

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 1 Page

Tikrit Journal of Engineering Sciences (2025); 32 (Sp1): 2726

DOI: http://doi.org/10.25130/tjes.sp1.2025.33

SparseBonsai : A Dynamic, Resource - Efficient
Classification Model for Edge Computing and Industrial
IoT
Neelamadhab Khaya *a, Binod Ku Pattanayak a, Bichitrananda Patra b,
Pravat Kumar Rautaray a, Bibhuti Bhusan Dash c, Bibhuprasad Mohanty d
a Department of Computer Science and Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan Deemed to be University,

Bhubaneswar, Odisha, India.
b Department of Computer Application, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan Deemed to be University, Bhubaneswar,

Odisha, India.
c School of Computer Applications, KIIT Deemed to be University, Bhubaneswar, Odisha, India.

d Department of Electronics and Communication Engineering, Institute of Technical Education and Research, Siksha ‘O’ Anusandhan Deemed to be
University, Bhubaneswar, Odisha, India.

Keywords:
Bonsai Algorithm; Dynamic Regularization; Edge Computing; IioT;

Projection Techniques; Resource Optimization; SparseBonsai.

Highlights:

• SparseBonsai: Adaptively regulates sparsity and regularization

parameters during training.

• Achieves 86.91 % accuracy with 0.048 MB model size and 35 %

faster inference.

• Accuracy improves by 8 % and size by 33 %.

• Shows an AUC of nearly 0.95.

• Provides a real-time fault detection on IIoT edge nodes.

 A R T I C L E I N F O

Article history:
Received 18 Aug. 2025
Received in revised form 29 Aug. 2025
Accepted 10 Oct. 2025

Final Proofreading 20 Dec. 2025

Available online 26 Dec. 2025

© THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY
LICENSE. http://creativecommons.org/licenses/by/4.0/

Citation: Khaya N, Pattanayak BKu, Patra B, Rautaray

PK, Dash BB, Mohanty B. SparseBonsai: A Dynamic,

Resource-Efficient Classification Model for Edge

Computing and Industrial IoT. Tikrit Journal of

Engineering Sciences 2025; 32(Sp1): 2726.

http://doi.org/10.25130/tjes.sp1.2025.33

*Corresponding author:

Neelamadhab Khaya

Department of Computer Science and Engineering, Institute of

Technical Education and Research, Siksha ‘O’ Anusandhan Deemed

to be University, Bhubaneswar, Odisha, India.

Abstract: The rapid evolution of edge computing

and IIoT ecosystems demands lightweight machine

learning models that deliver accurate predictions

under resource constraints. Traditional classifiers,

such as deep neural networks and decision trees,

often struggle to balance accuracy, interpretability,

and computational efficiency in such environments.

This work introduces SparseBonsai, an enhanced

variant of the Bonsai Tree algorithm that includes

projection techniques, dynamic sparsity

parameters, and adaptive regularization. Bonsai

Tree models work with fixed parameters, whereas

SparseBonsai dynamically adjusts sparsity and

regularization during training. It improves

adaptability and generalization. SparseBonsai

achieves 86.91% classification accuracy with a

model size of 0.048 MB, and inference time is less

than 35% as of neural networks with a competitive

accuracy. Model’s robustness and efficiency is

evaluated using precision, recall, F1-score, and

ROC-AUC. These results show that the

SparseBonsai can be a practical solution for a real-

time and resource-efficient fault detection system as

an IIoT edge computing platform. The novelty of

SparseBonsai is its dynamic adjustment of sparsity

and regularization in training in comparison to the

conventional Bonsai Tree algorithm. SparseBonsai

reduces inference time by 35% and memory

footprint by 38% compared with existing

lightweight classifiers.

http://doi.org/10.25130/tjes.sp1.2025.33
mailto:neela.khaya@gmail.com
mailto:binodpattanayak@soa.ac.in
mailto:bichitranandapatra@soa.ac.in
mailto:pravatroutray@soa.ac.in
mailto:pravatroutray@soa.ac.in
mailto:bdashfca@kiit.ac.in
mailto:bibhumohanty@soa.ac.in
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.25130/tjes.sp1.2025.33
https://orcid.org/0009-0008-9286-846X
https://orcid.org/0000-0003-2222-0453
https://orcid.org/0000-0001-6414-5389
https://orcid.org/0009-0001-2635-8364
https://orcid.org/0000-0001-8786-137X
https://orcid.org/0009-0002-6472-844X
mailto:neela.khaya@gmail.com

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 2 Page

1.INTRODUCTION
The integration of Artificial Intelligence in IIOT
reshapes the modern industrial control system
and automation with resource-efficient
operations. Integrating AI in industry
optimization and neural network-based control
systems is a major application for enhancing
precision, stability, and self-learning ability in
resource-constrained systems [1]. Many studies
emphasize AI–IIoT fusion for smart
automation and scalable industrial control with
self-adaptive edge intelligence [2,3]. Recent
research highlights that edge computing
platforms and real-time inference systems use
machine learning models that can operate
efficiently in resource-constrained
environments [4]. Conventional machine
learning models often have limited
computational capacity, memory and power
availability. It is impractical to deploy
conventional machine learning models, such as
deep neural networks (DNNs) or ensemble
models, which require substantial
computational resources [5,6]. Neural
networks require significant memory and
computational resources, which are unsuitable
for edge computing scenarios [7]. DNNs, DTs,
and SVMs fail to achieve optimal efficiency and
accuracy in IIoT fault detections. DNNs provide
high accuracy but are computationally
expensive. SVMs are efficient but do not
generalize well. The base Bonsai Tree algorithm
performs well in terms of the feasibility of
resource-efficient models, but uses static
regularization with fixed sparsity. Which is not
adaptable to diverse datasets. To address this
gap, we propose SparseBonsai, an improved
variant of Bonsai that introduces dynamic
sparsity adjustment and adaptive
regularization with optimized projection
techniques. These features of SparseBonsai
enable achieving high classification accuracy
while optimizing memory footprint and
inference time, suitable for IIoT edge
deployment. Traditional Bonsai applies
uniform sparsity penalties in the training,
whereas SparseBonsai dynamically tunes these
parameters while ensuring efficient
computation without compromising accuracy.
1.1.Motivation and Problem Statement
Traditional classification models are unable to
balance computational efficiency and
predictive accuracy. Neural networks overfit
when applied to small datasets. It requires
extensive training time and consumes
significant computational resources. Decision
trees lead to poor generalization and are unable
to capture complex feature relationships [8,9].
This work presents an adaptive, resource-
efficient intelligent system for edge-computing
IIoT subsystems, inspired by intelligent control
systems in smart microgrids [10].
SparseBonsai gives a tree-based neural network

architecture that optimizes input dimensions
and passes data through non-linear branching
functions, which improves classification
accuracy. SparseBonsai preserves important
feature relationships while highly reducing
computational complexity by using learnable
projection matrices.
1.2.Key Characteristics of SparseBonsai
The architecture of SparseBonsai consists of
three main components.
Projection Layer: This layer reduces and
transforms high-dimensional input data into a
lower-dimensional space. It holds crucial
feature relationships. SparseBonsai optimizes
projection dimensions.
Tree Structure with Nonlinear
Branching: Nonlinear branching functions at
each inner node, which dynamically route
samples based on parameters. SparseBonsai
improves branch-level accuracy by optimizing
node-level parameters, which introduces
adaptive branching thresholds.
Leaf Nodes for Classification: The leaf
nodes classify by aggregating information from
the routed data. SparseBonsai uses L2
regularization with sparsity constraints on the
leaf nodes, which supports efficient parameter
usage and helps avoid overfitting to the dataset.
1.3.Optimization Techniques and
Training Framework
SparseBonsai has a novel optimization
technique to enhance the model’s efficiency.
Dynamic Regularization: The sparsity
penalties associated with L2 regularization
coefficients are dynamically adjusted during
training. It prevents overfitting. The model
holds an optimal balance between model
complexity and generalization.
Gradient-Based Updates and Adam
Optimizer: A gradient-based optimization
method is used to minimize classification loss,
with the Adam optimizer, which gives faster
convergence and prevents gradient explosion.
Hyperparameter Tuning: SparseBonsai
tunes the projection dimensions, tree depth,
learning rate, and sparsity coefficients. These
are fine-tuned to optimize classification
accuracy and computational efficiency.
1.4.Dataset Description
In this work, the Case Western Reserve
University (CWRU) Bearing Fault Dataset has
been applied to the SparseBonsai architecture.
This dataset is widely used for predictive
maintenance and fault diagnosis in industrial
machines [11]. The dataset was collected from a
motor with accelerometer sensors fitted on the
drive-end and fan-end of the motor housing.
These signals were sampled at 12 kHz and 48
kHz under various load conditions (0–3 HP)
and different fault diameters (0.007–0.021
inches). The dataset contains three fault
categories:

https://tj-es.com/

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 3 Page

• Outer Race Fault (OR),

• Inner Race Fault (IR),

• Ball Fault (B).
1.4.1.Preprocessing
The following preprocessing steps were applied
for consistent training: Segmentation: The
vibration signals were segmented into fixed-
length windows of equal duration, generating
multiple training and testing samples.
Normalization: The samples were normalized
to have a mean of zero and unit variance. This
improves the stability of training.
Label Encoding: The fault types were
encoded into integer labels {OR=0, IR=1, B=2}.
Stratified Splitting: The dataset was split
into 80% training and 20% test sets, with
balanced class proportions.
2.RELATED WORK
The increasing adoption and advancement of
Internet of Things (IoT) devices in personal,
domestic, and industrial environments have
raised serious concerns about cybersecurity
and the limited computational capacity of these
devices [12,13]. Amgbara et al. [7] introduced
lightweight ML models for securing personal
IoT devices. They highlighted trade-offs
between accuracy and complexity using models
such as decision trees and SVMs. Abdul Wahab
et al. [14] developed a lightweight host-based
Intrusion Detection System (HIDS) using N-
gram features and a Multilayer Perceptron
model, which is optimized for fog-based IoT
devices. Their architecture reduced
computational overhead using sparse matrices
and feature selection techniques. Our work
employs the concept of lightweight modeling by
deploying a SparseBonsai-based classifier with
projection-based optimization and dynamic
regularization. Similarly, Li and Dou [15]
proposed a smart healthcare framework
combining IoT and AI for cardiac disease
diagnosis using a CuSO-optimized MuLSTM
model. Their focus is on sequential learning for
diagnosis in a resource-constrained
environment. Tanveer et al. [16] introduced
Light Ensemble Guard, which uses an ensemble
model combining LightGBM, XGBoost, and
Extra Trees for detecting IoT attacks in real
time. It has been designed for devices with
limited memory and computing power. It
balances detection accuracy with efficiency
using majority voting and AUC-based
validation. Our SparseBonsai model achieves
similar goals through a compact tree structure
and sparse projection layers, which offer fast,
interpretable classification. In another study,
Daghero et al. [17] demonstrated dynamic
decision tree ensembles that adapt the number
of executed trees based on input complexity.
Their approach optimizes ensemble inference.
Qiu et al. [18] proposed a directed-edge-based
weight-prediction model that combines
multiple decision tree ensembles to predict

relationships in dynamic decision neural
networks. This method improves edge-
prediction accuracy by using similarity-based
features. Their work focused on classification
tasks with a single tree structure optimization.
Al Smadi et al. [19] presented energy-efficient
storage and management frameworks for
microgrids. They have highlighted the growing
relevance of adaptive, low-power algorithms
that align with the efficiency goals of IIoT and
edge computing. Al Smadi et al. [20] introduced
a fault localization method developed for the
Samarra Power Station in Iraq which shows the
effectiveness of ANN GA integration to identify
complex fault types and improve system
reliability. This method underscores the
ongoing need for adaptive, computationally
efficient AI models. The Bonsai algorithm by
Kumar et al. [21] demonstrated accurate
classification within just 2KB of RAM by
combining sparse projection with nonlinear
tree-based decision paths. SparseBonsai builds
directly on this principle. It introduced dynamic
regularization, adaptive sparsity with
optimized projection adjustments to improve
generalization. Naveen and Kounte [22]
improved the Bonsai algorithm by reinforcing
the feasibility of projection-based tree models
for edge classification tasks. While existing
studies on lightweight IIoT models have largely
focused on intrusion detection and healthcare
monitoring, a few works have addressed
lightweight intelligent models. Decision trees,
SVMs, and Bonsai-based classifiers have been
applied to the CWRU dataset, but they show
limited accuracy. SparseBonsai directly
addresses this gap by combining compact tree-
based structures with adaptive sparsity, with
better efficiency and competitive accuracy in
industrial fault detection.
3.METHODOLOGY
SparseBonsai is an optimized tree-based
machine learning architecture which is
designed to improve classification accuracy
while balancing computational efficiency.
SparseBonsai involves three key components:
dimensionality reduction by projection
matrices, hierarchical decision-making using
tree structures and an adaptive regularization
method. The training algorithm uses dynamic
sparsity constraints across diverse datasets.
Tables 1-2 summarize the three bearing fault
categories (Outer Race, Inner Race, and Ball
Fault) that are considered in this study. The
dataset contains the respective class labels and
the distribution of training and test samples
[11].
3.1.Algorithm Architecture
The core architecture of SparseBonsai builds on
the Bonsai algorithm by incorporating several
enhancements that improve classification
performance and computational efficiency.

https://tj-es.com/

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 4 Page

Fig.1 describes the block diagram of
SparseBonsai architecture.
Table 1 Bearing Fault Types and
Corresponding Class Labels Used for Model
Training and Evaluation.

Bearing Type Class Label Classes
Outer Ring Fault OR Class 0
Inner Ring Fault IR Class 1
Ball Fault B Class 2

Table 2 Distribution of Samples in Training
and Testing Sets [11].
Data
Set

Total
Samples

Class 0
Samples

Class 1
Samples

Class 2
Samples

Training
Set

11,673 3,100 3,119 5,454

Testing
Set

2,919 786 768 1,365

Fig. 1 Block Diagram of the Proposed SparseBonsai Model for Efficient and Accurate Classification in

Resource-Constrained Environments.

Input Layer: In the input layer, raw data
(features) are used for classification.
Pre-processing: Preprocessing involves
data normalization, feature extraction, and
scaling.
Bonsai Model:

• Bonsai Tree Structure

• Sparse Projection

• Node Assignment and Prediction
Decision Layer: Decision layers bring
predicted class labels (Class 0, Class 1, Class
2).
Evaluation Metrics: Precision, Recall, and
F1-Score are key metrics for comparative
evaluation.
3.1.1.Projection Layer
The projection layer is the first step in the
SparseBonsai architecture, which reduces the
dimensionality of the input feature space to a
more compact representation. Given an input
vector 𝑥 ∈ ℝ𝑑, the projection matrix 𝑍 ∈
 ℝ𝑚×𝑑 transforms the input to a lower-
dimensional feature space (Eq. (1)):

𝒙 = 𝒁𝒙, 𝒙 ∈ ℝ𝒎 (1)
In Eq. (1):
m is taken as the projection dimension, which
is set to 32 in the current implementation
Z is learned during training to facilitate feature
preservation and dimensionality reduction.
SparseBonsai dynamically adjusts the

projection dimensions based on the dataset's
complexity. It is ensured that the most
important features are left while reducing
computational challenges. The projection layer
keeps relevant feature relationships, which are
essential for classification tasks.
3.1.2.Tree Structure with Non-Linear
Branching
The tree structure in SparseBonsai routes data
samples through a sequence of non-linear
branching functions at internal node levels.
Each internal node gives a branching function
that computes a nonlinear decision boundary to
separate the feature space. The branching
function is defined as:

𝑩(𝒙) = 𝐭𝐚𝐧𝐡 (𝝈−𝟏 × 𝒙𝑻𝑻𝒊𝒙) (2)
In Eq. (2):

• 𝑇𝑖 ∈ ℝ𝑚×𝑚 is the learned parameter
matrix for the node 𝑖.

• 𝜎 is the branching parameter that
controls the sharpness of decision
boundaries, set to 1.0 in our work.

• 𝑥̃ is the projected input
The tree depth, set to 3 in our work, balances
model capacity and computational efficiency.
SparseBonsai dynamically adjusts branching
thresholds and node parameters.

https://tj-es.com/

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 5 Page

3.1.3.Leaf Nodes and Classification
Vectors
Once the input vector traverses the tree, it
reaches a leaf node that computes class
predictions. The leaf nodes generate
classification output decisions based on learned
classification vectors with probability:

𝓨 = ∑ 𝒑𝒋(𝒙)𝑾𝒋𝒋 (3)

In Eq. (3):

• 𝑝𝑗(𝑥) is the probability of reaching leaf

node j

• 𝑊𝑗 is the classification vector for the

corresponding leaf node.
While preventing overfitting, SparseBonsai
applies L2 regularization and sparsity
constraints to leaf node parameters.
3.1.4.Algorithm
Algorithm: Step-by-step Training

Framework of SparseBonsai

Input: Dataset D = {X, y},

projection dimension m, tree depth

d, and learning rate η are taken as

input.

Output: Trained phase of

SparseBonsai model starts as

1. Preprocessing stage of

data:

 a. Input features are

normalized (zero mean, unit

variance).

 b. Class labels are

encoded into integers (0, 1,

2).

 c. Dataset is split into

training (80%) and testing

(20%) sets using stratified

sampling.

2. Projection matrix is

initialized Z ∈ R^(m×d_in).
3. A bonsai tree with depth

d is constructed.

4. For each epoch:

 a. Each minibatch

(X_batch, y_batch:

 i. Project inputs:

X_proj = Z * X_batch

 ii. Projected samples

routed through the tree

using branching functions

 iii. Classification at

leaf nodes is computed

 iv. Loss calculation:

L = Lclassification + λ1Lreg + λ2Lsparse

 v. λ and ρ are

dynamically adjusted based

on validation performance

 vi. Parameters are

updated using the Adam

optimizer

5. Trained model is

returned.

3.2.Mathematical Formulation
The SparseBonsai algorithm is mathematically
combines classification loss, regularization
penalties, and sparsity constraints.
3.2.1.Objective Function
The objective function minimizes classification
loss while imposing regularization and sparsity
penalties the:

𝑳 = 𝑳𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 + 𝝀𝟏𝑳𝒓𝒆𝒈 + 𝝀𝟐𝑳𝒔𝒑𝒂𝒓𝒔𝒆 (4)

Where:

• 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 Is the cross-entropy loss

function defined as:

𝑳𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 = − ∑ 𝓨𝒊𝐥𝐨𝐠 (𝓨̂𝒊)
𝒄
𝒊=𝟏 (5)

• 𝐿𝑟𝑒𝑔Is the L2 regularisation term that

controls model complexity:

𝑳𝒓𝒆𝒈 = 𝝀𝟏||𝒁||𝟐
𝟐 + 𝝀𝟐 ∑ ||𝑻𝒊||𝟐

𝟐

𝒊

+ 𝝀𝟑 ∑ ||𝑾𝒋||𝟐
𝟐

𝒋

(6)

• 𝐿𝑠𝑝𝑎𝑟𝑠𝑒 Is the sparsity constraint that

enforces efficient computation:

𝐿𝑠𝑝𝑎𝑟𝑠𝑒 = 𝜌1||𝑍||1 + 𝜌2 ∑ ||𝑇𝑖||1

𝑖

+ 𝜌3 ∑ ||𝑊𝑗||1

𝑗

(7)

SparseBonsai dynamically adjusts the
regularization and sparsity coefficients λ and ρ
during training to adapt the model to different
datasets Eq. (4-7).
3.3.Training Configuration and
Optimization
The training of SparseBonsai follows a
structured optimization process. Below are the
steps.
3.3.1.Data Preprocessing
In data preprocessing, feature normalization
and label encoding should be performed to
ensure consistency during training. Feature
normalization is to be accomplished using the
mean and standard deviation of the training
data.
3.3.2.Hyperparameter Configuration
SparseBonsai’s hyperparameter selection was
done by a systematic tuning process rather than
manual trial and error. Search Strategy: A grid
search strategy combined with random search
was carried out over candidate ranges for key
hyperparameters (projection dimension is {16,
32, 64}, tree depth is {2, 3, 4}, learning rate is
{0.001, 0.01, 0.05}, batch size is {32, 64, 128}).
Random search was used initially to identify a
pattern, followed by a fine-grained grid search
for the final selection. Evaluation Protocol: For
each candidate setting, 5-fold cross-validation
was performed on the training dataset. The
hyperparameter set that performs the highest
macro-averaged F1-score on validation folds
was chosen. F1-score balances both precision
and recall across fault classes. The optimal
parameters are projection dimension = 32, tree

https://tj-es.com/

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 6 Page

depth = 3, learning rate = 0.01, batch size = 64
and training epochs=100. These parameters set
gives the best tradeoff between accuracy and
computational efficiency. Dynamic Adjustment
parameters like regularization (λ) and sparsity
coefficients (ρ) were adapted to prevent
overfitting.
3.3.3.Regularization and Sparsity
Penalties
SparseBonsai applies a combination of L2
regularization and sparsity penalties to the
projection matrix, internal nodes, and leaf
nodes. Regularization prevents overfitting,
while sparsity constraints ensure efficient
parameter usage.
3.3.4.Training Algorithm and
Optimization
The SparseBonsai model was trained over
multiple epochs, with each epoch consisting of
a forward and backward pass through the data.
In the forward pass, the architecture generated
logits and evaluated the classification loss. The
loss function was augmented with L2
regularization and sparsity penalties, which
constrained both the projection space and the
tree parameters for compactness and
generalization. Thus, the combined objective
function balanced the predictive accuracy with
model efficiency. Adam optimizer was used for
optimization with adaptive learning rates for
different parameters. Backpropagation
evaluate gradients with respect to the loss
function and model weights were updated
iteratively until convergence.

𝜽 ← 𝜽 − 𝜼𝛁𝑳(𝜽) (8)
In Eq. (8):

• 𝜃 represents the model parameters.

• 𝜂 is the learning rate.

• ∇𝐿(𝜃) is the gradient of the objective
function

3.4.Regularization Framework and
Sparsity Constraints
Traditional Bonsai and many lightweight
classifiers like Bonsai tree classifier employ
static regularization where the coefficients (λ,
ρ) remain fixed throughout training with
sparsity penalties. This method is simple but
not optimal. If λ and ρ are too high, the model
constrained high, which generates underfitting
and reduced the accuracy. Overfitting occurs if
they are too low. Here the model retains too
many parameters causing overfitting and
increased computation resources. But
SparseBonsai utilizes dynamic adjustment of λ
and ρ during training, based on validation loss
and accuracy patterns. This gives two benefits
and one of them improves the accuracy. This is
achieved with weaker penalties and gradually
increasing them. The model first explores high
feature representations, then gradually
becomes compact. Premature pruning
prevented for essential features, which gives
higher final accuracy. As sparsity increases on

each epoch, redundant weights are pruned.
Here inactive branches are suppressed which
reduces both memory footprint and inference
time.
3.5.Model Evaluation and Performance
Metrics
SparseBonsai’s performance is evaluated using
some classification metrics as following.
Classification Accuracy: Under classification
accuracy Precision, Recall, and F1-Score
evaluated for predictive performance.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆
 (9)

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 (10)

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
 (11)

Confusion Matrix: This ensures the analysis of
model errors and class-wise predictions in a
matrix. ROC Curves and AUC: This is the next
level evaluation of classification quality at
different thresholds.
3.6.Implementation Details
The SparseBonsai model was implemented in
PyTorch. The training was executed on an Intel
i5 processor with 16 GB of RAM, running in a
Python environment. All input features were
normalized before the training for the data
consistency. The dataset was divided into
training (80%) and testing (20%) splits using
stratified sampling, which makes the dataset
balanced. Training was done using a batch size
64, a learning rate 0.01 with 100 epochs.
Hyperparameters like projection dimension
(32) and tree depth (3) were taken. To avoid
randomness of performance each training
experiment was repeated five times using
different random seeds. The final classification
accuracy of 86.91% is observed as the average
performance across these five runs. This
averaging ensured it is not influenced by a
particular random initialization.
4.RESULTS AND DISCUSSION
The performance of SparseBonsai is evaluated
by analyzing classification accuracy and
computational efficiency with training in
diverse datasets. The evaluation was conducted
by comparing SparseBonsai with classical ML
and DL models. Precision, recall, F1-score,
confusion matrix, and ROC curves are
evaluation metrics used to validate the
performance of the proposed algorithm.
SparseBonsai balances between model
complexity and classification performance by
dynamically adjusting sparsity constraints,
projection dimensions and branching
thresholds. The results show the proposed
model will be ideal for deployment in resource-
constrained IIoT systems.
4.1.Classification Accuracy and Model
Performance
SparseBonsai shows an overall classification
accuracy of 86.91% in comparison to classical

https://tj-es.com/

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 7 Page

ML, DL models in terms of performance. The
accuracy remains consistent across every
epoch. The model also generalizes well to
different types of input data. The classification
performance is examined using the cross-
entropy loss function. The optimized projection
layer with dynamic sparsity penalties gives high
classification accuracy. It preserved critical
feature relationships with minimal
computational challenges.
4.1.1.Comparative Accuracy Analysis
The classification accuracy of SparseBonsai is
compared with traditional models like:
Decision Trees which are known for
interpretability but mostly lack
representational power for complex datasets.
Support Vector Machines is effective in high
dimensional spaces but uses more
computational power. Neural Networks (NNs)
is highly accurate but resource intensive. The
results shows that SparseBonsai outperform
than other classical models with a higher
accuracy. It offers best performance
significantly lower computational resources.
4.2.Evaluation Metrics
SparseBonsai’s performance is evaluated using
different classification metrics to observe its
effectiveness.
4.2.1.Precision, Recall, and F1-Score
Model’s performance was evaluated using
precision, recall and F1-score and presented in
Table 3 using Eq. (9-11). Table 3 presents the
per-class precision, recall, and F1 Scores. For
the Class 0, the model achieved 86.45%
precision, and 83.59% recall, and an F1-score of
84.99%. These results indicate that

SparseBonsai maintains balanced precision
and recall across all classes.
Table 3 Per-Class Classification Performance
of the SparseBonsai Model in Terms of
Precision, Recall, and F1-Score.

Metrics Class 0 Class 1 Class 2
Precision 86.45% 80.59% 86.10%
Recall 83.59% 77.86% 89.38%
F1-Score 84.99% 79.21% 87.71%

4.2.2.Confusion Matrix Analysis
A confusion matrix provides detailed
classification results, highlighting the true
positives, false positives, false negatives, and
true negatives for each class. SparseBonsai’s
confusion matrix reveals that most of the
predictions are attained within the correct class
with low classification errors. SparseBonsai
minimizes false positives and false negatives by
optimized branching functions and
regularization penalties. Figure 2 presents the
confusion matrix for SparseBonsai on the IIoT
test set. Most predictions fall on the diagonal,
which gives high classification accuracy.
Misclassifications are minimal between Class 0,
Class 1, and Class 2, reflecting their similar
vibration patterns.
4.2.3.ROC Curve and AUC Score
Receiver Operating Characteristic (ROC)
curves are used to evaluate the classification
quality for different decision thresholds [23].
ROC-AUC (Receiver Operating Characteristic –
Area Under Curve) is achieved by plotting the
True Positive Rate (TPR) against the False
Positive Rate (FPR) at varying thresholds using
Eq. (12-14).

Fig. 2 Confusion Matrix for SparseBonsai: Diagonal Blocks Show High True-Positive Rates

Throughout All Classes with Minimal Misclassifications.

https://tj-es.com/

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 8 Page

𝑻𝑷𝑹 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 (12)

𝑭𝑷𝑹 =
𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 (13)

𝑹𝑶𝑪 − 𝑨𝑼𝑪 = ∫ 𝑻𝑷𝑹(𝑭𝑷𝑹)𝒅(𝑭𝑷𝑹)
𝟏

𝟎
 (14)

The Area Under the Curve (AUC) shows the
overall classification performance, with values
closer to 1 indicating higher discrimination
between classes. Figure 3 demonstrates ROC
curves for the three fault classes. SparseBonsai
achieves AUC scores of 0.96 for Class 0, 0.93
for Class 1, and 0.96 for Class 2, with a macro-
average AUC of 0.95. These results show that
the model performs well across all fault types.

Fig. 3 ROC Curves Illustrating High True-Positive Rates and Low False-Positive Rates Achieved by

SparseBonsai Across All Classes.

4.3.Computational Efficiency and
Resource Utilization
SparseBonsai’s performance is evaluated based
on training time, memory consumption, and
inference speed.
4.3.1.Memory Footprint and
Computational Complexity
SparseBonsai optimizes computational
complexity by using a dimensionality reduction
technique. It minimizes memory usage while
maintaining high accuracy. The computational
complexity of SparseBonsai is given by:

𝑶(𝒎 × 𝒅 + 𝒎𝟐 × 𝒉 + 𝒎 × 𝒄) (15)

In Eq. (15):

• 𝑚 is the projection dimension

• 𝑑 is the original input dimension

• ℎ is the tree depth

• 𝑐 is the number of classes
SparseBonsai’s memory usage is significantly
lower than that of conventional models.
4.3.2.Inference Time and Latency
SparseBonsai reduces inference time by
optimizing projection with branching
functions. It makes faster decisions. The time
complexity for inference is:

𝑶(𝐥𝐨𝐠 𝒉) (16)

SparseBonsai optimized inference time by
approximately 35% compared to other ML and
DL models.
4.3.3.Scalability and Edge Deployment
SparseBonsai is applicable for deployment on
edge devices in IIoT. These platforms operate
under strict energy and latency constraints for
applications. It detects faults without
depending on remote servers with minimal
hardware costs. Energy limitations in battery-
powered nodes demand further efficiency
improvements [24]. SparseBonsai’s lightweight
architecture is a promising candidate for
scalable IIoT edge deployment.
4.4.Sensitivity Analysis and
Hyperparameter Impact
A sensitivity analysis is conducted to assess the
impact of essential hyperparameters on
SparseBonsai’s performance. The study
highlights the influence of Projection
Dimension, Tree Depth, and Learning Rate.
4.5.Comparative Analysis with Existing
Models
SparseBonsai is compared with classical
models with multiple parameters. Table 4
presents a comparative analysis of different
classification models on the CWRU dataset.
Accuracy, computational complexity, and

https://tj-es.com/

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 9 Page

model size are the primary parameters for
comparing other models. The decision tree
shows the lowest accuracy (62.5%), having
moderate complexity with a relatively large
model size of 0.75 MB. Random Forest achieves
an accuracy of 70.6% with very high complexity
and a model size of 27.54 MB.
Table 4 Comparative Models on the CWRU
Dataset Highlighting Accuracy, Complexity,
and Model Size.
Classification
Model

Test
Accuracy
(in %)

Model
Complexity

Model
Size
 (in MB)

Decision Tree 62.5 Moderate 0.75
Random Forest 70.6 Complex 27.54
XGBoost 86.74 Complex 0.988
LightGBM 86.02 Complex 0.84
DNN 95.5 Complex 1.95
EdgeML Bonsai
Tree

78.93 Moderate 0.045

SparseBonsai
(Proposed
Model)

86.91 Moderate 0.048

Among the architectures, XGBoost and
LightGBM achieve higher accuracy of 86.74%
and 86.02%, respectively, but exhibit higher
computational complexity and larger model
sizes. These models show challenges for
deployment on microcontrollers or memory
constraint devices. The deep neural network
(DNN) achieved the highest accuracy (95.5%)
but has the largest model size (1.95 MB) and
high complexity. Baseline model Bonsai Tree
achieved 78.93% accuracy with a low model size
of 0.045 MB, demonstrating good efficiency but
with a drop in classification quality. The
proposed model balances accuracy and
efficiency. It achieves 86.91% accuracy,
compared to XGBoost and LightGBM. It keeps
model complexity moderate and size extremely
small (0.048 MB). This makes SparseBonsai
suitable for resource-constrained applications,
as it provides nearly the same accuracy as
gradient boosting but at a fraction of the
memory cost.
5.CONCLUSION
SparseBonsai is a resource-efficient variant of
the baseline Bonsai algorithm for lightweight,
constrained environments. The model achieves
86.91% classification accuracy on the CWRU
bearing fault dataset by integrating the
projection technique, adaptive sparsity, and
dynamic regularization. It maintains a compact
memory footprint of only 0.048 MB. Its
inference speed is also 35% faster than that of
deep neural networks. SparseBonsai provides a
24.4% improvement in accuracy over
traditional decision trees and 7.17% gain over
the baseline Bonsai algorithm by keeping the
model size nearly the same. SparseBonsai
achieves a superior balance between accuracy,
model size, and inference speed, adaptable in
resource-limited environments. Future work
may explore automated hyperparameter tuning
with incremental learning and dynamic tree

growth to enhance adaptability and robustness
in diverse IIoT applications. Another direction
is to enhance SparseBonsai to expand or
contract its tree structure adaptively during
training, rather than fixing the depth a priori.
ACKNOWLEDGEMENTS
The authors are grateful to the Institute of
Technical Education and Research (ITER),
Siksha ‘O’ Anusandhan University,
Bhubaneswar, India, for providing technical
assistance and research facilities. This study is
part of the research plan under the Department
of Computer Science and Engineering.
NOMENCLATURE

A Accuracy, %
B Ball fault class
D Dataset (input data)
IR Inner Race fault
OR Outer Race fault
m Projection dimension
d Tree depth
Z Projection matrix
λ Regularization coefficient
ρ Sparsity coefficient
η Learning rate
μ Mean of features
σ Standard deviation of features
θ Model parameters
L Loss function
N Number of training samples
t Epoch number (iteration index)
F1 F1-score metric
P Precision
R Recall
AUC Area Under the Curve
TPR True Positive Rate
FPR False Positive Rate
NN Neural Network
DNN Deep Neural Network

Greek symbols
λ Regularization coefficient (controls L2

penalty strength)
ρ Sparsity coefficient (controls sparsity

constraint)
η Learning rate used in training
μ Mean value (used in normalization context)
σ Standard deviation (used in normalization

context)

REFERENCES
[1] Obied H, Al-Taleb MKH, Khaleel HZ,

AbdulKareem AF. Implementation and
Derivation Kinematics Modelling
Analysis of WidowX 250 6 Degree of
Freedom Robotic Arm. Journal of
Engineering and Sustainable
Development 2025; 29(4):473–484.

[2] Khaleel HZ, Humaidi AJ. Towards
Accuracy Improvement in the
Solution of the Inverse Kinematic
Problem in a Redundant Robot: A
Comparative Analysis. International
Review of Applied Sciences and
Engineering 2024; 15(2):242–251.

[3] Khaleel RZ, Khaleel HZ, Al-Hareeri AAA,
Al-Obaidi ASM, Humaidi AJ. Improved
Trajectory Planning for a Mobile
Robot Based on the Pelican
Optimisation Algorithm. Journal
Européen des Systèmes Automatisés
2024; 57(4):1005–1013.

https://tj-es.com/

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 10 Page

[4] Behera BB, Mohanty RK, Pattanayak BK.
A Synthesised Architecture and
Future Research Directions for
Industrial IoT in the Mining
Industry. Journal of East China
University of Science and Technology
2022; 65(2):511–528.

[5] Behera BB, Pattanayak BK, Mohanty RK.
Deep Ensemble Model for Detecting
Attacks in Industrial IoT.
International Journal of Information
Security and Privacy (IJISP) 2022;
16(1):1–29.

[6] Rath M, Pattanayak BK. Technological
Advancements in Modern
Healthcare Applications Using the
Internet of Things (IoT) and the
Proposal of a Novel Healthcare
Approach. International Journal of
Human Rights in Healthcare 2019;
12(2):148–162.

[7] Amgbara SI, Akwiwu-Uzoma C, David O.
Exploring Lightweight Machine
Learning Models for Personal
Internet of Things (IoT) Device
Security. ResearchGate Preprint 2024;
(24).

[8] Hosenkhan MR, Pattanayak BK. Security
Issues in Internet of Things (IoT): A
Comprehensive Review. Advances in
Intelligent Systems and Computing 2020;
(1030):359–369.

[9] Behera BB, Mohanty RK, Pattanayak BK.
An Ensemble Model for Detecting
Attacks in the Industrial Internet of
Things (IIoT). NeuroQuantology 2022;
20(6):1399–1409.

[10] Alsanad HR, Al Mashhadany Y, Algburi S,
Abbas AK, Al Smadi T. Robust Power
Management for a Smart Microgrid
Based on an Intelligent Controller.
Journal of Robotics and Control 2025;
6(1):166–176.

[11] Case Western Reserve University.
Bearing Data Center Downloadable
Files.
https://engineering.case.edu/bearingda
tacenter/download-data-file.

[12] Swain S, Mohanty MN, Pattanayak BK.
Precision Medicine in Hepatology:
Harnessing IoT and Machine
Learning for Personalised Liver
Disease Stage Prediction.
International Journal of Reconfigurable
and Embedded Systems 2024; 13(3):724–
734.

[13] Habboush AK, Elzaghmouri BM,
Pattanayak BK, Pattnaik S, Habboush RA.
An End-to-End Security Scheme for
Protection from Cyber Attacks on
the Internet of Things (IoT)
Environment. Tikrit Journal of

Engineering Sciences 2023; 30(4):153–
158.

[14] Abdul Wahab AW, Idris MYI, Hussain
MA. Classifier Performance
Evaluation for Lightweight IDS
Using Fog Computing in IoT
Security. Electronics 2021; 10(14):1633.

[15] Li H, Xia Dou Y. Resource
Optimisation in Smart Electronic
Health Systems Using IoT for Heart
Disease Prediction via Feedforward
Neural Networks. Cluster Computing
2025; 28:21.

[16] Tanveer MU, Munir K, Amjad M,
Alyamani HJ. LightEnsemble-Guard:
An Optimised Ensemble Learning
Framework for Securing Resource-
Constrained IoT Systems. IEEE
Access 2025; 13:101764–101781.

[17] Daghero F, Burrello A, Macii E. Dynamic
Decision Tree Ensembles for
Energy-Efficient Inference on IoT
Edge Nodes. IEEE Internet of Things
Journal 2023; 11:742–757.

[18] Qiu T, Zhang M, Liu J, Chen C, Liu X. A
Directed Edge Weight Prediction
Model Using Decision Tree
Ensembles in Industrial Internet of
Things. IEEE Transactions on Industrial
Informatics 2021; 17:2160–2168.

[19] Al Smadi T, Al Sawalha A, Pattanayak BK,
Al Smadi K, Habboush AK. Energy-
Efficient Storage System
Optimisation and Recent Trends in
Enhancing Energy Management and
Access Microgrid: A Review. Journal
of Advanced Sciences and Engineering
Technologies 2024; 7(1):39–54.

[20] Al Smadi T, Gaeid KS, Mahmood AT,
Hussein RJ, Al-Husban Y. State-Space
Modelling and Neural-Network-
Based Control for Power-Plant
Electrical Faults. Results in
Engineering 2025; 25:104582.

[21] Kumar A, Goyal S, Varma M. Resource-
Efficient Machine Learning in 2 KB
RAM for the Internet of Things.
Proceedings of the 34th International
Conference on Machine Learning (ICML)
2017; 70:1935–1944.

[22] Naveen S, Kounte MR. Machine
Learning at Resource-Constrained
Edge Device Using Bonsai
Algorithm. Proceedings of the 4th
International Conference on Electronics,
Communication and Aerospace
Technology (ICECA) 2020.

[23] Al-Sharo YM, Al Smadi K, Al Smadi T.
Optimization of Stable Energy PV
Systems Using the Internet of
Things (IoT). Tikrit Journal of
Engineering Sciences 2024; 31(2):45–54.

https://tj-es.com/
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 11 Page

[24] Mohanty MN, Satrusallya S, Al Smadi T.
Antenna Selection Criteria and
Parameters for IoT Application.
Printed Antennas 2022; 18:283–295.

https://tj-es.com/

