig. 7 Time Diagram Explaining the Stage of Operation of the Developed Specialised Computing 

Device. 

A time diagram illustrating the operational 
stages of the developed specialised computing 
device's operating unit (see Fig. 4) is shown in 
Fig. 8. A comparative estimate of the time spent 
on the operation of the developed specialised 
computing device for multiplying square binary 
matrices and a prototype in the task of 
searching for a transitive closure of a binary 
relation (the multiplication operation is 

performed log
2
nEs), calculated for various n, t0 

= 1 ns, is shown in Table 4. The time-cost values 
for the matrix multiplication operation on the 
developed specialised computing device and 
the prototype device, computed for various n 
and t0 = 1 ns, are shown in Table 5. An estimate 
of the time spent by known computing devices 
on matrix multiplication, computed for various 
n values and t0 = 1, is shown in Table 6. Based 
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on the results of the computational experiment, 
it can be concluded that using pipelining to read 
data from a specialised multiport memory 
reduces the processing time for square binary 
matrices with n ≤ 2048 by a factor of 206.3. The 
hardware complexity of the developed 
specialised computing device for multiplying 
square binary matrices, with pipelining of the 
data read operation from a specialised 
multiport memory, is estimated for a prototype 
device at the same n [30]. The hardware 
complexity was estimated in equivalent valves 
(EVs), where an EV is a one- or two-input logic 
element performing an elementary logical 
operation. The hardware-complexity values for 
the proposed square binary matrix 
multiplication device with pipelined data read 
from a specialised multiport memory are shown 
in Table 7 for various n values. The hardware 
complexity values for the specialised memory, 
the systolic part of the prototype, and the 
developed specialised computing device, 
computed for various n values, are shown in 
Table 8. The estimates of hardware complexity 
(see Table 8) indicate that most of the 
equivalent gates are allocated to implementing 
specialised memory. The hardware complexity 

values for the proposed device and prototype, 
computed for various n values, are shown in 
Table 9. From the data presented (see Tab. 9), 
it follows that the prototype device has 5.5–8 
times lower hardware complexity than the 
developed specialised matrix multiplication 
computing device with pipelined data reading 
from a specialised multiport memory, 
depending on the matrix size n. Based on an 
estimate of the time cost and hardware 
complexity of the developed device (see Fig. 9), 
it can be concluded that it is the most 
productive among known devices when 

multiplying matrices of size 8  ×  512. The 
lower boundary on the graph (Fig. 9) indicates 
that the developed computing device is not 
advisable for multiplying square binary 
matrices of size n  × 8, given its relatively high 
hardware complexity for such a small matrix 
size. The upper bound indicates that the 
developed computing device will most likely not 
fit within a modern FPGA crystal when 
multiplying matrices of size n ≥ 512. Practical 
implementation of the developed specialised 
computing device using an FPGA (Figs. 10 and 
11) [31, 32]. 

 
Fig. 8 Time Diagram Explaining the Operation of the Operating Unit of the Developed Specialised 

Computing Device. 
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Table 4 Comparative Assessment of the Time Spent on the Operation of Devices. 

n tgen. prototype, ms tgen., ms Winning, times 

8 0.00148 0.00134 1.10 
16 0.00631 0.00482 1.31 
32 0.0266 0.0174 1.52 
64 0.112 0.0649 1.73 
128 0.473 0.247 1.92 
256 2.00 0.958 2.09 
512 8.48 3.76 2.25 
1024 35.9 14.8 2.41 
2048 151 59.1 2.56 

Table 5 Comparative Estimation of the Time Spent by Devices on the Matrix Multiplication Operation. 

n 
The developed device (favourable decision on the grant of an 
RF patent for an invention, application No. 2025104287) 

Prototype (RF patent for 
utility model No. 193927) 

Winning, 
times 

8 150 as 190 s 1.3 
16 310 as 680 as 2.2 
32 630 as 2450 is 3.9 
64 1.27 ms 9.14 ms 7.2 
128 2.55 ms 34.9 ms 13.7 
256 5.11 ms 135 ms 26.4 
512 0.0102 ms 0.535 ms 52.4 
1024 0.0204 ms 2.12 ms 103.9 
2048 0.0409 ms 8.44 ms 206.3 

Table 6 Estimation of the Time Spent by Computing Devices on Matrix Multiplication. 
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8 330 as – – – 145000 as 3900 is 190 s 150 as 
16 2870 is – 1320 is – 145000 as 24300 is 680 as 310 as 
32 28200 is – 9630 is – 145000 as 175000 is 2450 is 630 as 
64 300 ms – 58.2 ms – 198 ms 1310 ms 9.14 ms 1.27 ms 
128 2600 mas – 419 ms – 391 mas 10100 ms 34.9 ms 2.55 ms 
256 23600 ms 14000 ms 3078 ms 55000 ms 776 ms 81400 ms 135 ms 5.11 ms 
512 194 ms 104 ms 22,7 ms 75 ms 1.54 ms 656 ms 0.535 ms 0.0102 ms 
1024 1600 ms 850 ms 239 ms 210 ms 3.08 ms 4890 ms 2.12 ms 0.0204 ms 
2048 13300 ms 7000 ms 2450 ms 1300 ms 6.15 ms 39100 ms 8.44 ms 0.0409 ms 

Table 7 Evaluation of the Hardware Complexity of the Developed Specialised Computing Device. 

n The developed device is an EV. 

10 6.1 × 104 
100 5.4 × 107 
1000 5.4 × 1010 

Table 8 Evaluation of the Hardware Complexity of the Specialised Memory and the Systolic Part of the 
Prototype Device, and the Developed Specialised Computing Device. 

n RRAM prototype, EV RRAM, EV Rsyst. prototype, EV Rsyst., EV 

2 140 588 120 
4 744 4072 480 
8 4496 30096 1920 
16 30240 230944 7680 
32 2.2 × 105 1.8 × 106 3.0 × 104 
64 1.7 × 106 1.4 × 107 1.2 × 105 
128 1.3 × 107 1.1 × 108 4.9 × 105 
256 1.0 × 108 9.1 × 108 2.0 × 106 
512 8.1 × 108 7.2 × 109 7.9 × 106 
1024 6.5 × 109 5.8 × 1010 3.1 × 107 
2048 5.2 × 1010 4.6 × 1011 1.2 × 108 

Table 9 Comparative Assessment of the Hardware Complexity of the Developed Specialised Computing 
Device with the Prototype Device. 

n 
The developed device (a favourable decision to grant an 
RF patent for an invention or an application).  
 No. 2025104287), EV 

Prototype (RF patent 
for utility model No. 
193927), EV 

Difference, times 

10 6.1 × 104 1.1 × 104 5.5 
100 5.4 × 107 6.5 × 106 8.3 
1000 5.4 × 1010 6.1 × 109 8.8 
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Fig. 9 Estimation of the Time Spent by Known Computing Devices on the Multiplication of Binary 

Matrices. 

 
Fig. 10 Practical Implementation of the Developed Specialised Computing Device Using an FPGA. 

 
Fig. 11 Practical Implementation of the Developed Specialised Computing Device Using an FPGA. 
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The DE10-Nano board offers numerous 
features that enable users to implement a range 
of designed circuits. Figure 12 shows the block 
diagram of the DE10-Nano board. All 
connections are established via the Cyclone V 
SoC FPGA, providing maximum flexibility for 

users (see the DE10-Nano user manual). In 
addition, by slightly modifying the storage unit 
cell structure, the developed computing device 
can perform general-purpose matrix 
operations. 

 
Fig. 12 Block Diagram of the DE10-Nano. 

4.CONCLUSIONS 
Even though the developed specialized 
computing device for multiplying square binary 
matrices has a slightly higher hardware 
complexity than the prototype device, 
according to preliminary estimates, it reduces 
time costs by up to 52.4 times when multiplying 
square binary matrices with a size of n ≤ 512, 
which is advisable for its practical 
implementation in a semi-custom design using 
FPGA or in a customized version using ASIC. 
Our results indicate promising prospects for 
future innovation and research. It can play a 
significant role across broad scientific fields by 
exploring the integration of our device with 
advanced processor technologies, such as 
quantum computing and neuromorphic 
systems, thereby providing an exciting avenue 
for future work and innovation in matrix 
computation. It could also play a key role in AI 
algorithms that use sensor data, such as the 
Pelican Optimisation Algorithm (POA) and 
Particle Swarm Optimisation (PSO) [33-35]. 
This work presents a novel systolic device 
whose core innovation is a pipelined multiport 
memory architecture. This architecture directly 
addresses and overcomes the critical data 
bandwidth bottleneck, the primary obstacle to 
efficiency in conventional designs. By ensuring 
a continuous, high-bandwidth data flow to the 
processing elements, our contribution enables 
the systolic array to operate at its theoretical 
peak performance. Thus, the proposed device 

represents a significant advancement, offering 
a scalable and efficient solution for the most 
computationally intensive tasks. 
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