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• SparseBonsai: Adaptively regulates sparsity and regularization 

parameters during training. 

• Achieves 86.91 % accuracy with 0.048 MB model size and 35 % 
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• Accuracy improves by 8 % and size by 33 %. 

• Shows an AUC of nearly 0.95. 

• Provides a real-time fault detection on IIoT edge nodes. 
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Abstract: The rapid evolution of edge computing 

and IIoT ecosystems demands lightweight machine 

learning models that deliver accurate predictions 

under resource constraints. Traditional classifiers, 

such as deep neural networks and decision trees, 

often struggle to balance accuracy, interpretability, 

and computational efficiency in such environments. 

This work introduces SparseBonsai, an enhanced 

variant of the Bonsai Tree algorithm that includes 

projection techniques, dynamic sparsity 

parameters, and adaptive regularization. Bonsai 

Tree models work with fixed parameters, whereas 

SparseBonsai dynamically adjusts sparsity and 

regularization during training. It improves 

adaptability and generalization. SparseBonsai 

achieves 86.91% classification accuracy with a 

model size of 0.048 MB, and inference time is less 

than 35% as of neural networks with a competitive 

accuracy. Model’s robustness and efficiency is 

evaluated using precision, recall, F1-score, and 

ROC-AUC. These results show that the 

SparseBonsai can be a practical solution for a real-

time and resource-efficient fault detection system as 

an IIoT edge computing platform. The novelty of 

SparseBonsai is its dynamic adjustment of sparsity 

and regularization in training in comparison to the 

conventional Bonsai Tree algorithm. SparseBonsai 

reduces inference time by 35% and memory 

footprint by 38% compared with existing 

lightweight classifiers. 
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1.INTRODUCTION
The integration of Artificial Intelligence in IIOT 
reshapes the modern industrial control system 
and automation with resource-efficient 
operations. Integrating AI in industry 
optimization and neural network-based control 
systems is a major application for enhancing 
precision, stability, and self-learning ability in 
resource-constrained systems [1]. Many studies 
emphasize AI–IIoT fusion for smart 
automation and scalable industrial control with 
self-adaptive edge intelligence [2,3]. Recent 
research highlights that edge computing 
platforms and real-time inference systems use 
machine learning models that can operate 
efficiently in resource-constrained 
environments [4]. Conventional machine 
learning models often have limited 
computational capacity, memory and power 
availability. It is impractical to deploy 
conventional machine learning models, such as 
deep neural networks (DNNs) or ensemble 
models, which require substantial 
computational resources [5,6].  Neural 
networks require significant memory and 
computational resources, which are unsuitable 
for edge computing scenarios [7]. DNNs, DTs, 
and SVMs fail to achieve optimal efficiency and 
accuracy in IIoT fault detections. DNNs provide 
high accuracy but are computationally 
expensive. SVMs are efficient but do not 
generalize well. The base Bonsai Tree algorithm 
performs well in terms of the feasibility of 
resource-efficient models, but uses static 
regularization with fixed sparsity. Which is not 
adaptable to diverse datasets. To address this 
gap, we propose SparseBonsai, an improved 
variant of Bonsai that introduces dynamic 
sparsity adjustment and adaptive 
regularization with optimized projection 
techniques. These features of SparseBonsai 
enable achieving high classification accuracy 
while optimizing memory footprint and 
inference time, suitable for IIoT edge 
deployment. Traditional Bonsai applies 
uniform sparsity penalties in the training, 
whereas SparseBonsai dynamically tunes these 
parameters while ensuring efficient 
computation without compromising accuracy. 
1.1.Motivation and Problem Statement 
Traditional classification models are unable to 
balance computational efficiency and 
predictive accuracy. Neural networks overfit 
when applied to small datasets. It requires 
extensive training time and consumes 
significant computational resources. Decision 
trees lead to poor generalization and are unable 
to capture complex feature relationships [8,9].  
This work presents an adaptive, resource-
efficient intelligent system for edge-computing 
IIoT subsystems, inspired by intelligent control 
systems in smart microgrids [10].  
SparseBonsai gives a tree-based neural network 

architecture that optimizes input dimensions 
and passes data through non-linear branching 
functions, which improves classification 
accuracy. SparseBonsai preserves important 
feature relationships while highly reducing 
computational complexity by using learnable 
projection matrices. 
1.2.Key Characteristics of SparseBonsai 
The architecture of SparseBonsai consists of 
three main components. 
Projection Layer: This layer reduces and 
transforms high-dimensional input data into a 
lower-dimensional space. It holds crucial 
feature relationships. SparseBonsai optimizes 
projection dimensions. 
Tree Structure with Nonlinear 
Branching: Nonlinear branching functions at 
each inner node, which dynamically route 
samples based on parameters. SparseBonsai 
improves branch-level accuracy by optimizing 
node-level parameters, which introduces 
adaptive branching thresholds. 
Leaf Nodes for Classification: The leaf 
nodes classify by aggregating information from 
the routed data. SparseBonsai uses L2 
regularization with sparsity constraints on the 
leaf nodes, which supports efficient parameter 
usage and helps avoid overfitting to the dataset. 
1.3.Optimization Techniques and 
Training Framework 
SparseBonsai has a novel optimization 
technique to enhance the model’s efficiency. 
Dynamic Regularization: The sparsity 
penalties associated with L2 regularization 
coefficients are dynamically adjusted during 
training. It prevents overfitting. The model 
holds an optimal balance between model 
complexity and generalization. 
Gradient-Based Updates and Adam 
Optimizer: A gradient-based optimization 
method is used to minimize classification loss, 
with the Adam optimizer, which gives faster 
convergence and prevents gradient explosion. 
Hyperparameter Tuning: SparseBonsai 
tunes the projection dimensions, tree depth, 
learning rate, and sparsity coefficients. These 
are fine-tuned to optimize classification 
accuracy and computational efficiency. 
1.4.Dataset Description 
In this work, the Case Western Reserve 
University (CWRU) Bearing Fault Dataset has 
been applied to the SparseBonsai architecture. 
This dataset is widely used for predictive 
maintenance and fault diagnosis in industrial 
machines [11]. The dataset was collected from a 
motor with accelerometer sensors fitted on the 
drive-end and fan-end of the motor housing. 
These signals were sampled at 12 kHz and 48 
kHz under various load conditions (0–3 HP) 
and different fault diameters (0.007–0.021 
inches). The dataset contains three fault 
categories: 
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• Outer Race Fault (OR), 

• Inner Race Fault (IR), 

• Ball Fault (B). 
1.4.1.Preprocessing 
The following preprocessing steps were applied 
for consistent training:  Segmentation: The 
vibration signals were segmented into fixed-
length windows of equal duration, generating 
multiple training and testing samples. 
Normalization: The samples were normalized 
to have a mean of zero and unit variance. This 
improves the stability of training.  
Label Encoding: The fault types were 
encoded into integer labels {OR=0, IR=1, B=2}. 
Stratified Splitting: The dataset was split 
into 80% training and 20% test sets, with 
balanced class proportions. 
2.RELATED WORK 
The increasing adoption and advancement of 
Internet of Things (IoT) devices in personal, 
domestic, and industrial environments have 
raised serious concerns about cybersecurity 
and the limited computational capacity of these 
devices [12,13]. Amgbara et al. [7] introduced 
lightweight ML models for securing personal 
IoT devices. They highlighted trade-offs 
between accuracy and complexity using models 
such as decision trees and SVMs. Abdul Wahab 
et al. [14] developed a lightweight host-based 
Intrusion Detection System (HIDS) using N-
gram features and a Multilayer Perceptron 
model, which is optimized for fog-based IoT 
devices. Their architecture reduced 
computational overhead using sparse matrices 
and feature selection techniques. Our work 
employs the concept of lightweight modeling by 
deploying a SparseBonsai-based classifier with 
projection-based optimization and dynamic 
regularization. Similarly, Li and Dou [15] 
proposed a smart healthcare framework 
combining IoT and AI for cardiac disease 
diagnosis using a CuSO-optimized MuLSTM 
model. Their focus is on sequential learning for 
diagnosis in a resource-constrained 
environment. Tanveer et al. [16] introduced 
Light Ensemble Guard, which uses an ensemble 
model combining LightGBM, XGBoost, and 
Extra Trees for detecting IoT attacks in real 
time. It has been designed for devices with 
limited memory and computing power. It 
balances detection accuracy with efficiency 
using majority voting and AUC-based 
validation. Our SparseBonsai model achieves 
similar goals through a compact tree structure 
and sparse projection layers, which offer fast, 
interpretable classification. In another study, 
Daghero et al. [17] demonstrated dynamic 
decision tree ensembles that adapt the number 
of executed trees based on input complexity. 
Their approach optimizes ensemble inference. 
Qiu et al. [18] proposed a directed-edge-based 
weight-prediction model that combines 
multiple decision tree ensembles to predict 

relationships in dynamic decision neural 
networks. This method improves edge-
prediction accuracy by using similarity-based 
features. Their work focused on classification 
tasks with a single tree structure optimization. 
Al Smadi et al. [19] presented energy-efficient 
storage and management frameworks for 
microgrids. They have highlighted the growing 
relevance of adaptive, low-power algorithms 
that align with the efficiency goals of IIoT and 
edge computing. Al Smadi et al. [20] introduced 
a fault localization method developed for the 
Samarra Power Station in Iraq which shows the 
effectiveness of ANN GA integration to identify 
complex fault types and improve system 
reliability. This method underscores the 
ongoing need for adaptive, computationally 
efficient AI models. The Bonsai algorithm by 
Kumar et al. [21] demonstrated accurate 
classification within just 2KB of RAM by 
combining sparse projection with nonlinear 
tree-based decision paths. SparseBonsai builds 
directly on this principle. It introduced dynamic 
regularization, adaptive sparsity with 
optimized projection adjustments to improve 
generalization. Naveen and Kounte [22] 
improved the Bonsai algorithm by reinforcing 
the feasibility of projection-based tree models 
for edge classification tasks. While existing 
studies on lightweight IIoT models have largely 
focused on intrusion detection and healthcare 
monitoring, a few works have addressed 
lightweight intelligent models. Decision trees, 
SVMs, and Bonsai-based classifiers have been 
applied to the CWRU dataset, but they show 
limited accuracy. SparseBonsai directly 
addresses this gap by combining compact tree-
based structures with adaptive sparsity, with 
better efficiency and competitive accuracy in 
industrial fault detection. 
3.METHODOLOGY 
SparseBonsai is an optimized tree-based 
machine learning architecture which is 
designed to improve classification accuracy 
while balancing computational efficiency. 
SparseBonsai involves three key components: 
dimensionality reduction by projection 
matrices, hierarchical decision-making using 
tree structures and an adaptive regularization 
method.  The training algorithm uses dynamic 
sparsity constraints across diverse datasets. 
Tables 1-2 summarize the three bearing fault 
categories (Outer Race, Inner Race, and Ball 
Fault) that are considered in this study. The 
dataset contains the respective class labels and 
the distribution of training and test samples 
[11]. 
3.1.Algorithm Architecture 
The core architecture of SparseBonsai builds on 
the Bonsai algorithm by incorporating several 
enhancements that improve classification 
performance and computational efficiency. 
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Fig.1 describes the block diagram of 
SparseBonsai architecture. 
Table 1 Bearing Fault Types and 
Corresponding Class Labels Used for Model 
Training and Evaluation. 

Bearing Type Class Label  Classes 
Outer Ring Fault OR Class 0 
Inner Ring Fault IR Class 1 
Ball Fault B Class 2 

Table 2 Distribution of Samples in Training 
and Testing Sets [11]. 
Data 
Set 

Total 
Samples 

Class 0  
Samples 

Class 1  
Samples 

Class 2  
Samples 

Training 
Set 

11,673 3,100 3,119 5,454 

Testing 
Set 

2,919 786 768 1,365 

 
 
 

 
Fig. 1 Block Diagram of the Proposed SparseBonsai Model for Efficient and Accurate Classification in 

Resource-Constrained Environments. 

Input Layer: In the input layer, raw data 
(features) are used for classification. 
Pre-processing: Preprocessing involves 
data normalization, feature extraction, and 
scaling. 
Bonsai Model: 

• Bonsai Tree Structure 

• Sparse Projection 

• Node Assignment and Prediction 
Decision Layer: Decision layers bring 
predicted class labels (Class 0, Class 1, Class 
2). 
Evaluation Metrics: Precision, Recall, and 
F1-Score are key metrics for comparative 
evaluation. 
3.1.1.Projection Layer 
The projection layer is the first step in the 
SparseBonsai architecture, which reduces the 
dimensionality of the input feature space to a 
more compact representation. Given an input 
vector 𝑥 ∈  ℝ𝑑, the projection matrix 𝑍 ∈
 ℝ𝑚×𝑑 transforms the input to a lower-
dimensional feature space (Eq. (1)): 

𝒙 = 𝒁𝒙,   𝒙  ∈  ℝ𝒎 (1) 
In Eq. (1): 
m is taken as the projection dimension, which 
is set to 32 in the current implementation 
Z is learned during training to facilitate feature 
preservation and dimensionality reduction. 
SparseBonsai dynamically adjusts the 

projection dimensions based on the dataset's 
complexity. It is ensured that the most 
important features are left while reducing 
computational challenges. The projection layer 
keeps relevant feature relationships, which are 
essential for classification tasks. 
3.1.2.Tree Structure with Non-Linear 
Branching 
The tree structure in SparseBonsai routes data 
samples through a sequence of non-linear 
branching functions at internal node levels. 
Each internal node gives a branching function 
that computes a nonlinear decision boundary to 
separate the feature space. The branching 
function is defined as: 

𝑩(𝒙) = 𝐭𝐚𝐧𝐡 (𝝈−𝟏 × 𝒙𝑻𝑻𝒊𝒙) (2) 
In Eq. (2): 

• 𝑇𝑖  ∈  ℝ𝑚×𝑚 is the learned parameter 
matrix for the node 𝑖. 

• 𝜎  is the branching parameter that 
controls the sharpness of decision 
boundaries, set to 1.0 in our work. 

• 𝑥̃ is the projected input 
The tree depth, set to 3 in our work, balances 
model capacity and computational efficiency. 
SparseBonsai dynamically adjusts branching 
thresholds and node parameters. 
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3.1.3.Leaf Nodes and Classification 
Vectors 
Once the input vector traverses the tree, it 
reaches a leaf node that computes class 
predictions. The leaf nodes generate 
classification output decisions based on learned 
classification vectors with probability: 

𝓨 = ∑ 𝒑𝒋(𝒙)𝑾𝒋𝒋   (3) 

In Eq. (3): 

• 𝑝𝑗(𝑥) is the probability of reaching leaf 

node j 

• 𝑊𝑗 is the classification vector for the 

corresponding leaf node. 
While preventing overfitting, SparseBonsai 
applies L2 regularization and sparsity 
constraints to leaf node parameters. 
3.1.4.Algorithm 
Algorithm: Step-by-step Training 

Framework of SparseBonsai 

Input: Dataset D = {X, y}, 

projection dimension m, tree depth 

d, and learning rate η are taken as 

input. 

Output: Trained phase of 

SparseBonsai model starts as 

1. Preprocessing stage of 

data: 

   a. Input features are 

normalized (zero mean, unit 

variance). 

   b. Class labels are 

encoded into integers (0, 1, 

2). 

   c. Dataset is split into 

training (80%) and testing 

(20%) sets using stratified 

sampling. 

2. Projection matrix is 

initialized Z ∈ R^(m×d_in). 
3. A bonsai tree with depth 

d is constructed. 

4. For each epoch: 

   a. Each minibatch 

(X_batch, y_batch: 

      i. Project inputs: 

X_proj = Z * X_batch 

      ii. Projected samples 

routed through the tree 

using branching functions 

      iii. Classification at 

leaf nodes is computed 

      iv. Loss calculation: 

L = Lclassification + λ1Lreg + λ2Lsparse 

       v. λ and ρ are 

dynamically adjusted based 

on validation performance 

      vi. Parameters are 

updated using the Adam 

optimizer 

5. Trained model is 

returned. 

 

3.2.Mathematical Formulation 
The SparseBonsai algorithm is mathematically 
combines classification loss, regularization 
penalties, and sparsity constraints. 
3.2.1.Objective Function 
The objective function minimizes classification 
loss while imposing regularization and sparsity 
penalties the: 

𝑳 = 𝑳𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 + 𝝀𝟏𝑳𝒓𝒆𝒈 + 𝝀𝟐𝑳𝒔𝒑𝒂𝒓𝒔𝒆 (4) 

Where: 

• 𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  Is the cross-entropy loss 

function defined as:  

𝑳𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 = − ∑ 𝓨𝒊𝐥𝐨𝐠 (𝓨̂𝒊)
𝒄
𝒊=𝟏   (5) 

• 𝐿𝑟𝑒𝑔Is the L2 regularisation term that 

controls model complexity: 

𝑳𝒓𝒆𝒈 = 𝝀𝟏||𝒁||𝟐
𝟐 + 𝝀𝟐 ∑ ||𝑻𝒊||𝟐

𝟐

𝒊

+ 𝝀𝟑 ∑ ||𝑾𝒋||𝟐
𝟐

𝒋

 

(6) 

• 𝐿𝑠𝑝𝑎𝑟𝑠𝑒  Is the sparsity constraint that 

enforces efficient computation: 

𝐿𝑠𝑝𝑎𝑟𝑠𝑒 =  𝜌1||𝑍||1 + 𝜌2 ∑ ||𝑇𝑖||1

𝑖

+ 𝜌3 ∑ ||𝑊𝑗||1

𝑗

 
(7) 

SparseBonsai dynamically adjusts the 
regularization and sparsity coefficients λ and ρ 
during training to adapt the model to different 
datasets Eq. (4-7). 
3.3.Training Configuration and 
Optimization 
The training of SparseBonsai follows a 
structured optimization process. Below are the 
steps. 
3.3.1.Data Preprocessing 
In data preprocessing, feature normalization 
and label encoding should be performed to 
ensure consistency during training. Feature 
normalization is to be accomplished using the 
mean and standard deviation of the training 
data. 
3.3.2.Hyperparameter Configuration 
SparseBonsai’s hyperparameter selection was 
done by a systematic tuning process rather than 
manual trial and error. Search Strategy: A grid 
search strategy combined with random search 
was carried out over candidate ranges for key 
hyperparameters (projection dimension is {16, 
32, 64}, tree depth is {2, 3, 4}, learning rate is 
{0.001, 0.01, 0.05}, batch size is {32, 64, 128}). 
Random search was used initially to identify a 
pattern, followed by a fine-grained grid search 
for the final selection. Evaluation Protocol: For 
each candidate setting, 5-fold cross-validation 
was performed on the training dataset. The 
hyperparameter set that performs the highest 
macro-averaged F1-score on validation folds 
was chosen. F1-score balances both precision 
and recall across fault classes. The optimal 
parameters are projection dimension = 32, tree 
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depth = 3, learning rate = 0.01, batch size = 64 
and training epochs=100. These parameters set 
gives the best tradeoff  between accuracy and 
computational efficiency. Dynamic Adjustment 
parameters like regularization (λ) and sparsity 
coefficients (ρ) were adapted to prevent 
overfitting. 
3.3.3.Regularization and Sparsity 
Penalties 
SparseBonsai applies a combination of L2 
regularization and sparsity penalties to the 
projection matrix, internal nodes, and leaf 
nodes. Regularization prevents overfitting, 
while sparsity constraints ensure efficient 
parameter usage. 
3.3.4.Training Algorithm and 
Optimization 
The SparseBonsai model was trained over 
multiple epochs, with each epoch consisting of 
a forward and backward pass through the data. 
In the forward pass, the architecture generated 
logits and evaluated the classification loss. The 
loss function was augmented with L2 
regularization and sparsity penalties, which 
constrained both the projection space and the 
tree parameters for compactness and 
generalization. Thus, the combined objective 
function balanced the predictive accuracy with 
model efficiency.  Adam optimizer was used for 
optimization with adaptive learning rates for 
different parameters. Backpropagation 
evaluate gradients with respect to the loss 
function and model weights were updated 
iteratively until convergence. 

𝜽 ← 𝜽 − 𝜼𝛁𝑳(𝜽) (8) 
In Eq. (8): 

• 𝜃 represents the model parameters. 

• 𝜂 is the learning rate. 

• ∇𝐿(𝜃) is the gradient of the objective 
function 

3.4.Regularization Framework and 
Sparsity Constraints 
Traditional Bonsai and many lightweight 
classifiers like Bonsai tree classifier employ 
static regularization where the coefficients (λ, 
ρ) remain fixed throughout training with 
sparsity penalties. This method is simple but 
not optimal. If λ and ρ are too high, the model 
constrained high, which generates underfitting 
and reduced the accuracy. Overfitting occurs if 
they are too low. Here the model retains too 
many parameters causing overfitting and 
increased computation resources. But 
SparseBonsai utilizes dynamic adjustment of λ 
and ρ during training, based on validation loss 
and accuracy patterns. This gives two benefits 
and one of them improves the accuracy. This is 
achieved with weaker penalties and gradually 
increasing them. The model first explores high 
feature representations, then gradually 
becomes compact.  Premature pruning 
prevented for essential features, which gives 
higher final accuracy. As sparsity increases on 

each epoch, redundant weights are pruned. 
Here inactive branches are suppressed which 
reduces both memory footprint and inference 
time. 
3.5.Model Evaluation and Performance 
Metrics 
SparseBonsai’s performance is evaluated using 
some classification metrics as following. 
Classification Accuracy: Under classification 
accuracy Precision, Recall, and F1-Score 
evaluated for  predictive performance. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆
  (9) 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
  (10) 

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏×𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆𝒄𝒂𝒍𝒍
  (11) 

Confusion Matrix: This ensures the analysis of 
model errors and class-wise predictions in a 
matrix. ROC Curves and AUC: This is the next 
level evaluation of classification quality at 
different thresholds. 
3.6.Implementation Details 
The SparseBonsai model was implemented in 
PyTorch. The training was executed on an Intel 
i5 processor with 16 GB of RAM, running in a 
Python environment. All input features were 
normalized before the training for the data 
consistency. The dataset was divided into 
training (80%) and testing (20%) splits using 
stratified sampling, which makes the dataset 
balanced. Training was done using a batch size 
64, a learning rate 0.01 with 100 epochs. 
Hyperparameters like projection dimension 
(32) and tree depth (3) were taken. To avoid 
randomness of performance each training 
experiment was repeated five times using 
different random seeds. The final classification 
accuracy of 86.91% is observed as the average 
performance across these five runs. This 
averaging ensured it is not influenced by a 
particular random initialization. 
4.RESULTS AND DISCUSSION 
The performance of SparseBonsai is evaluated 
by analyzing classification accuracy and 
computational efficiency with training in 
diverse datasets. The evaluation was conducted 
by comparing SparseBonsai with classical ML 
and DL models. Precision, recall, F1-score, 
confusion matrix, and ROC curves are 
evaluation metrics used to validate the 
performance of the proposed algorithm. 
SparseBonsai balances between model 
complexity and classification performance by 
dynamically adjusting sparsity constraints, 
projection dimensions and branching 
thresholds. The results show the proposed 
model will be ideal for deployment in resource-
constrained IIoT systems. 
4.1.Classification Accuracy and Model 
Performance 
SparseBonsai shows an overall classification 
accuracy of 86.91% in comparison to classical 
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ML, DL models in terms of performance. The 
accuracy remains consistent across every 
epoch. The model also generalizes well to 
different types of input data. The classification 
performance is examined using the cross-
entropy loss function. The optimized projection 
layer with dynamic sparsity penalties gives high 
classification accuracy. It preserved critical 
feature relationships with minimal 
computational challenges. 
4.1.1.Comparative Accuracy Analysis 
The classification accuracy of SparseBonsai is 
compared with traditional models like: 
Decision Trees which are known for 
interpretability but mostly lack 
representational power for complex datasets. 
Support Vector Machines is effective in high 
dimensional spaces but uses more 
computational power. Neural Networks (NNs) 
is highly accurate but resource intensive. The 
results shows that SparseBonsai outperform 
than other classical models with a higher 
accuracy. It offers best performance 
significantly lower computational resources. 
4.2.Evaluation Metrics 
SparseBonsai’s performance is evaluated using 
different classification metrics to observe its 
effectiveness. 
4.2.1.Precision, Recall, and F1-Score 
Model’s performance was evaluated using 
precision, recall and F1-score and presented in 
Table 3 using Eq. (9-11). Table 3 presents the 
per-class precision, recall, and F1 Scores. For 
the Class 0, the model achieved 86.45% 
precision, and 83.59% recall, and an F1-score of 
84.99%. These results indicate that 

SparseBonsai maintains balanced precision 
and recall across all classes. 
Table 3 Per-Class Classification Performance 
of the SparseBonsai Model in Terms of 
Precision, Recall, and F1-Score. 

Metrics Class 0 Class 1 Class 2 
Precision 86.45% 80.59% 86.10% 
Recall 83.59% 77.86% 89.38% 
F1-Score 84.99% 79.21% 87.71% 

4.2.2.Confusion Matrix Analysis 
A confusion matrix provides detailed 
classification results, highlighting the true 
positives, false positives, false negatives, and 
true negatives for each class. SparseBonsai’s 
confusion matrix reveals that most of the 
predictions are attained within the correct class 
with low classification errors. SparseBonsai 
minimizes false positives and false negatives by 
optimized branching functions and 
regularization penalties. Figure 2 presents the 
confusion matrix for SparseBonsai on the IIoT 
test set. Most predictions fall on the diagonal, 
which gives high classification accuracy. 
Misclassifications are minimal between Class 0, 
Class 1, and Class 2, reflecting their similar 
vibration patterns.  
4.2.3.ROC Curve and AUC Score 
Receiver Operating Characteristic (ROC) 
curves are used to evaluate the classification 
quality for different decision thresholds [23]. 
ROC-AUC (Receiver Operating Characteristic – 
Area Under Curve) is achieved by plotting the 
True Positive Rate (TPR) against the False 
Positive Rate (FPR) at varying thresholds using 
Eq. (12-14). 

 
Fig. 2 Confusion Matrix for SparseBonsai: Diagonal Blocks Show High True-Positive Rates 

Throughout All Classes with Minimal Misclassifications. 
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𝑻𝑷𝑹 =
𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
  (12) 

𝑭𝑷𝑹 =
𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆+𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆
  (13) 

𝑹𝑶𝑪 − 𝑨𝑼𝑪 = ∫ 𝑻𝑷𝑹(𝑭𝑷𝑹)𝒅(𝑭𝑷𝑹)
𝟏

𝟎
  (14) 

The Area Under the Curve (AUC) shows the 
overall classification performance, with values 
closer to 1 indicating higher discrimination 
between classes. Figure 3 demonstrates ROC 
curves for the three fault classes. SparseBonsai 
achieves AUC scores of 0.96 for Class 0, 0.93 
for Class 1, and 0.96 for Class 2, with a macro-
average AUC of 0.95. These results show that 
the model performs well across all fault types. 

 
Fig. 3 ROC Curves Illustrating High True-Positive Rates and Low False-Positive Rates Achieved by 

SparseBonsai Across All Classes. 

4.3.Computational Efficiency and 
Resource Utilization 
SparseBonsai’s performance is evaluated based 
on training time, memory consumption, and 
inference speed. 
4.3.1.Memory Footprint and 
Computational Complexity 
SparseBonsai optimizes computational 
complexity by using a dimensionality reduction 
technique. It minimizes memory usage while 
maintaining high accuracy. The computational 
complexity of SparseBonsai is given by: 

𝑶(𝒎 × 𝒅 + 𝒎𝟐 × 𝒉 + 𝒎 × 𝒄) (15) 

In Eq. (15): 

• 𝑚 is the projection dimension 

• 𝑑 is the original input dimension 

• ℎ is the tree depth 

• 𝑐 is the number of classes 
SparseBonsai’s memory usage is significantly 
lower than that of conventional models. 
4.3.2.Inference Time and Latency 
SparseBonsai reduces inference time by 
optimizing projection with branching 
functions. It makes faster decisions. The time 
complexity for inference is: 

𝑶(𝐥𝐨𝐠 𝒉) (16) 

SparseBonsai optimized inference time by 
approximately 35% compared to other ML and 
DL models. 
4.3.3.Scalability and Edge Deployment 
SparseBonsai is applicable for deployment on 
edge devices in IIoT. These platforms operate 
under strict energy and latency constraints for 
applications. It detects faults without 
depending on remote servers with minimal 
hardware costs. Energy limitations in battery-
powered nodes demand further efficiency 
improvements [24]. SparseBonsai’s lightweight 
architecture is a promising candidate for 
scalable IIoT edge deployment. 
4.4.Sensitivity Analysis and 
Hyperparameter Impact 
A sensitivity analysis is conducted to assess the 
impact of essential hyperparameters on 
SparseBonsai’s performance. The study 
highlights the influence of Projection 
Dimension, Tree Depth, and Learning Rate. 
4.5.Comparative Analysis with Existing 
Models 
SparseBonsai is compared with classical 
models with multiple parameters. Table 4 
presents a comparative analysis of different 
classification models on the CWRU dataset.  
Accuracy, computational complexity, and 
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model size are the primary parameters for 
comparing other models. The decision tree 
shows the lowest accuracy (62.5%), having 
moderate complexity with a relatively large 
model size of 0.75 MB. Random Forest achieves 
an accuracy of 70.6% with very high complexity 
and a model size of 27.54 MB. 
Table 4 Comparative Models on the CWRU 
Dataset Highlighting Accuracy, Complexity, 
and Model Size. 
Classification 
Model 

Test 
Accuracy 
(in %) 

Model 
Complexity 

Model 
Size 
 (in MB) 

Decision Tree 62.5 Moderate 0.75 
Random Forest 70.6 Complex 27.54 
XGBoost 86.74 Complex 0.988 
LightGBM 86.02 Complex 0.84 
DNN 95.5 Complex 1.95 
EdgeML Bonsai 
Tree 

78.93 Moderate 0.045 

SparseBonsai 
(Proposed 
Model) 

86.91 Moderate 0.048 

Among the architectures, XGBoost and 
LightGBM achieve higher accuracy of 86.74% 
and 86.02%, respectively, but exhibit higher 
computational complexity and larger model 
sizes. These models show challenges for 
deployment on microcontrollers or memory 
constraint devices. The deep neural network 
(DNN) achieved the highest accuracy (95.5%) 
but has the largest model size (1.95 MB) and 
high complexity. Baseline model Bonsai Tree 
achieved 78.93% accuracy with a low model size 
of 0.045 MB, demonstrating good efficiency but 
with a drop in classification quality. The 
proposed model balances accuracy and 
efficiency. It achieves 86.91% accuracy, 
compared to XGBoost and LightGBM. It keeps 
model complexity moderate and size extremely 
small (0.048 MB). This makes SparseBonsai 
suitable for resource-constrained applications, 
as it provides nearly the same accuracy as 
gradient boosting but at a fraction of the 
memory cost. 
5.CONCLUSION 
SparseBonsai is a resource-efficient variant of 
the baseline Bonsai algorithm for lightweight, 
constrained environments. The model achieves 
86.91% classification accuracy on the CWRU 
bearing fault dataset by integrating the 
projection technique, adaptive sparsity, and 
dynamic regularization. It maintains a compact 
memory footprint of only 0.048 MB. Its 
inference speed is also 35% faster than that of 
deep neural networks.  SparseBonsai provides a 
24.4% improvement in accuracy over 
traditional decision trees and 7.17% gain over 
the baseline Bonsai algorithm by keeping the 
model size nearly the same.  SparseBonsai 
achieves a superior balance between accuracy, 
model size, and inference speed, adaptable in 
resource-limited environments. Future work 
may explore automated hyperparameter tuning 
with incremental learning and dynamic tree 

growth to enhance adaptability and robustness 
in diverse IIoT applications. Another direction 
is to enhance SparseBonsai to expand or 
contract its tree structure adaptively during 
training, rather than fixing the depth a priori. 
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NOMENCLATURE  

A Accuracy, % 
B Ball fault class 
D  Dataset (input data) 
IR  Inner Race fault 
OR  Outer Race fault 
m  Projection dimension 
d  Tree depth 
Z  Projection matrix 
λ  Regularization coefficient 
ρ  Sparsity coefficient 
η  Learning rate 
μ  Mean of features 
σ  Standard deviation of features 
θ  Model parameters 
L  Loss function 
N  Number of training samples 
t  Epoch number (iteration index) 
F1  F1-score metric 
P  Precision 
R  Recall 
AUC  Area Under the Curve 
TPR  True Positive Rate 
FPR  False Positive Rate 
NN Neural Network 
DNN Deep Neural Network 

Greek symbols 
λ Regularization coefficient (controls L2 

penalty strength) 
ρ Sparsity coefficient (controls sparsity 

constraint) 
η  Learning rate used in training 
μ  Mean value (used in normalization context) 
σ  Standard deviation (used in normalization 

context) 

REFERENCES 
[1] Obied H, Al-Taleb MKH, Khaleel HZ, 

AbdulKareem AF. Implementation and 
Derivation Kinematics Modelling 
Analysis of WidowX 250 6 Degree of 
Freedom Robotic Arm. Journal of 
Engineering and Sustainable 
Development 2025; 29(4):473–484. 

[2] Khaleel HZ, Humaidi AJ. Towards 
Accuracy Improvement in the 
Solution of the Inverse Kinematic 
Problem in a Redundant Robot: A 
Comparative Analysis. International 
Review of Applied Sciences and 
Engineering 2024; 15(2):242–251. 

[3] Khaleel RZ, Khaleel HZ, Al-Hareeri AAA, 
Al-Obaidi ASM, Humaidi AJ. Improved 
Trajectory Planning for a Mobile 
Robot Based on the Pelican 
Optimisation Algorithm. Journal 
Européen des Systèmes Automatisés 
2024; 57(4):1005–1013. 

https://tj-es.com/


 

 

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726. 

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025  10 Page 

[4] Behera BB, Mohanty RK, Pattanayak BK. 
A Synthesised Architecture and 
Future Research Directions for 
Industrial IoT in the Mining 
Industry. Journal of East China 
University of Science and Technology 
2022; 65(2):511–528. 

[5] Behera BB, Pattanayak BK, Mohanty RK. 
Deep Ensemble Model for Detecting 
Attacks in Industrial IoT. 
International Journal of Information 
Security and Privacy (IJISP) 2022; 
16(1):1–29. 

[6] Rath M, Pattanayak BK. Technological 
Advancements in Modern 
Healthcare Applications Using the 
Internet of Things (IoT) and the 
Proposal of a Novel Healthcare 
Approach. International Journal of 
Human Rights in Healthcare 2019; 
12(2):148–162. 

[7] Amgbara SI, Akwiwu-Uzoma C, David O. 
Exploring Lightweight Machine 
Learning Models for Personal 
Internet of Things (IoT) Device 
Security. ResearchGate Preprint 2024; 
(24). 

[8] Hosenkhan MR, Pattanayak BK. Security 
Issues in Internet of Things (IoT): A 
Comprehensive Review. Advances in 
Intelligent Systems and Computing 2020; 
(1030):359–369. 

[9] Behera BB, Mohanty RK, Pattanayak BK. 
An Ensemble Model for Detecting 
Attacks in the Industrial Internet of 
Things (IIoT). NeuroQuantology 2022; 
20(6):1399–1409. 

[10] Alsanad HR, Al Mashhadany Y, Algburi S, 
Abbas AK, Al Smadi T. Robust Power 
Management for a Smart Microgrid 
Based on an Intelligent Controller. 
Journal of Robotics and Control 2025; 
6(1):166–176. 

[11] Case Western Reserve University. 
Bearing Data Center Downloadable 
Files. 
https://engineering.case.edu/bearingda
tacenter/download-data-file. 

[12] Swain S, Mohanty MN, Pattanayak BK. 
Precision Medicine in Hepatology: 
Harnessing IoT and Machine 
Learning for Personalised Liver 
Disease Stage Prediction. 
International Journal of Reconfigurable 
and Embedded Systems 2024; 13(3):724–
734. 

[13] Habboush AK, Elzaghmouri BM, 
Pattanayak BK, Pattnaik S, Habboush RA. 
An End-to-End Security Scheme for 
Protection from Cyber Attacks on 
the Internet of Things (IoT) 
Environment. Tikrit Journal of 

Engineering Sciences 2023; 30(4):153–
158. 

[14] Abdul Wahab AW, Idris MYI, Hussain 
MA. Classifier Performance 
Evaluation for Lightweight IDS 
Using Fog Computing in IoT 
Security. Electronics 2021; 10(14):1633. 

[15] Li H, Xia Dou Y. Resource 
Optimisation in Smart Electronic 
Health Systems Using IoT for Heart 
Disease Prediction via Feedforward 
Neural Networks. Cluster Computing 
2025; 28:21. 

[16] Tanveer MU, Munir K, Amjad M, 
Alyamani HJ. LightEnsemble-Guard: 
An Optimised Ensemble Learning 
Framework for Securing Resource-
Constrained IoT Systems. IEEE 
Access 2025; 13:101764–101781. 

[17] Daghero F, Burrello A, Macii E. Dynamic 
Decision Tree Ensembles for 
Energy-Efficient Inference on IoT 
Edge Nodes. IEEE Internet of Things 
Journal 2023; 11:742–757. 

[18] Qiu T, Zhang M, Liu J, Chen C, Liu X. A 
Directed Edge Weight Prediction 
Model Using Decision Tree 
Ensembles in Industrial Internet of 
Things. IEEE Transactions on Industrial 
Informatics 2021; 17:2160–2168. 

[19] Al Smadi T, Al Sawalha A, Pattanayak BK, 
Al Smadi K, Habboush AK. Energy-
Efficient Storage System 
Optimisation and Recent Trends in 
Enhancing Energy Management and 
Access Microgrid: A Review. Journal 
of Advanced Sciences and Engineering 
Technologies 2024; 7(1):39–54. 

[20] Al Smadi T, Gaeid KS, Mahmood AT, 
Hussein RJ, Al-Husban Y. State-Space 
Modelling and Neural-Network-
Based Control for Power-Plant 
Electrical Faults. Results in 
Engineering 2025; 25:104582. 

[21] Kumar A, Goyal S, Varma M. Resource-
Efficient Machine Learning in 2 KB 
RAM for the Internet of Things. 
Proceedings of the 34th International 
Conference on Machine Learning (ICML) 
2017; 70:1935–1944. 

[22] Naveen S, Kounte MR. Machine 
Learning at Resource-Constrained 
Edge Device Using Bonsai 
Algorithm. Proceedings of the 4th 
International Conference on Electronics, 
Communication and Aerospace 
Technology (ICECA) 2020. 

[23] Al-Sharo YM, Al Smadi K, Al Smadi T. 
Optimization of Stable Energy PV 
Systems Using the Internet of 
Things (IoT). Tikrit Journal of 
Engineering Sciences 2024; 31(2):45–54. 

https://tj-es.com/
https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/bearingdatacenter/download-data-file


 

 

Neelamadhab Khaya, Binod Kumar Pattanayak, Bichitrananda Patra, et al / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2726. 

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025  11 Page 

[24] Mohanty MN, Satrusallya S, Al Smadi T. 
Antenna Selection Criteria and 
Parameters for IoT Application. 
Printed Antennas 2022; 18:283–295. 

https://tj-es.com/

