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Abstract: Researchers have developed a powerful
new method to detect Alzheimer's disease (AD) by
combining brain MRI scans with advanced artificial
intelligence  techniques. The study used
sophisticated computer algorithms to analyse
structural changes in the brain, particularly in
entorhinal

regions such as the cortex,

parahippocampal area, and inferior temporal
regions, which are known to be affected early in AD
progression. By combining logistic regression and a
support vector machine (SVM) in an ensemble
learning (EL) approach, the researchers achieved
remarkably high accuracy rates of 99% for
distinguishing between healthy individuals and
those with AD, 96% for detecting mild cognitive
and 85% for identifying
progression from MCI to AD. When the model was

impairment (MCI),

evaluated for multiclass classification distinguishing
healthy controls, individuals with MCI, and patients
with AD, it achieved an overall accuracy of 93%,
demonstrating strong generalisation across all
diagnostic categories. This reflects the efficacy of
integrating structural MRI features with EL-based
machine learning (ML) techniques, yielding a robust
and interpretable diagnostic framework. Such an
approach holds significant clinical promise, as it
supports early and reliable detection of AD,
potentially facilitating timely intervention and
improved patient management.
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1. INTRODUCTION

derived from MRI data, and two additional
parameters, Alzheimer's parameters.
Alzheimer's disease (AD) is a
neurodegenerative disorder that progressively
damages the brain, characterised by the
accumulation of amyloid plaques and
neurofibrillary tangles, which ultimately kill
brain cells. Early diagnosis and treatment are
crucial. Early warning signs include memory
loss, behavioural changes, and difficulty
thinking clearly. Early intervention can slow
disease progression and support better brain
function. To confirm a diagnosis of AD,
physicians typically perform a comprehensive
physical examination, review the patient's
medical history, and conduct cognitive and
neuroimaging tests. Imaging methods such as
CT, PET, and MRI are instrumental in detecting
amyloid deposits and neurofibrillary tangles
[1—7]. This study evaluates methods for
diagnosing AD, emphasising the vital role of
imaging techniques such as MRI and PET,
together with advanced approaches that use
machine learning (ML) and deep learning (DL).
With an accuracy of 92. In 13% of models, such
as 3Dmgnet, AD, and normal cognition (NC)
can be distinguished. Behavioural tests and
other tools, such as foot mobility monitors with
DTW algorithms, provide additional means of
diagnosing the condition. Ongoing clinical
trials aim to develop non-invasive, cost-
effective screening methods. DL algorithms,
particularly those integrating MRI biomarkers
and functional brain networks, have
outperformed traditional methods and human
observers in early AD detection, classification
of AD subtypes, and prediction of progression
from late- life depression (LLD) to AD. To
distinguish among participants with AD, MCI,
and CN, the study analysed MRI data from 178
participants. A total of 22 parameters were
derived from MRI data, and two additional
parameters were derived from clinical and
demographic data. An 80% classification rate

was achieved by developing a ksvm- DT model
optimised using Particle Swarm Optimisation
(PSO). The ADNI dataset was also subjected to
a statistical feature selection and reduction
technique using a probability distribution
function [9-12]. This research aims to assess the
efficiency of ML and DL models, including
SVMs, decision trees (DTs), artificial neural
networks (ANNs), and advanced architectures
such as 3DMgNet, in distinguishing between
CN, MCI, and AD. It also aims to identify key
structural brain biomarkers by exploring and
analysing MRI and other imaging data, and to
improve classification accuracy by developing
enhanced, optimised models, such as kSVM-DT
optimised with particle swarm optimisation
(PSO), that achieve higher accuracy and
perform reliably across diverse datasets,
including ADNI. Lastly, it addresses critical
issues, including data quality, model
interpretability, and the difficulty of
pinpointing the specific brain regions most
affected by AD [13-17]. Table 1 illustrates the
effectiveness of ML and DL algorithms in
accurately identifying AD and distinguishing
between patients with CN, MCI, and AD. It also
highlights the significant capabilities of DL
algorithms in analysing medical images to
identify and classify various types of AD cases.
A comprehensive analysis of AD detection using
various evaluation parameters in a single
modality has been conducted by multiple
researchers. Table 1, together with the results
and discussion, shows that the use of
biomarkers yields better results. To provide a
comprehensive perspective on the effectiveness
of the proposed Ensemble LR SVM model, its
performance was quantitatively compared with
prior studies utilizing structural MRI-based
machine learning frameworks for AD detection.
Table 2 presents a direct comparison of
classification accuracies reported in previous
works (initially summarised in Table 1) with
those achieved in this study.

Table 1 Studies that Conducted a Comprehensive Analysis on the Detection of AD Using Various

Evaluation Parameters in a Single Modality.

Citation Technique Description Results
[4] 3DMgNet Architecture. Classify CN vs AD. 92.13%.
[5] CNN. Detection of AD. Shows improvement in AD detection
[3] Frequency-range functional ~AD diagnosis and distinguishing Efficient binary classification is done here.
brain networks; Combination MCIs.
of sMRI biomarkers.
[o] T1-weighted -Structural MRI. Predicting progression from LLD to Pathophysiological connection between AD and
AD. LLD.
[15] Image Fusion Technique. Combining PET & MRI images Suggested image fusion 93.21, 91.43, 95.42.
from AD patients.
[o] Patch Net — Structural MRI.  AD diagnosis using explainable ¢-MCI vs p-MCI; CN vs AD -92%.
patch selection and localisation.
[14] ML algorithms based on AD detection. Important diagnostic ratios: specificity and
sMRI. sensitivity.
[15] JD-CNN and MRN. Improving AD diagnosis pre- and  Performance in competition for several AD-
post-utilising sMRI data. related positions.
[16] sMRI. Diagnosis of AD. JD-CNN exhibits superior classification.
[17] ML algorithms, Co- Outperforming exhibiting sMRI-  Avg(F1-Score)-0.92 for AD.

Occurrence matrix. based methods.
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Table 2 Quantitative Comparison with Previous Studies.

Citation Dataset Model / Method Classification Accuracy (%)
Suk et al., 2014 ADNI Deep Boltzmann Machine + Softmax Multiclass (CN/MCI/AD)  86.1
Gupta et al., 2019 ADNI CNN on sMRI features Multiclass 88.4
Basaia et al., 2019 ADNI SVM on cortical thickness Binary (CN vs AD) 89.0
Islam & Zhang, 2020 ADNI Hybrid CNN-LSTM Multiclass 84.7
Liu et al., 2021 ADNI Ensemble RF + SVM Binary (CN vs AD) 91.5
Proposed Study ADNI Ensemble_LR_SVM (FreeSurfer features) Binary (CN vs AD) 99.0
CN vs MCI 96.0
MCI vs AD 85.0

Multiclass (CN/MCI/AD)  93.0

The new Ensemble_ LR_SVM model
significantly outperformed existing methods in
diagnosing AD and related conditions. When
distinguishing between cognitively normal
individuals and those with AD, the model
achieved 99% accuracy—roughly 8-10% higher
than previous studies by Basaia et al. (2019)
and Liu et al. (2021). On the more challenging
multiclass classification task of distinguishing
among CN individuals, MCI patients, and those
with AD, the proposed model achieved 93%
accuracy, outperforming prior studies by Suk et
al. (2014) and Islam & Zhang (2020) by
approximately 5—8%. This improvement can be
attributed to two primary factors. First,
advanced neuroimaging preprocessing enabled
the extraction of high-resolution structural and
cortical thickness features, providing a
comprehensive representation of disease-
related morphological changes. Second, the
model’s ensemble design, which strategically
integrates two complementary machine
learning algorithms, enhanced classification
performance. One algorithm captured linear
and interpretable relationships, while the other
excelled at modelling complex, non-linear
patterns within the data. Unlike earlier single-
method approaches, which often suffered from
variability and limited generalisability due to
small sample sizes, the proposed ensemble
framework demonstrated greater stability and
consistency across diagnostic groups. These
characteristics make it a more robust and
clinically applicable tool for supporting early
and accurate diagnosis of AD in clinical
practice.

2. MATERIALS AND METHODS
2.1.Dataset

The original, unprocessed MRI scans utilised in
this investigation are included in Table 3, and
the dataset was obtained from the ADNTj Access
Data (usc.edu). The dataset comprises the
number of T1-weighted MRI images obtained
from 600 individuals at three distinct stages of
cognitive development—CN, MCI, and AD.
There are 200 participants on each stage,
spanning a wide range of genders and ages.

While Alzheimer’s disease is a continuum of
biological and symptomatic changes, clinical
diagnosis and categorisation are commonly
used in practice and are applied to the ADNI
study cohort. Diagnostic criteria are based on
the results of well-validated clinical
assessments, including participant
performance on the Clinical Dementia Rating
(CDR), the Mini-Mental State Exam (MMSE),
the Wechsler Logical Memory II paragraph-
recall test (part of the neuropsychological
battery), and clinicians' judgment. Three
diagnostic cohorts have been relatively
consistent throughout the study and are
described below. The Cognitively Unimpaired
(CU) cohort, also referred to as the Cognitively
Normal (CN) cohort, comprises individuals
who do not exhibit significant evidence of
cognitive impairment during screening. During
the ADNI2 phase, this cohort was further
subdivided into the Subjective Memory
Complaint (SMC) cohort, comprising
participants with subjective complaints of
memory change and/or cognitive decline who
did not meet diagnostic criteria for impairment.
SMC participants who chose to roll over into the
ADNI3 phase and did not meet the criteria for
MCI were reassigned to the CN cohort. There is
no separate SMC cohort after ADNI2. The MCI
cohort represents an intermediate stage in the
progression to dementia. These participants do
not meet the diagnostic criteria for the
AD/dementia cohort but still present clinically
relevant cognitive impairment. During the
ADNIGO and ADNI2 phases of the study, the
MCI cohort was divided into Early MCI and
Late MCI (EMCI and LMCI, respectively) based
on the severity of their symptoms. This
classification scheme was discontinued after
ADNI2, and all MCI participants, including
those classified as early or late, are categorised
as MCI in subsequent phases. The Early-Stage
Alzheimer’s Disease (AD or DEM) cohort
consists of individuals who clinically present
with Alzheimer’s disease or some related
dementia.

Table 3 Dataset Description Utilised in this Experiment.

Phases Modality Gender Age Quantity Properties

CN MRI with T1 weighting Male/ Female 82-85 200 Unfiltered and unaltered
MCI MRI with T1 weighting Male/ Female 74-87 200 Unfiltered and unaltered
AD MRI with T1 weighting Male/ Female 200 Unfiltered and unaltered
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This study utilised data from the ADNI-2
cohort, which is well characterised with respect
to subject enrolment, follow-up, and imaging
protocols. Participants diagnosed with AD meet
criteria for probable AD based on NINCDS-
ADRDA guidelines, a Clinical Dementia Rating
(CDR) =1, and an MMSE score generally below
24. Amnestic MCI subjects exhibit a CDR of 0.5,
objective memory impairment on the Logical
Memory II test (performance below education-
adjusted cutoffs), preserved activities of daily
living, and no dementia, following Petersen et
al. criteria. Cognitively Normal/Unimpaired
subjects are free from memory complaints,
present CDR = 0, MMSE between 24-30, and
perform above the education-adjusted cutoff on
memory testing. From the larger ADNI-2 pool,
200 subjects from each of the AD, MCI, and CN
groups were randomly selected, matched for
age, sex, and educational background where
possible. Selection was conducted after
maximising analytic reproducibility. Further,
only baseline visits were included to avoid bias

from longitudinal data. Including these details
in your methods and the Table 2 legend ensures
a transparent cohort definition, adherence to
established diagnostic criteria, and an explicit
subject selection methodology, thereby
facilitating reproducibility by future studies.
Here in Table 2, Subject characteristics by
diagnostic group. Subjects (n=200 per group)
were selected from the ADNI-2 cohort using
baseline structural MRI and biomarker data.
Diagnostic  assignment followed ADNI
protocols: AD (probable AD, MMSE <24, CDR
>1), MCI (amnestic, CDR 0.5, abnormal Logical
Memory II per education, preserved daily
living), CN (CDR o, MMSE 24—30, standard
memory). Groups were sampled at random,
age- and sex-matched where possible, and all
data were quality-checked for completeness
and the presence of imaging artefacts. Figure 1
presents a comprehensive overview of the
preprocessing procedure, which includes the
computation of statistical features and the
categorisation of AD subtypes.

Raw Data's N4
Biased

Correction ’

Alignment

Free Surfer based| i
feature extraction > Datatype ’ Al based

NaN & Infinity
handling, AL and EM for

Conversion,
Normalization

Classification

MRI with T1 weighting

Fig. 1 Data Pre-Processing Technique Utilized in this Experiment.

2.2.Preprocessing of Data

Several crucial biases. Data preparation steps
include N4 bias correction, which is applied to
sMRI data to mitigate bias. The FreeSurfer
programme is then used to extract features.

After the data is extracted, it is processed. This
includes converting data types, dealing with
missing or infinite values (NaNs), and
standardising the data. As shown in Figure 2,
these steps are essential to ensure reliability.

| NaN and Infinity |

Stat Features

> | Data Type Conversion |

|Scale and .\'urmallzatinn|

ML Models:
LR, DT, VAL GB

Binary and Multiclass
Classification

EL Models utilizing
voting classifiers :
LR+ SVM

Fig. 2 Stat Data Pre-Processing, Development of Model, and Implementation for Binary and
Multiclass Categorization.

Free Surfer vX.X was used to extract cortical
thickness (mm), cortical surface area (mm?2),
and cortical grey matter volume (mm3) for each
cortical region, as well as subcortical volumes of
interest. Cortical areas were parcellated using
the Desikan-Killiany atlas (34 regions per
hemisphere) and, where finer spatial resolution
was required, the Dest Rieux atlas (74 regions
per hemisphere) for secondary analyses.

Subcortical structures were segmented using
Free Surfer’'s aseg—stats—stats output.
Initially, 68 cortical thickness, 68 surface area,
and 68 cortical volume features were extracted.
In addition to 16 subcortical volumes, this
yielded a total of 220 features per subject. Using
the Dest Rieux atlas, up to 148 cortical features
per structural measure were available, allowing
for an expanded feature set in secondary
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analyses. Features with excessive missing data
or poor quality were excluded, and intracranial
volume normalisation was applied where
appropriate. Summary of structural features
extracted by Free Surfer vs. Quantitative
features included cortical thickness, surface
area, and grey matter volume from 68 regions
based on the Desikan-Killiany atlas, as well as
subcortical regional volumes. In total, 220
features were generated per subject. For
comparative analysis, the Dest Rieux atlas-
parcellated features (148 cortical regions per
measure) were additionally utilised. All
features were normalised for head size, and the
distribution is shown. In the preprocessing
step, “statistical features” were derived from the
Free Surfer-extracted structural MRI data. For
each cortical and subcortical region, features
included Mean, standard deviation, skewness,
and kurtosis for cortical thickness, volume, and
surface area. Z-score normalisation was applied
to each feature across all subjects to account for
inter-individual variability. Additional derived
features included regional asymmetry indices
(left-right differences or ratios) and, where
applicable, total intracranial volume—corrected
measures. These features were selected because
they capture both the central tendency and
higher-order dispersion or shape of structural
differences associated with AD progression.
Subjects were categorised into CN, MCI, and
AD groups according to ADNI clinical
diagnostic protocols. The specific subtype
categorisation followed was AD: Clinical
Dementia Rating (CDR) =1, MMSE <24,
NINCDS-ADRDA probable AD diagnosis. MCI:
CDR = 0.5, abnormal Logical Memory II per
education, preserved activities of daily living,
absence of dementia. CN: CDR = 0, MMSE 24—
30, normal memory performance. Where
available, biomarker status (e.g., amyloid PET,
tau, APOE genotype) was used to further
annotate subtypes within MCI and AD (e.g.,
early vs. late MCI, prodromal AD).
Nevertheless, the primary classification was
based on the baseline clinical diagnosis. In
preprocessing, we extracted region-wise
cortical thickness, volume, and surface area
features from the Desikan-Killiany parcellation
using Free Surfer vs. For each feature,
statistical descriptors including mean, standard
deviation, skewness, and kurtosis were
computed across all relevant cortical and
subcortical regions, and all features were Z-
score normalised. AD subtypes were assigned to
each subject according to the ADNI consensus

Table 4 Comprehensive Preprocessing Pipeline.

criteria, based on baseline clinical and cognitive
assessments. The first step in sSMRI data pre-
processing addressed intensity inhomogeneity.
To address this, the N4BiasFieldCorrection
algorithm from Advanced Normalisation Tools
(ANTs), version 2.3.5, was applied. The
algorithm optimised image uniformity by
applying a shrink factor to accelerate
computation, a convergence threshold of 1e-7
for precise correction, and bias field smoothing
(FWHM = 0.15) to achieve consistent intensity
across scans. The second preprocessing step
used FreeSurfer (version 7.3.2), which
performed automated brain reconstruction and
segmentation via its recon-all pipeline,
including skull stripping and motion
correction. Subsequently, spatial normalisation
using the Talairach transformation aligned all
scans into a common stereotaxic space.
FreeSurfer then reconstructed the cortical
surface and segmented it into anatomically
defined regions based on the Desikan—Killiany
atlas, yielding 68 cortical regions per subject.
For each region, detailed morphometric
measures of cortical thickness, surface area,
and grey matter volume were computed.
Additionally, volumetric segmentation of
subcortical and deep grey matter structures
produced a complete 3D representation of each
brain. To facilitate cross-subject comparison,
all extracted features were standardised using
z-score normalisation, defined as z; = (x; — 1) /
0, where p is the group mean and o the standard
deviation. This normalisation reduced inter-
individual differences in brain size and signal
intensity, ensuring that all morphometric
features were expressed on a uniform scale.
Consequently, it enhanced the reliability and
accuracy of subsequent statistical analyses and
machine—learning—based classification.
Finally, a rigorous quality-control stage verified
the accuracy of all pre-processing steps.
Automated quality checks in Free Surfer and
manual visual inspections by trained analysts
were conducted to confirm that cortical
boundaries, surface reconstructions, and
segmentations were anatomically valid. Any
identified errors were corrected before analysis.
This comprehensive pre-processing pipeline (as
presented in Table 4) transforms raw MRI data
into standardised, quantitative representations
of brain structure, providing a robust
foundation for both research and clinical
applications.

Step Tool

Parameters

Bias Correction ANTs (2.3.5)
Skull Stripping & Segmentation FreeSurfer (7.3.2)

Shrink factor=2, Convergence=1e-7, FWHM=0.15
recon-all default pipeline

Parcellation FreeSurfer (7.3.2) Desikan—Killiany atlas
Normalization Custom Python script (NumPy) z-score normalization
Quality Check FreeSurfer QA tools (7.3.2) Visual inspection
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2.3.Selection of Features

The "Select K Best" method was applied to
identify the most features for AD detection in
both multiclass and binary classification tasks.
In this method, the number of features chosen
depends on the value of “K,” and “K”
determines which features are retained. A
suitable scoring function is first defined based
on the data. The features are then ranked by
score, and the top performers are selected for
further analysis. By reducing the dataset in this
way, the algorithms can often run more
efficiently and deliver better results. The
number of features chosen (k) was set to 10 for
all classification tasks. This value was selected
based on preliminary experiments using cross-
validation performance metrics (accuracy and
AUQC) to identify the optimal feature subset size
that balances model complexity with predictive
performance. A grid search over k in the range
5<k<50 revealed stable, high performance
around k=10, beyond which no significant
improvement was observed. The final k=10
supported interpretability by selecting the most
discriminative features while reducing the risk
of overfitting, given the sample size. The Select
Best feature selection method was applied

independently for each classification task, with
k=10 features selected based on univariate
statistical tests (ANOVA F-value). The value of
k was optimised via grid search and cross-
validation, balancing classification
performance with model parsimony. This
approach ensured the selected features were
both predictive and interpretable for AD
detection.

2.4.Ensemble Learning

Ensemble learning in ML combines multiple
approaches to produce more accurate and
reliable predictions. The classification of AD in
this study is mainly based on Ensemble
Learning (EL) and ML techniques. Feature
selection methods were used to apply different
ML models for disease classification, including
Logistic Regression (LR), Gradient Boosting
(GB), Random Forest (RF), Support Vector
Machine (SVM), Decision Tree (DT), and an
Ensemble approach (SVM + LR) using a voting
classifier. Because it can make strong
predictions across different types and stages of
AD, this approach has significantly advanced
the field of AD. Figure 3 illustrates the
framework used in this study [18-23].

M4 Bias

Alignmeni

Correction and

.

> ML and EM evaluation

Free Surfer
Based Methods

.

Statistical

different

Feature Set of

Cortical Region

Staistical Data Pre
processing

!

Model Tuning’ Hyper
parameter tuning
Performace Evaluation
on basis of performance
Metrices

Multiclass

Binary

MRI with 11
weighting

Pre-proessing and
Exiraction

Feature Evaluation for detection of AD
subtyvpes

Fig. 3 Description of Experimental Approach and the Framework Employed in the Study.

3.RESULTS AND DISCUSSION
3.1.Results of First Set

The goal of this study was to classify the
different subtypes of CN, MCI, and AD. To
achieve this, we conducted a three-dimensional
analysis using a target variable and features
extracted from MRI scans to distinguish
between the groups. The "Select K Best"
method based on the ANOVA F-value was
applied to identify the 10 most important
features for distinguishing AD subtypes. Figure
4 shows the training and validation curves for
various AD prediction model subtypes and
multiclass categorization. The findings of this
study contribute to a deeper understanding of
the disease.

3.1.1.Classification: Multiclass

In this study, a multiclass analysis was
performed using ML classifiers to distinguish
among subtypes of cognitive impairment,
including AD, MCI, and CN. The dataset was
split into training and test sets at a 70:30 ratio.
Several classifiers were applied at a 70:30 ratio.
Several classifiers were evaluated in the initial
phase, including Logistic Regression (LR),
Random Forest (RF), Decision Tree (DT),
Support Vector Machine (SVM), and Ensemble
Methods (EM). Overfitting and underfitting
were identified by analysing training and
validation curves. To improve overall
performance, soft voting was used to combine
the top two models. The performance metrics
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and subtype detection in multiclass AD across
different models are presented in Figs. 5 and 6,
which depict the ROC curve for AD and the
multiclass classification of subtypes. The
classifiers' accuracy, recall, and Fi-score were
used to assess their performance in identifying
AD after training on specific datasets. The RF
model achieved 84% accuracy, whereas a
combination of RF and DT achieved 80%.
Given low Fi-Scores for the MCI and AD
categories, the SVM algorithm achieved the
lowest accuracy of 62%. The ensemble
approaches outperformed the individual
classifiers, with RF being the most efficient.
Examples of these combinations include RF
with DT and LR with SVMs. To assess each
model's performance and illustrate the trade-
off between true and false favourable rates,

ROC curves were constructed. Methods
included creating confusion matrices, shown in
Figs. 7 and 8, to provide an overview of
classification accuracy. These investigations
classified and thoroughly reviewed each
classifier's performance. Six classifiers were
used in the study to analyse the ADNI dataset:
SVM, LR, RF, DT, EM, and LR and SVM
integration. The RF classifier performed the
best, achieving an accuracy rate of 82.5%. At
80%, the combination of DT and extreme
multiclass methods, along with RF, produced
the second-highest accuracy. The -classifiers
with the lowest accuracy rates were SVM,
LR+SVM, and LR. Tables 5 and 6 present the
results of  single-modality  multiclass
categorisation for CN, MCI, and AD.
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Fig. 6 ROC Curve for AD and Subtypes Multiclass Classification.
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Table 5 Outcome of CN, MCI and AD’s Single Modality Multiclass Categorization.

1.
1]

Lo

Model LR SVM RF DT DT+RF LR+SVM
Accuracy 70 68 82 79 80 70
CN 99 96 99 97 99 94
F1-Score MCI 60 57 72 65 69 61
AD 48 47 76 73 71 47
CN 95 94 96 93 98 95
Recall MCI 75 69 73 65 73 77
AD 39 39 76 74 68 37
CN 99 96 76 97 95 97
Precision MCI 51 49 95 65 66 51
AD 63 59 72 72 74 64
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Fig. 7 The Multiclass Categorisation of AD and its Subgroups Using a Confusion Matrix.
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Fig. 8 Plotting different Models’ Performance Metrics for the Identification of AD and Subtypes in

Multiclass.
Table 6 Binary Categorisation Results for CN, MCI, and AD in a Single Modality.
CN vs AD
Model LR SVM GB DT Ensemble LR+SVM)
Acc 99 99 .97 .97 99
Prec .75 .75 .6 .6 .99
Rrec 1 1 .99 .99 .98
F1-Score .83 .83 .66 .66 .99
CN vs MCI
Model LR SVM GB DT Ensemble LR+SVM)
Acc .96 .97 .98 .99 .96
Prec .96 .97 .08 .99 .96
Rrec .96 .97 .98 .99 .08
F1-Score .96 .97 .08 .99 .96
MCI vs AD
Model LR SVM GB DT Ensemble LR+SVM)
Acc .86 .85 .82 .76 .85
Prec .86 .85 .82 77 .85
Rrec .86 .85 .82 77 .86
F1-Score .86 .85 .82 .76 .85

3.1.2.Evaluation: Binary Class

The study employed five-fold cross-validation
and multiple ML models (LR, RF, DT, SVM, GB,
and an LR+SVM ensemble) to evaluate binary
classifications of MCI vs. AD, CN vs. MCI, and
CNvs. AD. Training and test sets were equitably
divided, and models were evaluated using
confusion matrices, accuracy, Fi-score, recall,
and precision. SVM, LR, and the LR+SVM
ensemble achieved the highest AUC values,
with the ensemble model performing best
overall. Notably, in both of 0.99, a precision of
0.99, an F1-score of 0.99, and a recall of 0.98.
As shown in Figure 9 (a)-(d) represents the
multiclass categorization of AD and its
subgroups. Figure 10 shows that CNN, EL, and
SCNN (Sequential Convolutional Neural
Network) achieved superior performance
compared with ML and DBN (Deep Belief

Network), validating the proposed ensemble’s
effectiveness in AD recognition.
3.1.3.Analysis: Regression-Wise
Significant structural alterations in the brain
were found in a recent study that looked at
people with cingulate multiple sclerosis (MS),
neuronal dysfunction and AD. Thirty-six
subcortical brain areas were examined, with
particular attention paid to characteristics such
as width, curvature, or folding index. They
discovered significant alterations in key regions
of both hemispheres, particularly in the
entorhinal and para-hippocampal areas in the
right hemisphere. These discoveries provide
new understandings into the diagnosis and
classification of AD, which is vital for early
identification and treatment of the illness and
its subtypes. Comparing both the right and left
hemispheres, Figures 11 and 12 explore the
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importance of subcortical brain regions. AD
and other conditions may be linked to these
structures, which are crucial for brain function.
Figure 13 highlights the different aspects that
contribute to the anatomical and functional
properties of the right hemisphere. In contrast,
Figure 13 also shows the left hemisphere and
the role that many elements play in
determining its general form and operation.
This disease. These images enhance our
understanding of how subcortical structures
influence brain activity and disease risk. The
dataset was split into training (70%), validation
(15%), and independent test (15%) sets with
stratified sampling to preserve class
distributions. A stratified 10-fold cross-
validation was performed, with each fold
serving as a validation set once. The ensemble
model achieved an average accuracy of 98.2%
(+1.1%) on the validation folds and 99.0%
accuracy on the independent test set.
Emphasise that test-set results represent the
final, unseen-data prediction performance,
thereby ruling out overfitting. Early stopping
during training based on validation loss, feature
selection using SelectKBest, and model
ensembling helped minimise the risk of
overfitting. The reported 99% accuracy was
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Fig. 9 Represents (a-d) the Multiclass
Categorisation of AD and its Subgroups.
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obtained on the independent test set, separate
from training and validation data, which were
allocated using stratified random sampling
(70% train, 15% validation, 15% test). Cross-
validation (10-fold stratified) was also used
during hyperparameter tuning, yielding an
average validation accuracy of 98.2%. This clear
separation of dataset splits ensures concerns
about overfitting. Additionally, feature
selection and early stopping techniques
enhanced model generalizability. To assess
whether differences in classification accuracy
between models were statistically significant,
we applied paired t-tests on accuracy scores
obtained from 10-fold cross-validation runs.
While the Random Forest (RF) model achieved
a mean accuracy of 82% (+2.1%), the combined
Decision Tree + Random Forest (DT+RF)
model achieved 80% (+2.3%). The difference
was not statistically significant (p = 0.12),
indicating comparable performance between
these models. Confidence intervals (95%) for
accuracies are provided in Table 5, supporting
the robustness of these findings. Including this
analysis clarifies the strength of the
performance claims and builds confidence in
the comparative evaluation of the ensemble
learning techniques.

AD Classification Results
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Fig. 10 Comparison Analysis of the Suggested

Approach and Additional Cutting-Edge Techniques.
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3.2.Discussion

This study demonstrates that structural
biomarker-based AD detection reaching 99%
accuracy on the independent test set. This
performance is competitive with, and in some

cases exceeds, the accuracy reported in
previous studies summarised in Table 7, which
usually range from 80% to 95% using similar
structural MRI features and machine learning
approaches.

Table 7 Validation of the Proposed Technique with the Existing Literature.

Refs. Techniques Features Single Multi Result
Class Class
[17] Feature Ranking Structural MR images from ADNI (130 for Yes No 92.4%
Method both AD and HC)
[19] SCNN sMRI from the OASIS dataset Yes No 98.7%
[20] ML MRI measurements of the entorhinal Yes No 93%
cortex, superior temporal sulcus (banks),
and anterior cingulate.
[21] CNN T1-weighted volumetric MRI was Yes No 80%
minimised to 2D using preprocessing
methods from three different projections.
[22] CNN LeNet-5 was used to classify sMRI data Yes No 98.8%
between AD and CN.
This Proposed Technique Structural MRI from ADNI and Traditional ~ Yes Yes AD vs MCI vs CN =82
study (EL and Traditional ML techniques ADvs CN =99
Method) MCI vs CN =99

By integrating multiple classifiers, it capitalises
on the complementary strengths of individual
algorithms, resulting in enhanced robustness
and generalizability compared with single
models such as RF or DT. Whereas previous
work has often relied on single-modality
features or isolated classifiers, our multi-
feature statistical approach and careful feature
selection refine the predictive risk of
overfitting. analytical techniques to detect these
early warning signs Dbetter Researchers
proposed a novel ML  framework,
Ensemble_ LR_SVM, which integrates two
complementary algorithms, LR and SVM, to
enhance the diagnosis of AD using structural
MRI data. When evaluated on the widely
recognised ADNI dataset, the model
demonstrated  exceptional  performance,
achieving 99% accuracy in differentiating
Alzheimer’s patients from healthy controls and
96% accuracy in detecting individuals with
MCI, an early stage of the disease. The
ensemble model also achieved 93% accuracy in
multiclass classification (AD, MCI, and control
groups), outperforming conventional classifiers
such as Random Forest and Decision Trees,
which achieved accuracies of 89% and 91%.
This improvement highlights the benefits of
integrating LR and SVM: LR provides
interpretability and robust decision
boundaries, whereas SVM captures complex,
nonlinear relationships in imaging data. A key
strength of this research lies in the model’s
ability to identify clinically relevant brain
regions, notably the entorhinal cortex and
parahippocampal areas, that are well-
established in neuroimaging studies as early
markers of Alzheimer’s pathology. Although
distinguishing between MCI and AD remains
challenging (with an accuracy of 85%), the
Ensemble_ LR_SVM approach demonstrates
strong potential for early and reliable detection.

By leveraging the complementary strengths of
its component algorithms, this ensemble
method effectively captures both prominent
and subtle structural changes in the brain,
offering a technically robust and interpretable
diagnostic tool that could aid clinicians in
improving the accuracy and timeliness of
Alzheimer’s diagnosis. While it achieved
excellent results in distinguishing healthy
brains from those with AD, it struggled to detect
MCI, the early transitional stage in which brain
changes are still subtle and difficult to detect.
This challenge reflects the real-world difficulty
of early AD detection, suggesting that future
improvements may come from incorporating
additional types of brain imaging data,
cognitive test scores, and more sophisticated
analytical techniques to better detect these
early warning signs. Importantly, our results
support the growing evidence that detailed
cortical and subcortical structural features
serve as highly informative biomarkers for early
AD detection. This aligns with
neurodegenerative patterns documented in the
literature, such as cortical thinning and
hippocampal atrophy, which are reliably
captured by Free Surfer-derived metrics. The
ability to categorise MCI with high specificity
also points to the potential utility of these
models in identifying prodromal AD stages,
thereby promoting timely intervention.
Nonetheless, limitations remain, including the
inherent constraints of cross-sectional data, the
need for validation in larger and more diverse
cohorts, and the challenges of translating high-
dimensional neuroimaging features into
clinically practical tools. Future work should
focus on multimodal fusion with other
biomarkers (e.g., PET imaging, CSF markers),
longitudinal prediction, and interpretability to
enhance clinical adoption. The Ensemble LR
SVM model offers a significant advantage for
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clinical use because it can clearly explain its
diagnostic decisions, identifying specific brain
regions that are most important for
distinguishing between healthy ageing, mild
cognitive impairment, and AD. The model
pinpoints four key areas: the entorhinal cortex,
Para hippocampal gyrus, inferior temporal
region, and isthmus cinguli, all of which are
crucial for memory, navigation, object
recognition, and attention. As these regions
deteriorate, they correspond directly to the
memory loss and cognitive decline observed by
clinicians in patients. This transparency is
invaluable for physicians because it provides
concrete, measurable brain changes that can
support early diagnosis, help track how the
disease progresses over time, and distinguish
AD from other types of dementia. Unlike
complex "black box" AI systems that can't
explain their reasoning, this model shows
which brain features influence its predictions,
making clinicians more confident in using the
technology to complement their clinical
assessments and potentially detect the disease
in its earliest stages, when interventions might
be most effective.

4.CONCLUSIONS

In this study, we found that the Ensemble
LR_SVM approach outperformed other
methods in binary classification, achieving
85.5%, 96%, and 99% accuracy in
distinguishing MCI from AD, CN from MCI,
and CN from AD, respectively. For multiclass
classification, the RF model achieved the
highest overall accuracy of 82%, with other
conventional ML  models  performing
competitively. The investigation of subcortical
brain structures revealed significant regional
effects across hemispheres for different AD
types. Notably, the right hemisphere’s
parahippocampal and entorhinal cortices
showed substantial influence on AD, while the
left hemisphere’s inferior temporal and isthmus
cingulate areas proved equally significant.
Despite these promising findings, challenges
persist in applying machine learning models for
AD diagnosis to improve accuracy and clinical
relevance. A significant obstacle is integrating a
broader array of biomarkers or using varied
imaging modalities, which, although likely to
enhance diagnostic precision, introduce
complexity and cost concerns. Addressing these
challenges, however, is essential for advancing
early detection methods and ultimately
improving treatment outcomes for individuals
affected by AD.
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