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Abstract: The rapid evolution of edge computing
and IIoT ecosystems demands lightweight machine
learning models that deliver accurate predictions
under resource constraints. Traditional classifiers,
such as deep neural networks and decision trees,
often struggle to balance accuracy, interpretability,
and computational efficiency in such environments.
This work introduces SparseBonsai, an enhanced
variant of the Bonsai Tree algorithm that includes
projection techniques, dynamic sparsity
parameters, and adaptive regularization. Bonsai
Tree models work with fixed parameters, whereas
SparseBonsai dynamically adjusts sparsity and
regularization during training. It improves
adaptability and generalization. SparseBonsai
achieves 86.91% classification accuracy with a
model size of 0.048 MB, and inference time is less
than 35% as of neural networks with a competitive
accuracy. Model’s robustness and efficiency is
evaluated using precision, recall, Fi-score, and
ROC-AUC. These show that the
SparseBonsai can be a practical solution for a real-
time and resource-efficient fault detection system as
an IIoT edge computing platform. The novelty of
SparseBonsai is its dynamic adjustment of sparsity

results

and regularization in training in comparison to the
conventional Bonsai Tree algorithm. SparseBonsai
reduces inference time by 35% and memory
footprint by 38% compared with existing
lightweight classifiers.
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1. INTRODUCTION

The integration of Artificial Intelligence in IIOT
reshapes the modern industrial control system
and automation with resource-efficient
operations. Integrating AI in industry
optimization and neural network-based control
systems is a major application for enhancing
precision, stability, and self-learning ability in
resource-constrained systems [1]. Many studies
emphasize  AI-IIoT fusion for smart
automation and scalable industrial control with
self-adaptive edge intelligence [2,3]. Recent
research highlights that edge computing
platforms and real-time inference systems use
machine learning models that can operate
efficiently in resource-constrained
environments [4]. Conventional machine
learning models often have limited
computational capacity, memory and power
availability. It is impractical to deploy
conventional machine learning models, such as
deep neural networks (DNNs) or ensemble
models, which require substantial
computational resources [5,6]. Neural
networks require significant memory and
computational resources, which are unsuitable
for edge computing scenarios [7]. DNNs, DTs,
and SVMs fail to achieve optimal efficiency and
accuracy in IToT fault detections. DNNs provide
high accuracy but are computationally
expensive. SVMs are efficient but do not
generalize well. The base Bonsai Tree algorithm
performs well in terms of the feasibility of
resource-efficient models, but uses static
regularization with fixed sparsity. Which is not
adaptable to diverse datasets. To address this
gap, we propose SparseBonsai, an improved
variant of Bonsai that introduces dynamic
sparsity adjustment and adaptive
regularization with optimized projection
techniques. These features of SparseBonsai
enable achieving high classification accuracy
while optimizing memory footprint and
inference time, suitable for IIoT edge
deployment. Traditional Bonsai applies
uniform sparsity penalties in the training,
whereas SparseBonsai dynamically tunes these
parameters while ensuring efficient
computation without compromising accuracy.
1.1.Motivation and Problem Statement
Traditional classification models are unable to
balance  computational efficiency and
predictive accuracy. Neural networks overfit
when applied to small datasets. It requires
extensive training time and consumes
significant computational resources. Decision
trees lead to poor generalization and are unable
to capture complex feature relationships [8,9].
This work presents an adaptive, resource-
efficient intelligent system for edge-computing
IIoT subsystems, inspired by intelligent control
systems in smart microgrids [10].
SparseBonsai gives a tree-based neural network

architecture that optimizes input dimensions
and passes data through non-linear branching
functions, which improves classification
accuracy. SparseBonsai preserves important
feature relationships while highly reducing
computational complexity by using learnable
projection matrices.

1.2.Key Characteristics of SparseBonsai
The architecture of SparseBonsai consists of
three main components.

Projection Layer: This layer reduces and
transforms high-dimensional input data into a
lower-dimensional space. It holds crucial
feature relationships. SparseBonsai optimizes
projection dimensions.

Tree Structure with Nonlinear
Branching: Nonlinear branching functions at
each inner node, which dynamically route
samples based on parameters. SparseBonsai
improves branch-level accuracy by optimizing
node-level parameters, which introduces
adaptive branching thresholds.

Leaf Nodes for Classification: The leaf
nodes classify by aggregating information from
the routed data. SparseBonsai uses L2
regularization with sparsity constraints on the
leaf nodes, which supports efficient parameter
usage and helps avoid overfitting to the dataset.
1.3.0ptimization Techniques and
Training Framework

SparseBonsai has a novel optimization
technique to enhance the model’s efficiency.
Dynamic Regularization: The sparsity
penalties associated with L2 regularization
coefficients are dynamically adjusted during
training. It prevents overfitting. The model
holds an optimal balance between model
complexity and generalization.
Gradient-Based Updates and Adam
Optimizer: A gradient-based optimization
method is used to minimize classification loss,
with the Adam optimizer, which gives faster
convergence and prevents gradient explosion.
Hyperparameter Tuning: SparseBonsai
tunes the projection dimensions, tree depth,
learning rate, and sparsity coefficients. These
are fine-tuned to optimize classification
accuracy and computational efficiency.
1.4.Dataset Description

In this work, the Case Western Reserve
University (CWRU) Bearing Fault Dataset has
been applied to the SparseBonsai architecture.
This dataset is widely used for predictive
maintenance and fault diagnosis in industrial
machines [11]. The dataset was collected from a
motor with accelerometer sensors fitted on the
drive-end and fan-end of the motor housing.
These signals were sampled at 12 kHz and 48
kHz under various load conditions (0—3 HP)
and different fault diameters (0.007-0.021
inches). The dataset contains three fault
categories:
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e Outer Race Fault (OR),

e Inner Race Fault (IR),

e Ball Fault (B).
1.4.1.Preprocessing
The following preprocessing steps were applied
for consistent training: Segmentation: The
vibration signals were segmented into fixed-
length windows of equal duration, generating
multiple training and testing samples.
Normalization: The samples were normalized
to have a mean of zero and unit variance. This
improves the stability of training.
Label Encoding: The fault types were
encoded into integer labels {OR=0, IR=1, B=2}.
Stratified Splitting: The dataset was split
into 80% training and 20% test sets, with
balanced class proportions.
2.RELATED WORK
The increasing adoption and advancement of
Internet of Things (IoT) devices in personal,
domestic, and industrial environments have
raised serious concerns about cybersecurity
and the limited computational capacity of these
devices [12,13]. Amgbara et al. [7] introduced
lightweight ML models for securing personal
IoT devices. They highlighted trade-offs
between accuracy and complexity using models
such as decision trees and SVMs. Abdul Wahab
et al. [14] developed a lightweight host-based
Intrusion Detection System (HIDS) using N-
gram features and a Multilayer Perceptron
model, which is optimized for fog-based IoT
devices. Their architecture reduced
computational overhead using sparse matrices
and feature selection techniques. Our work
employs the concept of lightweight modeling by
deploying a SparseBonsai-based classifier with
projection-based optimization and dynamic
regularization. Similarly, Li and Dou [15]
proposed a smart healthcare framework
combining IoT and AI for cardiac disease
diagnosis using a CuSO-optimized MuLSTM
model. Their focus is on sequential learning for
diagnosis in a resource-constrained
environment. Tanveer et al. [16] introduced
Light Ensemble Guard, which uses an ensemble
model combining LightGBM, XGBoost, and
Extra Trees for detecting IoT attacks in real
time. It has been designed for devices with
limited memory and computing power. It
balances detection accuracy with efficiency
using majority voting and AUC-based
validation. Our SparseBonsai model achieves
similar goals through a compact tree structure
and sparse projection layers, which offer fast,
interpretable classification. In another study,
Daghero et al. [17] demonstrated dynamic
decision tree ensembles that adapt the number
of executed trees based on input complexity.
Their approach optimizes ensemble inference.
Qiu et al. [18] proposed a directed-edge-based
weight-prediction model that combines
multiple decision tree ensembles to predict

relationships in dynamic decision neural
networks. This method improves edge-
prediction accuracy by using similarity-based
features. Their work focused on classification
tasks with a single tree structure optimization.
Al Smadi et al. [19] presented energy-efficient
storage and management frameworks for
microgrids. They have highlighted the growing
relevance of adaptive, low-power algorithms
that align with the efficiency goals of IIoT and
edge computing. Al Smadi et al. [20] introduced
a fault localization method developed for the
Samarra Power Station in Iraq which shows the
effectiveness of ANN GA integration to identify
complex fault types and improve system
reliability. This method underscores the
ongoing need for adaptive, computationally
efficient AT models. The Bonsai algorithm by
Kumar et al. [21] demonstrated accurate
classification within just 2KB of RAM by
combining sparse projection with nonlinear
tree-based decision paths. SparseBonsai builds
directly on this principle. It introduced dynamic
regularization, adaptive  sparsity = with
optimized projection adjustments to improve
generalization. Naveen and Kounte [22]
improved the Bonsai algorithm by reinforcing
the feasibility of projection-based tree models
for edge classification tasks. While existing
studies on lightweight IIoT models have largely
focused on intrusion detection and healthcare
monitoring, a few works have addressed
lightweight intelligent models. Decision trees,
SVMs, and Bonsai-based classifiers have been
applied to the CWRU dataset, but they show
limited accuracy. SparseBonsai directly
addresses this gap by combining compact tree-
based structures with adaptive sparsity, with
better efficiency and competitive accuracy in
industrial fault detection.
3.METHODOLOGY

SparseBonsai is an optimized tree-based
machine learning architecture which is
designed to improve classification accuracy
while balancing computational efficiency.
SparseBonsai involves three key components:
dimensionality reduction by projection
matrices, hierarchical decision-making using
tree structures and an adaptive regularization
method. The training algorithm uses dynamic
sparsity constraints across diverse datasets.
Tables 1-2 summarize the three bearing fault
categories (Outer Race, Inner Race, and Ball
Fault) that are considered in this study. The
dataset contains the respective class labels and
the distribution of training and test samples
[11].

3.1.Algorithm Architecture

The core architecture of SparseBonsai builds on
the Bonsai algorithm by incorporating several
enhancements that improve classification
performance and computational -efficiency.
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Fig.1 describes the block diagram of
SparseBonsai architecture.
Table 1 Bearing Fault Types and

Corresponding Class Labels Used for Model

Table 2 Distribution of Samples in Training
and Testing Sets [11].

Data Total Classo Class1 Class 2
Set Samples Samples Samples Samples

Training and Evaluation. gg?ining 11,673 3,100 3119 5454
Bearing Type Class Label Classes Testing 2,919 786 768 1,365
Outer Ring Fault OR Class o Set ’ ’
Inner Ring Fault IR Class 1
Ball Fault B Class 2

s %
Tree Structure with
Non-Linear Branching
) Functions
Input Projection > |, | Classification
Data Layer Output
DIMENSIONALITY
REDUCTION
A
( Leaf Nodes
A A A
Dynamic Gradient-Based Updates

Regularization

with Adam Optimizer

k Hyperparameter Tuning j

Fig. 1 Block Diagram of the Proposed SparseBonsai Model for Efficient and Accurate Classification in
Resource-Constrained Environments.

Input Layer: In the input layer, raw data
(features) are used for classification.
Pre-processing: Preprocessing involves
data normalization, feature extraction, and
scaling.
Bonsai Model:

e Bonsai Tree Structure

e Sparse Projection

¢ Node Assignment and Prediction
Decision Layer: Decision layers bring
predicted class labels (Class o, Class 1, Class
2).
Evaluation Metrics: Precision, Recall, and
F1-Score are key metrics for comparative
evaluation.
3.1.1.Projection Layer
The projection layer is the first step in the
SparseBonsai architecture, which reduces the
dimensionality of the input feature space to a
more compact representation. Given an input
vector x € R%, the projection matrix Z €
R™*¢ transforms the input to a lower-
dimensional feature space (Eq. (1)):

X=Zx, X € R™ (6))

In Eq. (1):
m is taken as the projection dimension, which
is set to 32 in the current implementation
Zis learned during training to facilitate feature
preservation and dimensionality reduction.
SparseBonsai  dynamically adjusts  the

projection dimensions based on the dataset's
complexity. It is ensured that the most
important features are left while reducing
computational challenges. The projection layer
keeps relevant feature relationships, which are
essential for classification tasks.
3.1.2.Tree Structure with Non-Linear
Branching
The tree structure in SparseBonsai routes data
samples through a sequence of non-linear
branching functions at internal node levels.
Each internal node gives a branching function
that computes a nonlinear decision boundary to
separate the feature space. The branching
function is defined as:

B(x) = tanh (67! x ¥'T;X) (2)
In Eq. (2):

e T, € R™™ isthelearned parameter
matrix for the node i.

e ¢ isthe branching parameter that
controls the sharpness of decision
boundaries, set to 1.0 in our work.

e X isthe projected input

The tree depth, set to 3 in our work, balances
model capacity and computational efficiency.
SparseBonsai dynamically adjusts branching
thresholds and node parameters.
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3.1.3.Leaf Nodes and Classification
Vectors

Once the input vector traverses the tree, it
reaches a leaf node that computes class
predictions. The leaf nodes generate
classification output decisions based on learned
classification vectors with probability:

Y =2p,(0W; 3)
In Eq. (3):
e p;(x) is the probability of reaching leaf
node j

e W is the classification vector for the
corresponding leaf node.
While preventing overfitting, SparseBonsai
applies L2 regularization and sparsity
constraints to leaf node parameters.
3.1.4.Algorithm
Algorithm: Step-by-step Training
Framework of SparseBonsai
Input: Dataset D = {X, a
projection dimension m, tree depth
d, and learning rate n are taken as
input.
Output: Trained phase of
SparseBonsai model starts as
1. Preprocessing stage of
data:

a. Input features are
normalized (zero mean, unit
variance) .

b. Class labels are
encoded into integers (0, 1,
2) .

c. Dataset is split into
training (80%) and testing
(20%) sets using stratified
sampling.

2. Projection matrix is
initialized Z € R"(mxd _in).
3. A bonsail tree with depth
d is constructed.

4. For each epoch:

a. Each minibatch

(X_batch, y batch:
i. Project inputs:
X proj = Z * X batch
ii. Projected samples
routed through the tree
using branching functions
iii. Classification at
leaf nodes is computed
iv. Loss calculation:
L= Lclassification + }\1 Lreg + }\2 Lsparse
v. A and p are
dynamically adjusted based
on validation performance
vi. Parameters are
updated using the Adam
optimizer
5. Trained model is
returned.

3.2.Mathematical Formulation
The SparseBonsai algorithm is mathematically
combines classification loss, regularization
penalties, and sparsity constraints.
3.2.1.0bjective Function
The objective function minimizes classification
loss while imposing regularization and sparsity
penalties the:
L= Lclassificution + AlLreg + AZLsparse (4)
Where:
®  Legssification 18 the cross-entropy loss
function defined as:
Lclassificution =- Z;'—':l yilog (‘yl) (5)
e L,,Is the L2 regularisation term that
controls model complexity:

Lyeg = MlIZI3 + 22 ) IITI3
i
+25 ) w13
j (6)
® Lgparse Is the sparsity constraint that
enforces efficient computation:

Loparse = pallZIly +p2 Y 11Tl
i

+P3Z||V|/j||1 )

j
SparseBonsai  dynamically  adjusts  the
regularization and sparsity coefficients A and p
during training to adapt the model to different
datasets Eq. (4-7).
3.3.Training
Optimization
The training of SparseBonsai follows a
structured optimization process. Below are the
steps.
3.3.1.Data Preprocessing
In data preprocessing, feature normalization
and label encoding should be performed to
ensure consistency during training. Feature
normalization is to be accomplished using the
mean and standard deviation of the training
data.
3.3.2.Hyperparameter Configuration
SparseBonsai’s hyperparameter selection was
done by a systematic tuning process rather than
manual trial and error. Search Strategy: A grid
search strategy combined with random search
was carried out over candidate ranges for key
hyperparameters (projection dimension is {16,
32, 64}, tree depth is {2, 3, 4}, learning rate is
{0.001, 0.01, 0.05}, batch size is {32, 64, 128}).
Random search was used initially to identify a
pattern, followed by a fine-grained grid search
for the final selection. Evaluation Protocol: For
each candidate setting, 5-fold cross-validation
was performed on the training dataset. The
hyperparameter set that performs the highest
macro-averaged Fi-score on validation folds
was chosen. Fi-score balances both precision
and recall across fault classes. The optimal
parameters are projection dimension = 32, tree

Configuration and
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depth = 3, learning rate = 0.01, batch size = 64
and training epochs=100. These parameters set
gives the best tradeoff between accuracy and
computational efficiency. Dynamic Adjustment
parameters like regularization (A) and sparsity
coefficients (p) were adapted to prevent
overfitting.
3.3.3.Regularization and
Penalties
SparseBonsai applies a combination of L2
regularization and sparsity penalties to the
projection matrix, internal nodes, and leaf
nodes. Regularization prevents overfitting,
while sparsity constraints ensure efficient
parameter usage.
3.3.4. Training
Optimization
The SparseBonsai model was trained over
multiple epochs, with each epoch consisting of
a forward and backward pass through the data.
In the forward pass, the architecture generated
logits and evaluated the classification loss. The
loss function was augmented with L2
regularization and sparsity penalties, which
constrained both the projection space and the
tree parameters for compactness and
generalization. Thus, the combined objective
function balanced the predictive accuracy with
model efficiency. Adam optimizer was used for
optimization with adaptive learning rates for
different parameters. Backpropagation
evaluate gradients with respect to the loss
function and model weights were updated
iteratively until convergence.

0 — 6 —nVL(6) (8)

Sparsity

Algorithm and

In Eq. (8):

e O represents the model parameters.

e 7 isthelearning rate.

e VL(O) is the gradient of the objective

function

3.4.Regularization Framework and
Sparsity Constraints
Traditional Bonsai and many lightweight
classifiers like Bonsai tree classifier employ
static regularization where the coefficients (A,
p) remain fixed throughout training with
sparsity penalties. This method is simple but
not optimal. If A and p are too high, the model
constrained high, which generates underfitting
and reduced the accuracy. Overfitting occurs if
they are too low. Here the model retains too
many parameters causing overfitting and
increased  computation resources. But
SparseBonsai utilizes dynamic adjustment of A
and p during training, based on validation loss
and accuracy patterns. This gives two benefits
and one of them improves the accuracy. This is
achieved with weaker penalties and gradually
increasing them. The model first explores high
feature representations, then gradually
becomes compact. Premature pruning
prevented for essential features, which gives
higher final accuracy. As sparsity increases on

each epoch, redundant weights are pruned.
Here inactive branches are suppressed which
reduces both memory footprint and inference
time.

3.5.Model Evaluation and Performance
Metrics

SparseBonsai’s performance is evaluated using
some classification metrics as following.
Classification Accuracy: Under classification
accuracy Precision, Recall, and F1i-Score
evaluated for predictive performance.

.. True Positive
Precision = — — (9)
True Positive+False Positive
True Positive

Recall = — - (10)

True Positive+False Negative

PrecisionxRecall
F1 — Score = 2 X (11)

Precision+Recall
Confusion Matrix: This ensures the analysis of
model errors and class-wise predictions in a
matrix. ROC Curves and AUC: This is the next
level evaluation of classification quality at
different thresholds.

3.6.Implementation Details

The SparseBonsai model was implemented in
PyTorch. The training was executed on an Intel
i5 processor with 16 GB of RAM, running in a
Python environment. All input features were
normalized before the training for the data
consistency. The dataset was divided into
training (80%) and testing (20%) splits using
stratified sampling, which makes the dataset
balanced. Training was done using a batch size
64, a learning rate 0.01 with 100 epochs.
Hyperparameters like projection dimension
(32) and tree depth (3) were taken. To avoid
randomness of performance each training
experiment was repeated five times using
different random seeds. The final classification
accuracy of 86.91% is observed as the average
performance across these five runs. This
averaging ensured it is not influenced by a
particular random initialization.

4.RESULTS AND DISCUSSION

The performance of SparseBonsai is evaluated
by analyzing classification accuracy and
computational efficiency with training in
diverse datasets. The evaluation was conducted
by comparing SparseBonsai with classical ML
and DL models. Precision, recall, Fi-score,
confusion matrix, and ROC curves are
evaluation metrics used to validate the
performance of the proposed algorithm.
SparseBonsai  balances between model
complexity and classification performance by
dynamically adjusting sparsity constraints,
projection  dimensions and  branching
thresholds. The results show the proposed
model will be ideal for deployment in resource-
constrained I1oT systems.

4.1.Classification Accuracy and Model
Performance

SparseBonsai shows an overall classification
accuracy of 86.91% in comparison to classical
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ML, DL models in terms of performance. The
accuracy remains consistent across every
epoch. The model also generalizes well to
different types of input data. The classification
performance is examined using the cross-
entropy loss function. The optimized projection
layer with dynamic sparsity penalties gives high
classification accuracy. It preserved critical
feature relationships with minimal
computational challenges.
4.1.1.Comparative Accuracy Analysis
The classification accuracy of SparseBonsai is
compared with traditional models like:
Decision Trees which are known for
interpretability but mostly lack
representational power for complex datasets.
Support Vector Machines is effective in high
dimensional spaces but uses more
computational power. Neural Networks (NNs)
is highly accurate but resource intensive. The
results shows that SparseBonsai outperform
than other classical models with a higher
accuracy. It offers best performance
significantly lower computational resources.
4.2.Evaluation Metrics

SparseBonsai’s performance is evaluated using
different classification metrics to observe its
effectiveness.

4.2.1.Precision, Recall, and F1-Score
Model’s performance was evaluated using
precision, recall and Fi-score and presented in
Table 3 using Eq. (9-11). Table 3 presents the
per-class precision, recall, and F1 Scores. For
the Class o0, the model achieved 86.45%
precision, and 83.59% recall, and an F1-score of
84.99%. These results indicate that

SparseBonsai maintains balanced precision
and recall across all classes.

Table 3 Per-Class Classification Performance
of the SparseBonsai Model in Terms of
Precision, Recall, and F1-Score.

Metrics Class o Class 1 Class 2
Precision 86.45% 80.59% 86.10%
Recall 83.59% 77.86% 89.38%
F1-Score 84.99% 79.21% 87.71%

4.2.2.Confusion Matrix Analysis

A confusion matrix provides detailed
classification results, highlighting the true
positives, false positives, false negatives, and
true negatives for each class. SparseBonsai’s
confusion matrix reveals that most of the
predictions are attained within the correct class
with low classification errors. SparseBonsai
minimizes false positives and false negatives by
optimized branching functions and
regularization penalties. Figure 2 presents the
confusion matrix for SparseBonsai on the IIoT
test set. Most predictions fall on the diagonal,
which gives high classification accuracy.
Misclassifications are minimal between Class o,
Class 1, and Class 2, reflecting their similar
vibration patterns.

4.2.3.ROC Curve and AUC Score

Receiver Operating Characteristic (ROC)
curves are used to evaluate the classification
quality for different decision thresholds [23].
ROC-AUC (Receiver Operating Characteristic —
Area Under Curve) is achieved by plotting the
True Positive Rate (TPR) against the False
Positive Rate (FPR) at varying thresholds using
Eq. (12-14).

Confusion Matrix

1200
Class 0 63 64
1000
< 800
®
|
S Class 1 67 508 103 600
2
|_
- 400
Class 2 49 91 ~200
"oQ %\
% %

Predicted Label

Fig. 2 Confusion Matrix for SparseBonsai

: Diagonal Blocks Show High True-Positive Rates

Throughout All Classes with Minimal Misclassifications.
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TPR = True Positive (12)

True Positive+False Negative

FPR = False Positive (13)

False Positive+True Negative

ROC — AUC = [, TPR(FPR)A(FPR) (14)

The Area Under the Curve (AUC) shows the
overall classification performance, with values
closer to 1 indicating higher discrimination
between classes. Figure 3 demonstrates ROC
curves for the three fault classes. SparseBonsai
achieves AUC scores of 0.96 for Class 0, 0.93
for Class 1, and 0.96 for Class 2, with a macro-
average AUC of 0.95. These results show that
the model performs well across all fault types.

ROC Curve

1.0

o
™

0.6

True Positive Rate
o
~

0.2

0.0 v~
0. 0.2 0.4

—— Class 0 (AUC=0.96)
—— Class 1 (AUC=0.93)
—— Class 2 (AUC=0.96)
== Macro Avg (AUC=0.95)

0.6 0.8 1.0

False Positive Rate

Fig. 3 ROC Curves Illustrating High True-Positive Rates and Low False-Positive Rates Achieved by
SparseBonsai Across All Classes.

4.3.Computational Efficiency and
Resource Utilization
SparseBonsai’s performance is evaluated based
on training time, memory consumption, and
inference speed.
4.3.1.Memory Footprint and
Computational Complexity
SparseBonsai optimizes computational
complexity by using a dimensionality reduction
technique. It minimizes memory usage while
maintaining high accuracy. The computational
complexity of SparseBonsai is given by:
oOmxd+m?xh+mxc) (15)

In Eq. (15):

e mis the projection dimension

e d isthe original input dimension

e histhe tree depth

e ¢ isthe number of classes
SparseBonsai’s memory usage is significantly
lower than that of conventional models.
4.3.2.Inference Time and Latency
SparseBonsai reduces inference time by
optimizing  projection  with  branching
functions. It makes faster decisions. The time
complexity for inference is:

0(log h) (16)

SparseBonsai optimized inference time by
approximately 35% compared to other ML and
DL models.

4.3.3.Scalability and Edge Deployment
SparseBonsai is applicable for deployment on
edge devices in IIoT. These platforms operate
under strict energy and latency constraints for
applications. It detects faults without
depending on remote servers with minimal
hardware costs. Energy limitations in battery-
powered nodes demand further efficiency
improvements [24]. SparseBonsai’s lightweight
architecture is a promising candidate for
scalable IIoT edge deployment.
4.4.Sensitivity Analysis and
Hyperparameter Impact

A sensitivity analysis is conducted to assess the
impact of essential hyperparameters on
SparseBonsai’s performance. The study
highlights the influence of Projection
Dimension, Tree Depth, and Learning Rate.
4.5.Comparative Analysis with Existing
Models

SparseBonsai is compared with classical
models with multiple parameters. Table 4
presents a comparative analysis of different
classification models on the CWRU dataset.
Accuracy, computational complexity, and
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model size are the primary parameters for
comparing other models. The decision tree
shows the lowest accuracy (62.5%), having
moderate complexity with a relatively large
model size of 0.75 MB. Random Forest achieves
an accuracy of 70.6% with very high complexity
and a model size of 27.54 MB.

Table 4 Comparative Models on the CWRU
Dataset Highlighting Accuracy, Complexity,
and Model Size.

Classification Test Model Model
Model Accuracy Complexity Size
(in %) (in MB)
Decision Tree 62.5 Moderate 0.75
Random Forest 70.6 Complex 27.54
XGBoost 86.74 Complex 0.988
LightGBM 86.02 Complex 0.84
DNN 95.5 Complex 1.95
EdgeML Bonsai 78.93 Moderate 0.045
Tree
SparseBonsai 86.91 Moderate 0.048
(Proposed
Model)

Among the architectures, XGBoost and
LightGBM achieve higher accuracy of 86.74%
and 86.02%, respectively, but exhibit higher
computational complexity and larger model
sizes. These models show challenges for
deployment on microcontrollers or memory
constraint devices. The deep neural network
(DNN) achieved the highest accuracy (95.5%)
but has the largest model size (1.95 MB) and
high complexity. Baseline model Bonsai Tree
achieved 78.93% accuracy with alow model size
of 0.045 MB, demonstrating good efficiency but
with a drop in classification quality. The
proposed model balances accuracy and
efficiency. It achieves 86.91% accuracy,
compared to XGBoost and LightGBM. It keeps
model complexity moderate and size extremely
small (0.048 MB). This makes SparseBonsai
suitable for resource-constrained applications,
as it provides nearly the same accuracy as
gradient boosting but at a fraction of the
memory cost.

5.CONCLUSION

SparseBonsai is a resource-efficient variant of
the baseline Bonsai algorithm for lightweight,
constrained environments. The model achieves
86.91% classification accuracy on the CWRU
bearing fault dataset by integrating the
projection technique, adaptive sparsity, and
dynamic regularization. It maintains a compact
memory footprint of only 0.048 MB. Its
inference speed is also 35% faster than that of
deep neural networks. SparseBonsai provides a
24.4% improvement in accuracy over
traditional decision trees and 7.17% gain over
the baseline Bonsai algorithm by keeping the
model size nearly the same. SparseBonsai
achieves a superior balance between accuracy,
model size, and inference speed, adaptable in
resource-limited environments. Future work
may explore automated hyperparameter tuning
with incremental learning and dynamic tree

growth to enhance adaptability and robustness

in diverse IIoT applications. Another direction

is to enhance SparseBonsai to expand or
contract its tree structure adaptively during
training, rather than fixing the depth a priori.
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NOMENCLATURE

Accuracy, %

Ball fault class

Dataset (input data)

Inner Race fault

Outer Race fault

Projection dimension

Tree depth

Projection matrix

Regularization coefficient

Sparsity coefficient

Learning rate

Mean of features

Standard deviation of features

Model parameters

Loss function

Number of training samples

Epoch number (iteration index)

F1-score metric

Precision

Recall

Area Under the Curve

True Positive Rate

False Positive Rate

Neural Network

Deep Neural Network

Greek symbols

Regularization coefficient (controls L2

penalty strength)

Sparsity coefficient (controls sparsity

constraint)

n Learning rate used in training

u Mean value (used in normalization context)
o Standard deviation (used in normalization
context)
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