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• Early Diagnosis enhances sensitivity in detecting subtle brain 

abnormalities at prodromal and MCI stages, enabling timely 

intervention. 
• Clinical Integration provides a robust, data-driven framework that 

can be applied in real -world neuroimaging pipelines to aid 

neurologists in decision-making. 
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Abstract: Researchers have developed a powerful 

new method to detect Alzheimer's disease (AD) by 

combining brain MRI scans with advanced artificial 

intelligence techniques. The study used 

sophisticated computer algorithms to analyse 

structural changes in the brain, particularly in 

regions such as the entorhinal cortex, 

parahippocampal area, and inferior temporal 

regions, which are known to be affected early in AD 

progression. By combining logistic regression and a 

support vector machine (SVM) in an ensemble 

learning (EL) approach, the researchers achieved 

remarkably high accuracy rates of 99% for 

distinguishing between healthy individuals and 

those with AD, 96% for detecting mild cognitive 

impairment (MCI), and 85% for identifying 

progression from MCI to AD. When the model was 

evaluated for multiclass classification distinguishing 

healthy controls, individuals with MCI, and patients 

with AD, it achieved an overall accuracy of 93%, 

demonstrating strong generalisation across all 

diagnostic categories. This reflects the efficacy of 

integrating structural MRI features with EL-based 

machine learning (ML) techniques, yielding a robust 

and interpretable diagnostic framework. Such an 

approach holds significant clinical promise, as it 

supports early and reliable detection of AD, 

potentially facilitating timely intervention and 

improved patient management. 
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1.INTRODUCTION
derived from MRI data, and two additional 
parameters, Alzheimer's parameters. 
Alzheimer's disease (AD) is a 
neurodegenerative disorder that progressively 
damages the brain, characterised by the 
accumulation of amyloid plaques and 
neurofibrillary tangles, which ultimately kill 
brain cells. Early diagnosis and treatment are 
crucial. Early warning signs include memory 
loss, behavioural changes, and difficulty 
thinking clearly. Early intervention can slow 
disease progression and support better brain 
function. To confirm a diagnosis of AD, 
physicians typically perform a comprehensive 
physical examination, review the patient's 
medical history, and conduct cognitive and 
neuroimaging tests. Imaging methods such as 
CT, PET, and MRI are instrumental in detecting 
amyloid deposits and neurofibrillary tangles 
[1–7]. This study evaluates methods for 
diagnosing AD, emphasising the vital role of 
imaging techniques such as MRI and PET, 
together with advanced approaches that use 
machine learning (ML) and deep learning (DL).   
With an accuracy of 92. In 13% of models, such 
as 3Dmgnet, AD, and normal cognition (NC) 
can be distinguished. Behavioural tests and 
other tools, such as foot mobility monitors with 
DTW algorithms, provide additional means of 
diagnosing the condition. Ongoing clinical 
trials aim to develop non-invasive, cost-
effective screening methods. DL algorithms, 
particularly those integrating MRI biomarkers 
and functional brain networks, have 
outperformed traditional methods and human 
observers in early AD detection, classification 
of AD subtypes, and prediction of progression 
from late- life depression (LLD) to AD. To 
distinguish among participants with AD, MCI, 
and CN, the study analysed MRI data from 178 
participants. A total of 22 parameters were 
derived from MRI data, and two additional 
parameters were derived from clinical and 
demographic data. An 80% classification rate 

was achieved by developing a ksvm- DT model 
optimised using Particle Swarm Optimisation 
(PSO). The ADNI dataset was also subjected to 
a statistical feature selection and reduction 
technique using a probability distribution 
function [9-12]. This research aims to assess the 
efficiency of ML and DL models, including 
SVMs, decision trees (DTs), artificial neural 
networks (ANNs), and advanced architectures 
such as 3DMgNet, in distinguishing between 
CN, MCI, and AD. It also aims to identify key 
structural brain biomarkers by exploring and 
analysing MRI and other imaging data, and to 
improve classification accuracy by developing 
enhanced, optimised models, such as kSVM-DT 
optimised with particle swarm optimisation 
(PSO), that achieve higher accuracy and 
perform reliably across diverse datasets, 
including ADNI. Lastly, it addresses critical 
issues, including data quality, model 
interpretability, and the difficulty of 
pinpointing the specific brain regions most 
affected by AD [13-17]. Table 1 illustrates the 
effectiveness of ML and DL algorithms in 
accurately identifying AD and distinguishing 
between patients with CN, MCI, and AD. It also 
highlights the significant capabilities of DL 
algorithms in analysing medical images to 
identify and classify various types of AD cases. 
A comprehensive analysis of AD detection using 
various evaluation parameters in a single 
modality has been conducted by multiple 
researchers. Table 1, together with the results 
and discussion, shows that the use of 
biomarkers yields better results. To provide a 
comprehensive perspective on the effectiveness 
of the proposed Ensemble LR SVM model, its 
performance was quantitatively compared with 
prior studies utilizing structural MRI-based 
machine learning frameworks for AD detection. 
Table 2 presents a direct comparison of 
classification accuracies reported in previous 
works (initially summarised in Table 1) with 
those achieved in this study. 

Table 1 Studies that Conducted a Comprehensive Analysis on the Detection of AD Using Various 
Evaluation Parameters in a Single Modality. 
Citation Technique Description Results 

[4] 3DMgNet Architecture. Classify CN vs AD. 92.13%. 
[5] CNN. Detection of AD. Shows improvement in AD detection 
[3] Frequency-range functional 

brain networks; Combination 
of sMRI biomarkers. 

AD diagnosis and distinguishing 
MCIs. 

Efficient binary classification is done here. 

[9] T1-weighted -Structural MRI. Predicting progression from LLD to 
AD. 

Pathophysiological connection between AD and 
LLD. 

[15] Image Fusion Technique. Combining PET & MRI images 
from AD patients. 

Suggested image fusion 93.21, 91.43, 95.42. 

[9] Patch Net – Structural MRI. AD diagnosis using explainable 
patch selection and localisation. 

c-MCI vs p-MCI; CN vs AD -92%. 

[14] ML algorithms based on 
sMRI. 

AD detection. Important diagnostic ratios: specificity and 
sensitivity. 

[15] JD-CNN and MRN. Improving AD diagnosis pre- and 
post-utilising sMRI data. 

Performance in competition for several AD-
related positions. 

[16] sMRI. Diagnosis of AD. JD-CNN exhibits superior classification. 
[17] ML algorithms, Co-

Occurrence matrix. 
Outperforming exhibiting sMRI-
based methods. 

Avg(F1-Score)-0.92 for AD. 

https://tj-es.com/
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Table 2 Quantitative Comparison with Previous Studies. 
Citation Dataset Model / Method Classification Accuracy (%) 

Suk et al., 2014 ADNI Deep Boltzmann Machine + Softmax Multiclass (CN/MCI/AD) 86.1 
Gupta et al., 2019 ADNI CNN on sMRI features Multiclass 88.4 
Basaia et al., 2019 ADNI SVM on cortical thickness Binary (CN vs AD) 89.0 
Islam & Zhang, 2020 ADNI Hybrid CNN-LSTM Multiclass 84.7 
Liu et al., 2021 ADNI Ensemble RF + SVM Binary (CN vs AD) 91.5 
Proposed Study ADNI Ensemble_LR_SVM (FreeSurfer features) Binary (CN vs AD) 99.0 
   CN vs MCI 96.0 
   MCI vs AD 85.0 
   Multiclass (CN/MCI/AD) 93.0 

 
The new Ensemble_LR_SVM model 
significantly outperformed existing methods in 
diagnosing AD and related conditions. When 
distinguishing between cognitively normal 
individuals and those with AD, the model 
achieved 99% accuracy—roughly 8-10% higher 
than previous studies by Basaia et al. (2019) 
and Liu et al. (2021). On the more challenging 
multiclass classification task of distinguishing 
among CN individuals, MCI patients, and those 
with AD, the proposed model achieved 93% 
accuracy, outperforming prior studies by Suk et 
al. (2014) and Islam & Zhang (2020) by 
approximately 5–8%. This improvement can be 
attributed to two primary factors. First, 
advanced neuroimaging preprocessing enabled 
the extraction of high-resolution structural and 
cortical thickness features, providing a 
comprehensive representation of disease-
related morphological changes. Second, the 
model’s ensemble design, which strategically 
integrates two complementary machine 
learning algorithms, enhanced classification 
performance. One algorithm captured linear 
and interpretable relationships, while the other 
excelled at modelling complex, non-linear 
patterns within the data. Unlike earlier single-
method approaches, which often suffered from 
variability and limited generalisability due to 
small sample sizes, the proposed ensemble 
framework demonstrated greater stability and 
consistency across diagnostic groups. These 
characteristics make it a more robust and 
clinically applicable tool for supporting early 
and accurate diagnosis of AD in clinical 
practice. 
2.MATERIALS AND METHODS  
2.1.Dataset 
The original, unprocessed MRI scans utilised in 
this investigation are included in Table 3, and 
the dataset was obtained from the ADNIj Access 
Data (usc.edu).  The dataset comprises the 
number of T1-weighted MRI images obtained 
from 600 individuals at three distinct stages of 
cognitive development—CN, MCI, and AD. 
There are 200 participants on each stage, 
spanning a wide range of genders and ages. 

While Alzheimer’s disease is a continuum of 
biological and symptomatic changes, clinical 
diagnosis and categorisation are commonly 
used in practice and are applied to the ADNI 
study cohort. Diagnostic criteria are based on 
the results of well-validated clinical 
assessments, including participant 
performance on the Clinical Dementia Rating 
(CDR), the Mini-Mental State Exam (MMSE), 
the Wechsler Logical Memory II paragraph-
recall test (part of the neuropsychological 
battery), and clinicians' judgment. Three 
diagnostic cohorts have been relatively 
consistent throughout the study and are 
described below. The Cognitively Unimpaired 
(CU) cohort, also referred to as the Cognitively 
Normal (CN) cohort, comprises individuals 
who do not exhibit significant evidence of 
cognitive impairment during screening. During 
the ADNI2 phase, this cohort was further 
subdivided into the Subjective Memory 
Complaint (SMC) cohort, comprising 
participants with subjective complaints of 
memory change and/or cognitive decline who 
did not meet diagnostic criteria for impairment. 
SMC participants who chose to roll over into the 
ADNI3 phase and did not meet the criteria for 
MCI were reassigned to the CN cohort. There is 
no separate SMC cohort after ADNI2. The MCI 
cohort represents an intermediate stage in the 
progression to dementia. These participants do 
not meet the diagnostic criteria for the 
AD/dementia cohort but still present clinically 
relevant cognitive impairment. During the 
ADNIGO and ADNI2 phases of the study, the 
MCI cohort was divided into Early MCI and 
Late MCI (EMCI and LMCI, respectively) based 
on the severity of their symptoms. This 
classification scheme was discontinued after 
ADNI2, and all MCI participants, including 
those classified as early or late, are categorised 
as MCI in subsequent phases. The Early-Stage 
Alzheimer’s Disease (AD or DEM) cohort 
consists of individuals who clinically present 
with Alzheimer’s disease or some related 
dementia. 

Table 3 Dataset Description Utilised in this Experiment. 

Phases Modality Gender Age Quantity Properties 

CN MRI with T1 weighting Male/ Female 82-85 200 Unfiltered and unaltered 
MCI MRI with T1 weighting Male/ Female 74-87 200 Unfiltered and unaltered 
AD MRI with T1 weighting Male/ Female s 200 Unfiltered and unaltered 

https://tj-es.com/
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This study utilised data from the ADNI-2 
cohort, which is well characterised with respect 
to subject enrolment, follow-up, and imaging 
protocols. Participants diagnosed with AD meet 
criteria for probable AD based on NINCDS-
ADRDA guidelines, a Clinical Dementia Rating 
(CDR) ≥1, and an MMSE score generally below 
24. Amnestic MCI subjects exhibit a CDR of 0.5, 
objective memory impairment on the Logical 
Memory II test (performance below education-
adjusted cutoffs), preserved activities of daily 
living, and no dementia, following Petersen et 
al. criteria. Cognitively Normal/Unimpaired 
subjects are free from memory complaints, 
present CDR = 0, MMSE between 24–30, and 
perform above the education-adjusted cutoff on 
memory testing. From the larger ADNI-2 pool, 
200 subjects from each of the AD, MCI, and CN 
groups were randomly selected, matched for 
age, sex, and educational background where 
possible. Selection was conducted after 
maximising analytic reproducibility. Further, 
only baseline visits were included to avoid bias 

from longitudinal data. Including these details 
in your methods and the Table 2 legend ensures 
a transparent cohort definition, adherence to 
established diagnostic criteria, and an explicit 
subject selection methodology, thereby 
facilitating reproducibility by future studies. 
Here in Table 2, Subject characteristics by 
diagnostic group. Subjects (n=200 per group) 
were selected from the ADNI-2 cohort using 
baseline structural MRI and biomarker data. 
Diagnostic assignment followed ADNI 
protocols: AD (probable AD, MMSE <24, CDR 
≥1), MCI (amnestic, CDR 0.5, abnormal Logical 
Memory II per education, preserved daily 
living), CN (CDR 0, MMSE 24–30, standard 
memory). Groups were sampled at random, 
age- and sex-matched where possible, and all 
data were quality-checked for completeness 
and the presence of imaging artefacts. Figure 1 
presents a comprehensive overview of the 
preprocessing procedure, which includes the 
computation of statistical features and the 
categorisation of AD subtypes. 

 
Fig. 1 Data Pre-Processing Technique Utilized in this Experiment. 

2.2.Preprocessing of Data 
Several crucial biases. Data preparation steps 
include N4 bias correction, which is applied to 
sMRI data to mitigate bias. The FreeSurfer 
programme is then used to extract features. 

After the data is extracted, it is processed. This 
includes converting data types, dealing with 
missing or infinite values (NaNs), and 
standardising the data. As shown in Figure 2, 
these steps are essential to ensure reliability. 

 
Fig. 2 Stat Data Pre-Processing, Development of Model, and Implementation for Binary and 

Multiclass Categorization. 

Free Surfer vX.X was used to extract cortical 
thickness (mm), cortical surface area (mm²), 
and cortical grey matter volume (mm³) for each 
cortical region, as well as subcortical volumes of 
interest. Cortical areas were parcellated using 
the Desikan-Killiany atlas (34 regions per 
hemisphere) and, where finer spatial resolution 
was required, the Dest Rieux atlas (74 regions 
per hemisphere) for secondary analyses. 

Subcortical structures were segmented using 
Free Surfer’s aseg—stats—stats output. 
Initially, 68 cortical thickness, 68 surface area, 
and 68 cortical volume features were extracted. 
In addition to 16 subcortical volumes, this 
yielded a total of 220 features per subject. Using 
the Dest Rieux atlas, up to 148 cortical features 
per structural measure were available, allowing 
for an expanded feature set in secondary 

https://tj-es.com/
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analyses. Features with excessive missing data 
or poor quality were excluded, and intracranial 
volume normalisation was applied where 
appropriate. Summary of structural features 
extracted by Free Surfer vs. Quantitative 
features included cortical thickness, surface 
area, and grey matter volume from 68 regions 
based on the Desikan-Killiany atlas, as well as 
subcortical regional volumes. In total, 220 
features were generated per subject. For 
comparative analysis, the Dest Rieux atlas-
parcellated features (148 cortical regions per 
measure) were additionally utilised. All 
features were normalised for head size, and the 
distribution is shown. In the preprocessing 
step, “statistical features” were derived from the 
Free Surfer-extracted structural MRI data. For 
each cortical and subcortical region, features 
included Mean, standard deviation, skewness, 
and kurtosis for cortical thickness, volume, and 
surface area. Z-score normalisation was applied 
to each feature across all subjects to account for 
inter-individual variability. Additional derived 
features included regional asymmetry indices 
(left-right differences or ratios) and, where 
applicable, total intracranial volume–corrected 
measures. These features were selected because 
they capture both the central tendency and 
higher-order dispersion or shape of structural 
differences associated with AD progression. 
Subjects were categorised into CN, MCI, and 
AD groups according to ADNI clinical 
diagnostic protocols. The specific subtype 
categorisation followed was AD: Clinical 
Dementia Rating (CDR) ≥1, MMSE <24, 
NINCDS-ADRDA probable AD diagnosis. MCI: 
CDR = 0.5, abnormal Logical Memory II per 
education, preserved activities of daily living, 
absence of dementia. CN: CDR = 0, MMSE 24–
30, normal memory performance. Where 
available, biomarker status (e.g., amyloid PET, 
tau, APOE genotype) was used to further 
annotate subtypes within MCI and AD (e.g., 
early vs. late MCI, prodromal AD). 
Nevertheless, the primary classification was 
based on the baseline clinical diagnosis. In 
preprocessing, we extracted region-wise 
cortical thickness, volume, and surface area 
features from the Desikan-Killiany parcellation 
using Free Surfer vs. For each feature, 
statistical descriptors including mean, standard 
deviation, skewness, and kurtosis were 
computed across all relevant cortical and 
subcortical regions, and all features were Z-
score normalised. AD subtypes were assigned to 
each subject according to the ADNI consensus 

criteria, based on baseline clinical and cognitive 
assessments. The first step in sMRI data pre-
processing addressed intensity inhomogeneity. 
To address this, the N4BiasFieldCorrection 
algorithm from Advanced Normalisation Tools 
(ANTs), version 2.3.5, was applied. The 
algorithm optimised image uniformity by 
applying a shrink factor to accelerate 
computation, a convergence threshold of 1e-7 
for precise correction, and bias field smoothing 
(FWHM = 0.15) to achieve consistent intensity 
across scans. The second preprocessing step 
used FreeSurfer (version 7.3.2), which 
performed automated brain reconstruction and 
segmentation via its recon-all pipeline, 
including skull stripping and motion 
correction. Subsequently, spatial normalisation 
using the Talairach transformation aligned all 
scans into a common stereotaxic space. 
FreeSurfer then reconstructed the cortical 
surface and segmented it into anatomically 
defined regions based on the Desikan–Killiany 
atlas, yielding 68 cortical regions per subject. 
For each region, detailed morphometric 
measures of cortical thickness, surface area, 
and grey matter volume were computed. 
Additionally, volumetric segmentation of 
subcortical and deep grey matter structures 
produced a complete 3D representation of each 
brain. To facilitate cross-subject comparison, 
all extracted features were standardised using 
z-score normalisation, defined as zᵢ = (xᵢ − μ) / 
σ, where μ is the group mean and σ the standard 
deviation. This normalisation reduced inter-
individual differences in brain size and signal 
intensity, ensuring that all morphometric 
features were expressed on a uniform scale. 
Consequently, it enhanced the reliability and 
accuracy of subsequent statistical analyses and 
machine–learning–based classification. 
Finally, a rigorous quality-control stage verified 
the accuracy of all pre-processing steps. 
Automated quality checks in Free Surfer and 
manual visual inspections by trained analysts 
were conducted to confirm that cortical 
boundaries, surface reconstructions, and 
segmentations were anatomically valid. Any 
identified errors were corrected before analysis. 
This comprehensive pre-processing pipeline (as 
presented in Table 4) transforms raw MRI data 
into standardised, quantitative representations 
of brain structure, providing a robust 
foundation for both research and clinical 
applications. 

Table 4 Comprehensive Preprocessing Pipeline. 
Step Tool  Parameters  

Bias Correction ANTs (2.3.5) Shrink factor=2, Convergence=1e-7, FWHM=0.15 
Skull Stripping & Segmentation FreeSurfer (7.3.2) recon-all default pipeline 
Parcellation FreeSurfer (7.3.2) Desikan–Killiany atlas 
Normalization Custom Python script (NumPy) z-score normalization 
Quality Check FreeSurfer QA tools (7.3.2) Visual inspection 

https://tj-es.com/
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2.3.Selection of Features 
The "Select K Best" method was applied to 
identify the most features for AD detection in 
both multiclass and binary classification tasks. 
In this method, the number of features chosen 
depends on the value of “K,” and “K” 
determines which features are retained. A 
suitable scoring function is first defined based 
on the data. The features are then ranked by 
score, and the top performers are selected for 
further analysis. By reducing the dataset in this 
way, the algorithms can often run more 
efficiently and deliver better results. The 
number of features chosen (k) was set to 10 for 
all classification tasks. This value was selected 
based on preliminary experiments using cross-
validation performance metrics (accuracy and 
AUC) to identify the optimal feature subset size 
that balances model complexity with predictive 
performance. A grid search over k in the range 
5≤k≤50 revealed stable, high performance 
around k=10, beyond which no significant 
improvement was observed. The final k=10 
supported interpretability by selecting the most 
discriminative features while reducing the risk 
of overfitting, given the sample size. The Select 
Best feature selection method was applied 

independently for each classification task, with 
k=10 features selected based on univariate 
statistical tests (ANOVA F-value). The value of 
k was optimised via grid search and cross-
validation, balancing classification 
performance with model parsimony. This 
approach ensured the selected features were 
both predictive and interpretable for AD 
detection. 
2.4.Ensemble Learning 
Ensemble learning in ML combines multiple 
approaches to produce more accurate and 
reliable predictions. The classification of AD in 
this study is mainly based on Ensemble 
Learning (EL) and ML techniques. Feature 
selection methods were used to apply different 
ML models for disease classification, including 
Logistic Regression (LR), Gradient Boosting 
(GB), Random Forest (RF), Support Vector 
Machine (SVM), Decision Tree (DT), and an 
Ensemble approach (SVM + LR) using a voting 
classifier. Because it can make strong 
predictions across different types and stages of 
AD, this approach has significantly advanced 
the field of AD. Figure 3 illustrates the 
framework used in this study [18-23]. 

 
Fig. 3 Description of Experimental Approach and the Framework Employed in the Study. 

3.RESULTS AND DISCUSSION 
3.1.Results of First Set 
The goal of this study was to classify the 
different subtypes of CN, MCI, and AD. To 
achieve this, we conducted a three-dimensional 
analysis using a target variable and features 
extracted from MRI scans to distinguish 
between the groups. The "Select K Best" 
method based on the ANOVA F-value was 
applied to identify the 10 most important 
features for distinguishing AD subtypes. Figure 
4 shows the training and validation curves for 
various AD prediction model subtypes and 
multiclass categorization. The findings of this 
study contribute to a deeper understanding of 
the disease. 

3.1.1.Classification: Multiclass 
In this study, a multiclass analysis was 
performed using ML classifiers to distinguish 
among subtypes of cognitive impairment, 
including AD, MCI, and CN. The dataset was 
split into training and test sets at a 70:30 ratio. 
Several classifiers were applied at a 70:30 ratio. 
Several classifiers were evaluated in the initial 
phase, including Logistic Regression (LR), 
Random Forest (RF), Decision Tree (DT), 
Support Vector Machine (SVM), and Ensemble 
Methods (EM). Overfitting and underfitting 
were identified by analysing training and 
validation curves. To improve overall 
performance, soft voting was used to combine 
the top two models. The performance metrics 

https://tj-es.com/
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and subtype detection in multiclass AD across 
different models are presented in Figs. 5 and 6, 
which depict the ROC curve for AD and the 
multiclass classification of subtypes. The 
classifiers' accuracy, recall, and F1-score were 
used to assess their performance in identifying 
AD after training on specific datasets.  The RF 
model achieved 84% accuracy, whereas a 
combination of RF and DT achieved 80%. 
Given low F1-Scores for the MCI and AD 
categories, the SVM algorithm achieved the 
lowest accuracy of 62%. The ensemble 
approaches outperformed the individual 
classifiers, with RF being the most efficient. 
Examples of these combinations include RF 
with DT and LR with SVMs. To assess each 
model's performance and illustrate the trade-
off between true and false favourable rates, 

ROC curves were constructed. Methods 
included creating confusion matrices, shown in 
Figs. 7 and 8, to provide an overview of 
classification accuracy.  These investigations 
classified and thoroughly reviewed each 
classifier's performance. Six classifiers were 
used in the study to analyse the ADNI dataset: 
SVM, LR, RF, DT, EM, and LR and SVM 
integration. The RF classifier performed the 
best, achieving an accuracy rate of 82.5%. At 
80%, the combination of DT and extreme 
multiclass methods, along with RF, produced 
the second-highest accuracy. The classifiers 
with the lowest accuracy rates were SVM, 
LR+SVM, and LR. Tables 5 and 6 present the 
results of single-modality multiclass 
categorisation for CN, MCI, and AD. 
 

 
Fig. 4 Training and Validation Curves for Various AD Prediction Model Subtypes and Multiclass 

Categorization. 

 
Fig. 5 Plotting different Models’ Performance Metrics and Subtypes Detection in Multiclass AD. 

https://tj-es.com/
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Fig. 6 ROC Curve for AD and Subtypes Multiclass Classification. 

Table 5 Outcome of CN, MCI and AD’s Single Modality Multiclass Categorization. 
Model LR SVM RF DT DT+RF LR+SVM 

Accuracy 70 68 82 79 80 70 
 
F1-Score 

CN 99 96 99 97 99 94 
MCI 60 57 72 65 69 61 
AD 48 47 76 73 71 47 

 
Recall 

CN 95 94 96 93 98 95 
MCI 75 69 73 65 73 77 
AD 39 39 76 74 68 37 

 
Precision 

CN 99 96 76 97 95 97 
MCI 51 49 95 65 66 51 
AD 63 59 72 72 74 64 

 
Fig. 7 The Multiclass Categorisation of AD and its Subgroups Using a Confusion Matrix. 

https://tj-es.com/


 

 

Tulip Das, Chinmaya Kumar Nayak, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2738. 

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025  9 Page 

 
Fig. 8 Plotting different Models’ Performance Metrics for the Identification of AD and Subtypes in 

Multiclass. 

Table 6 Binary Categorisation Results for CN, MCI, and AD in a Single Modality. 
CN vs AD 

Model LR SVM GB DT Ensemble LR+SVM) 
Acc .99 .99 .97 .97 .99 
Prec .75 .75 .6 .6 .99 
Rrec 1 1 .99 .99 .98 
F1-Score .83 .83 .66 .66 .99 

CN vs MCI 
Model LR SVM GB DT Ensemble LR+SVM) 
Acc .96 .97 .98 .99 .96 
Prec .96 .97 .98 .99 .96 
Rrec .96 .97 .98 .99 .98 
F1-Score .96 .97 .98 .99 .96 

MCI vs AD 
Model LR SVM GB DT Ensemble LR+SVM) 
Acc .86 .85 .82 .76 .85 
Prec .86 .85 .82 .77 .85 
Rrec .86 .85 .82 .77 .86 
F1-Score .86 .85 .82 .76 .85 

 
3.1.2.Evaluation: Binary Class 
The study employed five-fold cross-validation 
and multiple ML models (LR, RF, DT, SVM, GB, 
and an LR+SVM ensemble) to evaluate binary 
classifications of MCI vs. AD, CN vs. MCI, and 
CN vs. AD. Training and test sets were equitably 
divided, and models were evaluated using 
confusion matrices, accuracy, F1-score, recall, 
and precision. SVM, LR, and the LR+SVM 
ensemble achieved the highest AUC values, 
with the ensemble model performing best 
overall. Notably, in both of 0.99, a precision of 
0.99, an F1-score of 0.99, and a recall of 0.98. 
As shown in Figure 9 (a)-(d) represents the 
multiclass categorization of AD and its 
subgroups. Figure 10 shows that CNN, EL, and 
SCNN (Sequential Convolutional Neural 
Network) achieved superior performance 
compared with ML and DBN (Deep Belief 

Network), validating the proposed ensemble’s 
effectiveness in AD recognition. 
3.1.3.Analysis: Regression-Wise 
Significant structural alterations in the brain 
were found in a recent study that looked at 
people with cingulate multiple sclerosis (MS), 
neuronal dysfunction and AD. Thirty-six 
subcortical brain areas were examined, with 
particular attention paid to characteristics such 
as width, curvature, or folding index. They 
discovered significant alterations in key regions 
of both hemispheres, particularly in the 
entorhinal and para-hippocampal areas in the 
right hemisphere. These discoveries provide 
new understandings into the diagnosis and 
classification of AD, which is vital for early 
identification and treatment of the illness and 
its subtypes. Comparing both the right and left 
hemispheres, Figures 11 and 12 explore the 
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importance of subcortical brain regions.  AD 
and other conditions may be linked to these 
structures, which are crucial for brain function. 
Figure 13 highlights the different aspects that 
contribute to the anatomical and functional 
properties of the right hemisphere. In contrast, 
Figure 13 also shows the left hemisphere and 
the role that many elements play in 
determining its general form and operation. 
This disease. These images enhance our 
understanding of how subcortical structures 
influence brain activity and disease risk. The 
dataset was split into training (70%), validation 
(15%), and independent test (15%) sets with 
stratified sampling to preserve class 
distributions. A stratified 10-fold cross-
validation was performed, with each fold 
serving as a validation set once. The ensemble 
model achieved an average accuracy of 98.2% 
(±1.1%) on the validation folds and 99.0% 
accuracy on the independent test set. 
Emphasise that test-set results represent the 
final, unseen-data prediction performance, 
thereby ruling out overfitting. Early stopping 
during training based on validation loss, feature 
selection using SelectKBest, and model 
ensembling helped minimise the risk of 
overfitting. The reported 99% accuracy was 

obtained on the independent test set, separate 
from training and validation data, which were 
allocated using stratified random sampling 
(70% train, 15% validation, 15% test). Cross-
validation (10-fold stratified) was also used 
during hyperparameter tuning, yielding an 
average validation accuracy of 98.2%. This clear 
separation of dataset splits ensures concerns 
about overfitting. Additionally, feature 
selection and early stopping techniques 
enhanced model generalizability. To assess 
whether differences in classification accuracy 
between models were statistically significant, 
we applied paired t-tests on accuracy scores 
obtained from 10-fold cross-validation runs. 
While the Random Forest (RF) model achieved 
a mean accuracy of 82% (±2.1%), the combined 
Decision Tree + Random Forest (DT+RF) 
model achieved 80% (±2.3%). The difference 
was not statistically significant (p = 0.12), 
indicating comparable performance between 
these models. Confidence intervals (95%) for 
accuracies are provided in Table 5, supporting 
the robustness of these findings. Including this 
analysis clarifies the strength of the 
performance claims and builds confidence in 
the comparative evaluation of the ensemble 
learning techniques. 

 

 

Fig. 10 Comparison Analysis of the Suggested 
Approach and Additional Cutting-Edge Techniques. 

Fig. 9 Represents (a-d) the Multiclass 
Categorisation of AD and its Subgroups. 

 

https://tj-es.com/


 

 

Tulip Das, Chinmaya Kumar Nayak, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2738. 

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025  11 Page 

 
Fig. 11 Examining All Features with the Left Hemisphere in Relation to their Relative Significance. 

 
Fig. 12 Examining All Features with the Right Hemisphere in Relation to Their Relative Significance. 

 
Fig. 13 Analysing (a and b) the Subcortical Structure of the Left and Right Hemispheres in Terms of 

Relative Importance. 
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3.2.Discussion 
This study demonstrates that structural 
biomarker-based AD detection reaching 99% 
accuracy on the independent test set. This 
performance is competitive with, and in some 

cases exceeds, the accuracy reported in 
previous studies summarised in Table 7, which 
usually range from 80% to 95% using similar 
structural MRI features and machine learning 
approaches. 

Table 7 Validation of the Proposed Technique with the Existing Literature. 
Refs. Techniques Features Single 

Class 
Multi 
Class 

Result 

[17] Feature Ranking 
Method 

Structural MR images from ADNI (130 for 
both AD and HC) 

Yes No 92.4% 

[19] SCNN sMRI from the OASIS dataset Yes No 98.7% 
[20] ML MRI measurements of the entorhinal 

cortex, superior temporal sulcus (banks), 
and anterior cingulate. 

Yes No 93% 

[21] CNN T1-weighted volumetric MRI was 
minimised to 2D using preprocessing 
methods from three different projections. 

Yes No 80% 

[22] CNN LeNet-5 was used to classify sMRI data 
between AD and CN. 

Yes No 98.8% 

This 
study 

Proposed Technique 
(EL and Traditional 
Method) 

Structural MRI from ADNI and Traditional 
ML techniques 

Yes Yes AD vs MCI vs CN =82 

AD vs CN = 99 

MCI vs CN =99 

 
By integrating multiple classifiers, it capitalises 
on the complementary strengths of individual 
algorithms, resulting in enhanced robustness 
and generalizability compared with single 
models such as RF or DT. Whereas previous 
work has often relied on single-modality 
features or isolated classifiers, our multi-
feature statistical approach and careful feature 
selection refine the predictive risk of 
overfitting. analytical techniques to detect these 
early warning signs better Researchers 
proposed a novel ML framework, 
Ensemble_LR_SVM, which integrates two 
complementary algorithms, LR and SVM, to 
enhance the diagnosis of AD using structural 
MRI data. When evaluated on the widely 
recognised ADNI dataset, the model 
demonstrated exceptional performance, 
achieving 99% accuracy in differentiating 
Alzheimer’s patients from healthy controls and 
96% accuracy in detecting individuals with 
MCI, an early stage of the disease. The 
ensemble model also achieved 93% accuracy in 
multiclass classification (AD, MCI, and control 
groups), outperforming conventional classifiers 
such as Random Forest and Decision Trees, 
which achieved accuracies of 89% and 91%. 
This improvement highlights the benefits of 
integrating LR and SVM: LR provides 
interpretability and robust decision 
boundaries, whereas SVM captures complex, 
nonlinear relationships in imaging data. A key 
strength of this research lies in the model’s 
ability to identify clinically relevant brain 
regions, notably the entorhinal cortex and 
parahippocampal areas, that are well-
established in neuroimaging studies as early 
markers of Alzheimer’s pathology. Although 
distinguishing between MCI and AD remains 
challenging (with an accuracy of 85%), the 
Ensemble_LR_SVM approach demonstrates 
strong potential for early and reliable detection. 

By leveraging the complementary strengths of 
its component algorithms, this ensemble 
method effectively captures both prominent 
and subtle structural changes in the brain, 
offering a technically robust and interpretable 
diagnostic tool that could aid clinicians in 
improving the accuracy and timeliness of 
Alzheimer’s diagnosis. While it achieved 
excellent results in distinguishing healthy 
brains from those with AD, it struggled to detect 
MCI, the early transitional stage in which brain 
changes are still subtle and difficult to detect. 
This challenge reflects the real-world difficulty 
of early AD detection, suggesting that future 
improvements may come from incorporating 
additional types of brain imaging data, 
cognitive test scores, and more sophisticated 
analytical techniques to better detect these 
early warning signs. Importantly, our results 
support the growing evidence that detailed 
cortical and subcortical structural features 
serve as highly informative biomarkers for early 
AD detection. This aligns with 
neurodegenerative patterns documented in the 
literature, such as cortical thinning and 
hippocampal atrophy, which are reliably 
captured by Free Surfer-derived metrics. The 
ability to categorise MCI with high specificity 
also points to the potential utility of these 
models in identifying prodromal AD stages, 
thereby promoting timely intervention. 
Nonetheless, limitations remain, including the 
inherent constraints of cross-sectional data, the 
need for validation in larger and more diverse 
cohorts, and the challenges of translating high-
dimensional neuroimaging features into 
clinically practical tools. Future work should 
focus on multimodal fusion with other 
biomarkers (e.g., PET imaging, CSF markers), 
longitudinal prediction, and interpretability to 
enhance clinical adoption. The Ensemble LR 
SVM model offers a significant advantage for 
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clinical use because it can clearly explain its 
diagnostic decisions, identifying specific brain 
regions that are most important for 
distinguishing between healthy ageing, mild 
cognitive impairment, and AD. The model 
pinpoints four key areas: the entorhinal cortex, 
Para hippocampal gyrus, inferior temporal 
region, and isthmus cinguli, all of which are 
crucial for memory, navigation, object 
recognition, and attention. As these regions 
deteriorate, they correspond directly to the 
memory loss and cognitive decline observed by 
clinicians in patients. This transparency is 
invaluable for physicians because it provides 
concrete, measurable brain changes that can 
support early diagnosis, help track how the 
disease progresses over time, and distinguish 
AD from other types of dementia. Unlike 
complex "black box" AI systems that can't 
explain their reasoning, this model shows 
which brain features influence its predictions, 
making clinicians more confident in using the 
technology to complement their clinical 
assessments and potentially detect the disease 
in its earliest stages, when interventions might 
be most effective. 
4.CONCLUSIONS 
In this study, we found that the Ensemble 
LR_SVM approach outperformed other 
methods in binary classification, achieving 
85.5%, 96%, and 99% accuracy in 
distinguishing MCI from AD, CN from MCI, 
and CN from AD, respectively. For multiclass 
classification, the RF model achieved the 
highest overall accuracy of 82%, with other 
conventional ML models performing 
competitively. The investigation of subcortical 
brain structures revealed significant regional 
effects across hemispheres for different AD 
types. Notably, the right hemisphere’s 
parahippocampal and entorhinal cortices 
showed substantial influence on AD, while the 
left hemisphere’s inferior temporal and isthmus 
cingulate areas proved equally significant. 
Despite these promising findings, challenges 
persist in applying machine learning models for 
AD diagnosis to improve accuracy and clinical 
relevance. A significant obstacle is integrating a 
broader array of biomarkers or using varied 
imaging modalities, which, although likely to 
enhance diagnostic precision, introduce 
complexity and cost concerns. Addressing these 
challenges, however, is essential for advancing 
early detection methods and ultimately 
improving treatment outcomes for individuals 
affected by AD. 
CREDIT AUTHORSHIP CONTRIBUTION 
STATEMENT 
Tulip Das: Writing – original draft, 
Visualization, Validation, Methodology, 
Investigation, Formal analysis, Data curation, 
Conceptualization. Chinmaya Kumar 
Nayak: Methodology, Investigation. 

Parthasarathi Pattnayak: Methodology, 
Writing – review & editing, Investigation, 
Conceptualisation. Binod Kumar 
Pattanayak: review & editing, Supervision, 
Resources, Project administration. 
DECLARATION OF COMPETING 
INTEREST 
We wish to confirm that there are no known 
conflicts of interest associated with this 
publication, and there has been no significant 
financial support for this work that could have 
influenced its outcome. 
ACKNOWLEDGEMENTS 
This paper was supported by the KIIT Deemed 
to be University Library and Dr Gopabandhu 
Sahu (Librarian), India, as well as the staff of 
SCB, Medical College, for their invaluable 
assistance and contributions to this study. 
Their dedication and support were integral to 
the successful completion of our research. 
REFERENCES 
[1] Gao Y, Huang H, Zhang L. Predicting 

Alzheimer's Disease Using 
3DMgNet. ArXiv 2022. 

[2] Panigrahi S, Adhikary DR, Pattanayak BK. 
Brain Tumour Classification: A 
Blend of Ensemble Learning and 
Fine-Tuned Pre-Trained Models. 
Discover Applied Sciences 2025; 7(4): 1-
24. 

[3] Faisal FU, Kwon GR. Automated 
Detection of Alzheimer’s Disease 
and Mild Cognitive Impairment 
Using Whole Brain MRI. IEEE Access 
2022; 10: 65055-66. 

[4] Zhang L, Yu M, Wang L, Steffens DC, Wu 
R, Potter GG, Liu M. Understanding 
Clinical Progression of Late-Life 
Depression to Alzheimer’s Disease 
Over 5 Years with Structural MRI. 
International Workshop on Machine 
Learning in Medical Imaging 2022; 259-
268. 

[5] Khatri U, Kwon GR. Alzheimer’s 
Disease Diagnosis and Biomarker 
Analysis Using Resting-State 
Functional MRI Functional Brain 
Network with Multi-Measures 
Features and Hippocampal Subfield 
and Amygdala Volume of Structural 
MRI. Frontiers in Ageing Neuroscience 
2022; 14: 818871. 

[6] Mansingh P, Pattanayak BK, Pati B. Big 
Medical Image Analysis: 
Alzheimer’s Disease Classification 
Using Convolutional Autoencoder. 
Computación y Sistemas 2022; 26(4): 
1491-501. 

[7] Kong Z, Zhang M, Zhu W, Yi Y, Wang T, 
Zhang B. Multi-Modal Data 
Alzheimer’s Disease Detection 
Based on 3D Convolution. Biomedical 

https://tj-es.com/


 

 

Tulip Das, Chinmaya Kumar Nayak, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2738. 

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025  14 Page 

Signal Processing and Control 2022; 75: 
103565. 

[8] Zhang X, Han L, Han L, Chen H, Dancey 
D, Zhang D. sMRI-PatchNet: A Novel 
Efficient Explainable Patch-Based 
Deep Learning Network for 
Alzheimer’s Disease Diagnosis with 
Structural MRI. IEEE Access 2023; 11: 
108603-16. 

[9] Dhinagar NJ, Thomopoulos SI, Laltoo E, 
Thompson PM. Efficiently Training 
Vision Transformers on Structural 
MRI Scans for Alzheimer’s Disease 
Detection. Annual International 
Conference of the IEEE Engineering in 
Medicine & Biology Society 2023; 1-6. 

[10] Hu J, Wang Y, Guo D, Qu Z, Sui C, He G, 
Wang S, Chen X, Wang C, Liu X. 
Diagnostic Performance of 
Magnetic Resonance Imaging–
Based Machine Learning in 
Alzheimer’s Disease Detection: A 
Meta-Analysis. Neuroradiology 2023; 
65(3): 513-27. 

[11] Zhang J, He X, Qing L, Chen X, Liu Y, 
Chen H. Multi-Relation Graph 
Convolutional Network for 
Alzheimer’s Disease Diagnosis 
Using Structural MRI. Knowledge-
Based Systems 2023; 270: 110546. 

[12] Abbas SQ, Chi L, Chen YP. Transformed 
Domain Convolutional Neural 
Network for Alzheimer's Disease 
Diagnosis Using Structural MRI. 
Pattern Recognition 2023; 133: 109031. 

[13] Mansingh P, Pattanayak BK, Pati B. Early 
Detection of Alzheimer's Diseases 
Through IoT. International Journal of 
Health Sciences 2022; 6(S4): 3669-85. 

[14] Silva J, Bispo BC, Rodrigues PM. 
Structural MRI Texture Analysis for 
Detecting Alzheimer’s Disease. 
Journal of Medical and Biological 
Engineering 2023; 43(3): 227-38. 

[15] Pei Z, Wan Z, Zhang Y, Wang M, Leng C, 
Yang YH. Multi-Scale Attention-
Based Pseudo-3D Convolution 
Neural Network for Alzheimer’s 
Disease Diagnosis Using Structural 
MRI. Pattern Recognition 2022; 131: 
108825. 

[16] Xie L, Das SR, Wisse LE, Ittyerah R, de 
Flores R, Shaw LM, Yushkevich PA, Wolk 
DA. Baseline Structural MRI and 
Plasma Biomarkers Predict 
Longitudinal Structural Atrophy 
and Cognitive Decline in Early 
Alzheimer’s Disease. Alzheimer's 
Research & Therapy 2023; 15(1): 79. 

[17] Helaly HA, Badawy M, Haikal AY. 
Toward Deep MRI Segmentation for 
Alzheimer’s Disease Detection. 
Neural Computing and Applications 
2022; 34(2): 1047-63. 

[18] Nayak SK, Nayak AK, Laha SR, Tripathy 
N, Smadi TA. A Robust Deep 
Learning-Based Speaker 
Identification System Using Hybrid 
Model on KUI Dataset. International 
Journal of Electrical and Electronics 
Research 2024; 12(4): 1502–1507. 

[19] Dash L, Pattanayak BK, Laha SR, Pattnaik 
S, Mohanty B, Habboush AK, Al Smadi T. 
Energy Efficient Localization 
Technique Using Multilateration for 
Reduction of Spatially and 
Temporally Correlated Data in RFID 
System. Tikrit Journal of Engineering 
Sciences 2024; 31(1): 101–112. 

[20] Pattnayak P, Mohanty A, Das T, Patnaik S. 
Applying Artificial Intelligence and 
Deep Learning to Identify Neglected 
Tropical Skin Disorders. 
International Conference for Innovation 
in Technology 2024; 1-6. 

[21] Panigrahi S, Adhikary DR, Pattanayak BK, 
Dash BB, De UC, Patra SS. ResNet-GRU 
Hybrid Model for Brain Tumor 
Diagnosis: A Sequential Learning 
Framework. International Conference 
on Machine Learning and Autonomous 
Systems 2025; 156-161. 

[22] Pattanayak BK, Mansingh P, Pati B, Dash 
BB, Gourisaria MK, Patra SS. 
Alzheimer's Disease Classification 
Using Capsule Network. International 
Conference on Expert Clouds and 
Applications 2024; 644-649. 

[23] Mansingh P, Pattanayak BK, Pati B. Deep 
Learning-Based Sentiment Analysis 
for the Prediction of Alzheimer's 
Drugs. Computación y Sistemas 2023; 
27(4): 979-89. 

 

https://tj-es.com/

