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Abstract: Manufacturing companies can achieve 

their goals of reducing production costs and 

improving productivity by using an efficient 

production schedule. In this paper, a formal 

verification procedure, supported by relevant 

arguments, has been used to verify the accuracy of 

flow-shop scheduling behaviour and to reduce total 

production time. We focus on the algorithm of 

sequence generation (Johnson’s algorithm), as well 

as model a three-machine scheduling procedure as a 

finite-state machine (FSM). The correctness 

requirements are expressed in Computational Tree 

Logic (CTL) and Linear-Time Logic (LTL) and are 

proved by the NuSMV model checker. The 

associated technique enables automated scheduling 

of property proofs during the design phase. In our 

verification, a counterexample demonstrates that 

Johnson’s rule can yield a suboptimal makespan in 

a three-machine setting, thereby revealing a 

limitation of its generalisation. The current findings 

indicate that using a model checker in CTL/LTL can 

be an effective method for establishing the logical 

validity of flow-shop scheduling and failure 

scenarios, thereby informing future heuristic 

development. 
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1.INTRODUCTION
Flow shop scheduling is a manufacturing 
scheduling problem with numerous 
applications across various fields, including 
economics and industry. A flow shop consists of 
n jobs and m machines, where each job has a 
fixed production sequence across the machines. 
Each machine is dedicated to a single operation. 
Because processing times differ across jobs, an 
appropriate job sequence is required to 
minimise the total completion time 
(makespan). Thus, this research aims to achieve 
the preferred sequence. Johnson’s algorithm 
was introduced in 1954. It addresses only the 
two-machine flow-shop case and minimises the 
total completion time (make span); however, 
this two-machine restriction is considered a 
drawback [1]. In this regard, researchers have 
been working to solve this obstacle. The 
heuristics were developed to make this 
algorithm more practical and to operate based 
on the make span. In [2], Campbell, Dudek, and 
Smith (CDS) presented an extension of 
Johnson's rule that handles more than two 
machines by decomposing the m-machine 
problem into two-machine problems. This was 
resolved using Johnson's rule for each case. 
This case study examines the application of 
CDS in a real-world manufacturing 
environment to minimise make span. It uses 
the heuristic as a black-box optimiser, however, 
without verifying the logical correctness of the 
produced sequences. On the other hand, our 
work aims to formally establish that the output 
of a rule-based heuristic (Johnson’s Rule 
extension) is logically suspicious, thereby 
providing a distinct yet complementary 
perspective. This company relies on client 
orders, in-stock product availability, and 
random manufacturing. As shown in the 
results, the CDS algorithm saved 90.9 minutes 
relative to the actual makespan [3]. Past studies 
have suggested methods like NEHLPD (NEH 
with the most extended processing duration), 
NEHLPD1 (NEH with the most extended 
processing duration - Variant 1), and 
NEHLPD2 (NEH with the most extended 
processing duration - Variant 2), which are 
based off of NEH (Nawaz, Encore, and Ham) 
and CDS to solve the flow shop scheduling 
problem. The present study does not apply such 
techniques, although it seeks to formally verify 
the extension of the Johnson Rule under 
dominance conditions. These approaches were 
used for 13 cases, and the NEHLPD method 
achieved the lowest makespan among the NEH 
and CDS methods [4]. In [5], we propose a 
scheduling approach that improves daily 
production using the Total Work (TWK) and 
the CDS algorithm. As the results showed, the 
combination of these algorithms could obtain 
the optimal scheduling system. This paper 
identifies the problems LTL systems face when 

planning in automated environments. It builds 
strategies based on the system's potential 
behaviour and capabilities [6]. In [7], CTL, LTL, 
and NuSMV models are used to develop anti-
theft car protection systems. This system 
originated from a keypad and remote control. 
This paper [8] used the IICTL algorithm to 
verify CTL properties using three operators: 
SAT, IC3, and FAIR that correspond to specific 
sub-queries of an EX node, an EU node, and an 
EG node, respectively. If the query is feasible, 
the for-all-exists reasoning is used to generalise 
the returned trace. IC3 is used to improve 
reachability information, thereby promoting 
greater generalisation when the query is 
unattainable. This process enhances the 
effectiveness of the CTL model. [9] This paper 
presents a solution to the obstacles faced by 
current frameworks for proving CTL 
properties: they cannot directly maintain 
particular existential CTL formulas, are 
restricted to a subset of CTL, and are limited to 
certain program types. The goal of this paper 
was achieved by using an abstract of the 
operational trace semantics of a program. [10] 
discussed the application of model checkers for 
STCTL and synthesis strategies, while the 
current approach is constrained in scope and 
difficult to prove valid. The modulo SMT 
rewriting logic was used to accomplish the 
synthesis strategies. This paper considers a 
proving technique for a flow-shop scheduling 
system. It presents a control system that 
computes the makespan using Computational 
Tree Logic (CTL) and Linear-Time Logic (LTL) 
and the NuSMV Model Checker. Given the 
proliferation of manufacturing companies, we 
need to develop an effective strategic design to 
increase productivity and remain competitive. 
To this end, this research aims to answer three 
scientific questions to achieve our goals. 
• How can the proposed CTL and LTL verify 

the perfection of flow shop scheduling 
system behaviours? 

• How can the system adapt to achieve the 
optimal makespan? 

• How can CTL and LTL contribute to 
improving the performance of institutions? 

This research aims to automatically verify the 
correctness of the flow-shop scheduling system 
behaviour to meet optimal requirements in 
industry. Manufacturing companies seek to 
minimise makespan to increase productivity, 
reduce energy consumption, reduce staff effort, 
and improve customer satisfaction. This system 
can identify inefficiency at the earliest stage of 
production. Flow shop scheduling systems are 
used in various domains, including 
manufacturing, medical services (e.g., surgical 
procedures), the food industry, and power 
plants. These institutions implement 
verification systems to ensure the reliability of 
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their application systems. Also, prevent and 
identify the problem at an early stage to 
advance and refine their systems' techniques. 
In this research, we aim to achieve this using 
CTL, LTL, and the NuSMV Model Checker.  
1.1.Contribution and Novelty 
This study presents a formal verification-based 
framework for assessing the validity of heuristic 
scheduling algorithms in flow shops, with 
particular reference to a three-machine 
extension of Johnson's rule. This contrasts with 
prior literature, which relies solely on 
performance-based comparisons or simulations 
for verification. [2,4-5], but the study uses 
temporal logic (CTL and LTL) and the NuSMV 
model checker to verify the logical behaviour of 
the scheduling process. Among the most 
significant contributions is the generation of a 
finite-state machine (FSM) model that 
encompasses the entire scheduling process, i.e., 
random sequencing, dominance, reduction of 3-
machine schedules to 2-machine schedules, and 
makespan comparison. This model enables the 
verification of all feasible scheduling paths and 
outcomes; hence, completeness in evaluating 
schedule correctness is achieved—a dimension 
that has not been comprehensively addressed in 
scheduling studies. [7,11]. Furthermore, the 
paper illustrates how failures of heuristics 
otherwise widely adopted in practice, such as an 
extended version of Johnson's rule, can be 
revealed through formal counterexamples. The 
algorithm is assessed in a particular case that 
does not yield an optimal sequence, and this 
violation is traced to a temporal logic 
specification that is false. Not only does this 
present evidence of limitation, but it also 
provides a way forward to the construction of 
verifiably proper heuristic procedures. Although 
the current techniques, NEHLPD, CDS, and 
TWK-centred hybrids [4-5, aim to enhance 
scheduling outcomes, they do not formally 
establish the correctness of the scheduling logic. 
This paper fills that gap by employing CTL/LTL-
based formal verification, thereby providing 
logical rather than numerical optimality. This is 
the only way to proceed when performance is not 
the only critical factor in the system. Moreover, 
methodologically, this procedure is 
generalizable to other scheduling algorithms, 
and verification frameworks can be developed to 
apply to other algorithms (metaheuristics-based 
or AI-driven models) [6,9-10]. It can serve as a 
basis for subsequent researchers to design 
verifiable scheduling systems, including 
automated manufacturing systems, cyber-
physical systems, and real-time operations. 
Overall, this paper brings, in addition to 
innovating the methodological aspect of the 
problem, i.e., the incorporation of formal 
methods in scheduling, an insight into the 
working mode of failure of traditional heuristics. 
It also bridges the gap between operations 

research and formal verification. It suggests a 
line of development of scheduling strategies that 
are not only efficient but also formally correct by 
design. To clear the definition of the Makespan, 
see the following Subsection. 
1.2.Definition of Makespan 
The total time required to complete all jobs in a 
given schedule is known as the makespan [4]. 
In a multi-machine flow-shop scheduling 
problem, it is the completion time of the last job 
on the previous machine. One of the basic goals 
in production scheduling is to minimise 
makespan, as it curtails overall production 
efficiency, resource utilisation, and throughput. 
When the makespan is lower, the system can 
complete more jobs in a shorter period, 
resulting in lower operational costs and higher 
productivity. This paper considers makespan as 
the primary performance metric to evaluate the 
efficiency of scheduling heuristics, such as 
Johnson's rule, CDS, and NEH. 
2.THE EXTENSION OF JOHNSON’S 
RULE  
In this study, we propose a verification system 
based on CTL and LTL to extend Johnson's rule 
to flow-shop scheduling. Figure 1 depicts the 
finite-state machine of the proposed system. 
1- The state S0 includes the presence of three 

jobs for three machines. The number of 
possible job orders is 3! (six possible 
orders). For each possible order, the 
makespan is calculated and stored in a 
random-choice variable. 

2- Randomly choose one order from the 
random choice variable. This operation 
transitions to a new state S1. Suppose the 
optimal makespan is zero. Subsequently, 
check whether any machine is dominant 
over the other. If this operation does not 
achieve an optimal makespan of zero, then 
transits to state S2; otherwise, transits to 
state S3. 

3- In state S2, the system ends at this state and 
cannot apply Johnson's rule. In state S3, 
Johnson's rule applies to the machines. 
Then, the operation is signified by 
converting 3M to 2M, which transits to 
state S4. 

4- Apply Johnson's rule operation to the three 
resulting jobs and two machines (state 4) to 
transit to state S5. 

5- The Johnson's rule solutions are 
represented in the new state S5 (optimal 
job order), then calculate the makespan 
operation to transit to state S6. 

6- When calculating the makespan for the 
optimal order, the result will be the optimal 
makespan (state S6). Then, if the optimal 
makespan is less than or equal to the 
random makespan, then return to the S0 
state; otherwise, transit to the S7 state 
(Johnson's rule failed). This operation 
occurs when the optimal makespan exceeds 
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the random makespan, indicating that 
Johnson's rule fails. 

7- When transiting from S6 to S0 state, this 
operation ensures that all possibilities are 
considered to determine if there is any 
possible order better than the optimal 
makespan. Subsequently, the previous 
operations are repeated until state S1 is 
reached. 

8- In state S1, random order (for second-order 
jobs) is compared with the new value of the 
optimal makespan. If the optimal 
makespan is better than the random order, 
return to S0; otherwise, return to S7, and 
this operation represents (Optimal > 
Random).  

 
Fig. 1 Finite State Machine of the Proposed 

System. 
3.TEMPORAL LOGIC  
Temporal logic is a modal logic used to interpret 
changes in symbols over time. It provides tools 
to analyse the system's performance over time. 

The temporal logic used for asynchronous and 
synchronous systems [12,13]. In this paper, we 
present two temporal logics: CTL and LTL. 
3.1.Syntax of the CTL  
CTL is used to specify system properties for 
several possible execution paths. It can verify 
whether the system satisfies the intended 
temporal properties and apply operators and 
quantifiers to express complex properties [11]. 
This can be gained using the following operators: 

1- Logical Operators ¬, ⊤ ,∧, ⊥,∨, →, path 
quantifiers 𝑨, 𝑬. 

2- temporal operators 𝑮, 𝑼, 𝑿, and 𝑭. 
In this paper, the 𝛷𝑇ℎ𝑒 𝑇ℎ𝑒 𝑇ℎ𝑒 equation 
formula contains many Atomic Propositions 
(𝐴𝑃) that are used in our system, such as 
calculating makespan, ordering jobs, checking 
dominance, and converting a 3-machine 
problem to a 2-machine problem. These 𝐴𝑃 will 
relate to 𝑝𝑖 ,  𝑖 = 1,2, …, A CTL formula is written 
as follows:  
𝜙 ∶≔  𝑝𝑖  | ¬ 𝜙 | 𝜙1 ∧ 𝜙2 | 
𝜙1 ∨ 𝜙2 | 𝑬𝑿𝛷 | 𝑨𝑮𝜙 |𝑨𝑿𝛷 | 𝑬𝑭𝛷 
| 𝑨𝑭𝛷 | 𝑨[𝜙1𝑼𝜙2] | 𝑨𝑮𝜙 | 𝑬[𝜙1𝑼𝜙2] 
3.2.Semantics of the CTL  
Now, we can say when an atomic proposition. 𝑝𝑖  
is true at a state or time 𝑠𝑖 in the system 𝑀 if: 
𝑀, 𝑠𝑖 ⊨ 𝑝𝑘, for all 𝑝𝑘  ∈  𝑝𝑖. The structure on 
which the system 𝑀 is based is an encounter 
with a formal description in the form of a tuple 
(𝑆, 𝐼, 𝑅, 𝐴𝑃, 𝐿) as presented in [7,14]: 
𝑆: is a finite set of states. 
𝐼 ⊆ 𝑆: is a finite set of initial states. 
𝑅: is a total transition relation such that 𝑅 ⊆
𝑆 × 𝑆. 
𝐴𝑃: is the set of atomic propositions 
𝐿: is a function that maps to each state the 
entire set of atomic propositions that hold in 
this state. 
Such that 𝐿: 𝑆 → 2𝐴𝑃. 
The semantics of the basic operators are 
formally described as follows: 

𝑀 , 𝑠𝑖 ⊨ ¬ 𝜙   𝑖𝑓𝑓  𝑀 , 𝑠𝑖 ⊭  𝜙. 

𝑎𝑛𝑑𝑀 , 𝑠𝑖 ⊨ 𝜙 ∧  𝜓  𝑖𝑓𝑓   𝑀 , 𝑠𝑖 ⊨ 𝜙  𝑎𝑛𝑑  𝑀 , 𝑠𝑖 ⊨ 𝜓. 

𝑀 , ⊨  𝜙 ∨  𝜓  𝑖𝑓𝑓 𝑀 , 𝑠𝑖 ⊨  𝜙 𝑜𝑟 𝑀 , 𝑠𝑖 ⊨  𝜓. 

𝑀 , 𝑠𝑖  ⊨ 𝜙 ⇒  𝜓 𝑖𝑓𝑓  𝑖𝑓  𝑀 , 𝑠𝑖  ⊨  𝜙  then  𝑀 , 𝑠𝑖 ⊨  𝜓. 

Let a path 𝜆 that starts in a state.  𝑠𝑖, where 𝜆 =
 𝑠𝑖  , 𝑠𝑖+1, …  in the system model M. The 

following is an interpretation of the temporal 
operators over 𝑀: 

𝑀 , 𝑠𝑖 ⊨ 𝑨𝑿𝛷𝑖𝑓𝑓  ∀𝜆 =  (𝑠𝑖  , 𝑠𝑖+1, … ),   𝑀 , 𝑠𝑖+1 ⊨ 𝛷. 
𝑀 , 𝑠𝑖 ⊨ 𝑬𝑿𝛷 𝑖𝑓𝑓  ∃𝜆 =  (𝑠𝑖  , 𝑠𝑖+1, … ),𝑀 , 𝑠𝑖+1 ⊨ 𝛷. 

𝑀  𝑠𝑖 ⊨ 𝑨𝑭𝛷 𝑖𝑓𝑓 ∀𝜆 =  (𝑠𝑖   𝑠𝑖+1 … ) ∃ 𝑗 ≥ 𝑖 𝑀  𝑠𝑗 ⊨ 𝛷,  

𝑀  𝑠𝑖 ⊨ 𝑬𝑭𝛷 i𝑓𝑓 ∃𝜆 =  (𝑠𝑖   𝑠𝑖+1 … ) ∃ 𝑗 ≥ 𝑖  𝑀  𝑠𝑗 ⊨ 𝛷, 

𝑀, 𝑠𝑖 ⊨ 𝑨𝑮𝜙 𝑖𝑓𝑓,∀𝜆 =  (𝑠𝑖  , 𝑠𝑖+1, … ), and  ∀𝑗 ≥ 𝑖, 𝑀, 𝑠𝑗 ⊨ 𝜙. 

𝑀, 𝑠𝑖 ⊨ 𝑬𝑮𝜙 𝑖𝑓𝑓 ∃𝜆 =  (𝑠𝑖  , 𝑠𝑖+1, … ), and ∀𝑗 ≥ 𝑖, 𝑀, 𝑠𝑗 ⊨ 𝜙 . 

𝑀, 𝑠𝑖 ⊨ 𝑨[𝜙1𝑼𝜙2] 𝑖𝑓𝑓 ∀𝜆 =  (𝑠𝑖  , 𝑠𝑖+1, … ), ∃ 𝑗 ≥ 𝑖 such that 𝑀, 𝑠𝑗 ⊨ 𝜙2and,∀𝑘,𝑖 ≤ 𝑘 < 𝑗, 𝑀, 𝑠𝑘 ⊨ 𝜙1. 

𝑀, 𝑠𝑖 ⊨ 𝑬[𝜙1𝑼𝜙2] 𝑖𝑓𝑓 ∃𝜆 =  (𝑠𝑖  , 𝑠𝑖+1, … )such that ∃𝑗 ≥ 𝑖, 𝑀, 𝑠𝑗 ⊨ 𝜙2and,∀𝑘,𝑖 ≤ 𝑘 < 𝑗, 𝑀, 𝑠𝑘 ⊨ 𝜙1. 
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3.3.LTL Syntax  
The LTL model focuses on system behaviour 
over time and assesses whether specified 
temporal requirements are satisfied. 1 5].  LTL 
c    𝑝𝑖  ,  𝑖 =  0  ,1,2, …, logical operators ¬, ⊤ ,∧, ⊥
,∨, → and temporal operators  𝑮, 𝑼, 𝑿 , 𝑭. The 
LTL is clarified inductively using the following 
formulas: 

𝜙 ∶∶ =  𝑝𝑖 | ¬ 𝜙 | 𝑮𝜙 | 𝜙1 ∨ 𝜙2  
| 𝑭𝛷 | 𝑿𝛷| 𝜙1 ∧ 𝜙2| 𝜙1𝑼𝜙2 
3.4.LTL Semantics 
Analogous to CTL, if 𝜙 is a path formula, then 
𝑀, 𝑠𝑖 ⊨ 𝑝𝑘 for a path 𝜆 =  𝑠𝑖  , 𝑠𝑖+1, … This 
indicates that 𝜙 is satisfied along the path 𝜆 
within the model structure 𝑀. The relation is 
inductively defined as follows (see [7]): 

𝑀 , 𝑠𝑖 ⊨ ¬ 𝜙   𝑖𝑓𝑓  𝑀 , 𝑠𝑖 ⊭  𝜙 

𝑎𝑛𝑑𝑀 , 𝑠𝑖 ⊨ 𝜙 ∧  𝜓  𝑖𝑓𝑓 𝑀 , 𝑠𝑖 ⊨ 𝜙  𝑎𝑛𝑑 𝑀 , 𝑠𝑖 ⊨ 𝜓 

𝑀 , ⊨  𝜙 ∨  𝜓 𝑖𝑓𝑓 𝑀 , 𝑠𝑖 ⊨  𝜙 𝑜𝑟 𝑀 , 𝑠𝑖 ⊨  𝜓 

𝑀 , 𝑠𝑖 ⊨ 𝜙 ⇒ 𝑖𝑓  𝑀 , 𝑠  ⊨ 𝜙  then   , ⊨  𝜓𝑀 , 𝑠𝑖 ⊨ 𝑿𝛷  𝑖𝑓𝑓     𝑀, 𝑠𝑖+1 ⊨ 𝛷.𝑀 , 𝑠𝑖   ⊨ 𝑭𝜙 𝑖𝑓 ∃ , 𝑠𝑗 ⊨ 𝛷  

𝑀, 𝑠𝑖 ⊨ 𝑮𝜙 𝑖𝑓𝑓 ∀𝑗𝑖, 𝑀, 𝑗 ⊨ 𝜙 𝑀, 𝑠𝑖 ⊨ 𝑨[𝜙1 𝑼𝜙2] 𝑖𝑓 ∃ 𝑗 ≥ 𝑖 such that 𝑀, 𝑠𝑗 ⊨ 𝜙2 an, ∀𝑘, 𝑖 ≤ 𝑘 <

𝑗, 𝑀, 𝑠𝑘 ⊨ 𝜙1. 

4.SPECIFICATIONS OF THE PROPOSED 
FLOW SHOP SCHEDULING SYSTEM  
Specifications specify the standards that systems 
must meet to ensure correct performance. It is 
related to guide manufacturing [16]. Under this 
heading, we present the correctness conditions 
that the proposed model must satisfy. If all these 
conditions are met, our model is correct. 
1- At any time, Johnson's rule eventually fails to 

produce the optimal order for the three tasks, 
so the random order chosen is better. Below 
is the condition encoded in CTL and LTL:  

𝛅𝟏 =  𝐀𝐆 (𝐄𝐅 (𝐬𝐭𝐚𝐭𝐞 =  𝐬𝟕)) (1) 
𝛃𝟏 =  𝐆 (𝐅 (𝐬𝐭𝐚𝐭𝐞 =  𝐬𝟕)) (2) 

2- When determining the optimal order using 
Johnson's rule, ensure that no two tasks are 
duplicated within the order list at any time. 
Below is the condition encoded in CTL and 
LTL: 

𝛅𝟐 =  𝐀𝐆 (𝐣𝟏. 𝐣𝐨𝐛𝟏_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 
≠  𝐣𝟏. 𝐣𝐨𝐛𝟐_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧)  
∧  (𝐣𝟏. 𝐣𝐨𝐛𝟏_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 
≠  𝐣𝟏. 𝐣𝐨𝐛𝟑_ 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧) 
∧  (𝐣𝟏. 𝐣𝐨𝐛𝟐_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 
≠  𝐣𝟏. 𝐣𝐨𝐛𝟑_ 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧) (3) 

𝛃𝟐 =  𝐆(𝐣𝟏. 𝐣𝐨𝐛𝟏_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 
≠  𝐣𝟏. 𝐣𝐨𝐛𝟐_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧)  
∧  (𝐣𝟏. 𝐣𝐨𝐛𝟏_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 
≠  𝐣𝟏. 𝐣𝐨𝐛𝟑_ 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧)  
∧  (𝐣𝟏. 𝐣𝐨𝐛𝟐_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧 
≠  𝐣𝟏. 𝐣𝐨𝐛𝟑_ 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧) (4) 

3- At any time, if we are in state 1 and the first 
and second machines dominate the third 
machine, the system can apply Johnson's 
rule, meaning it will not reach state 2. Below 
is the condition encoded in CTL and LTL:  

𝛅𝟑 =  𝐀𝐆((𝐬𝐭𝐚𝐭𝐞 
=  𝐬𝟏 & 𝐝𝟏. 𝐝𝐨𝐦𝐢𝐧𝐚𝐧𝐜𝐞_ 𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟏 
−  𝐚𝐧𝐝 
−  𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟐_𝐨𝐯𝐞𝐫_𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟑 
=  𝐓𝐑𝐔𝐄)  ⇒  ¬(𝐀𝐅 (𝐬𝐭𝐚𝐭𝐞 =  𝐬𝟐))) (5) 

𝛃𝟑 =  𝐆((𝐬𝐭𝐚𝐭𝐞
=  𝐬𝟏 & 𝐝𝟏. 𝐝𝐨𝐦𝐢𝐧𝐚𝐧𝐜𝐞_𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟏 
−  𝐚𝐧𝐝
−  𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟐_𝐨𝐯𝐞𝐫_𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟑 
=  𝐓𝐑𝐔𝐄) ⇒  ¬(𝐅(𝐬𝐭𝐚𝐭𝐞 =  𝐬𝟐))) (6) 

4- At any time, given the system's processing 
times, there will always be a dominance, so 
state 2 cannot be reached under any 
circumstances. Below is the condition 
encoded in CTL and LTL: 

𝜹𝟒 =  𝑨𝑮 (¬(𝒔𝒕𝒂𝒕𝒆 =  𝒔𝟐)) (7) 
𝜷𝟒 =  𝑮 (¬(𝒔𝒕𝒂𝒕𝒆 =  𝒔𝟐)) (8) 

5- At any time, if we are in state 1 and the 
optimal makespan is greater than zero and 
less than or equal to random choice, then the 
next state will be state 0. Below is the 
condition encoded in CTL and LTL: 

𝛅𝟓 =  𝐀𝐆((𝐬𝐭𝐚𝐭𝐞 
=  𝐬𝟏 ⋀ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_ 𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧 
>  𝟎 ⋀ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧 
≤  𝐫𝐚𝐧𝐝𝐨𝐦_𝐜𝐡𝐨𝐢𝐜𝐞)  ⇒  𝐀𝐗(𝐬𝐭𝐚𝐭𝐞 
=  𝐬𝟎)) (9) 
𝛃𝟓 =  𝐆((𝐬𝐭𝐚𝐭𝐞 
=  𝐬𝟏 ∧  𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧 
> 𝟎 ∧ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧
≤ 𝐫𝐚𝐧𝐝𝐨𝐦_𝐜𝐡𝐨𝐢𝐜𝐞)  ⇒  𝐗(𝐬𝐭𝐚𝐭𝐞 
=  𝐬𝟎)) (10) 

6- At any time, if we are in state 1 and the 
optimal makespan is greater than zero and 
greater than the random choice, the next state 
will be state 7. Below is the condition encoded 
in CTL and LTL: 

𝛅𝟔 =  𝐀𝐆((𝐬𝐭𝐚𝐭𝐞 
=  𝐬𝟏 ∧  𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧
> 𝟎 ∧  𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧 
>  𝐫𝐚𝐧𝐝𝐨𝐦_ 𝐜𝐡𝐨𝐢𝐜𝐞)  ⇒ 𝐀𝐗(𝐬𝐭𝐚𝐭𝐞 
=  𝐬𝟕)) (11) 
𝛃𝟔 =  𝐆((𝐬𝐭𝐚𝐭𝐞 
=  𝐬𝟏 ∧  𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚
> 𝟎 ∧  𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧 
>  𝐫𝐚𝐧𝐝𝐨𝐦_ 𝐜𝐡𝐨𝐢𝐜𝐞)  ⇒  𝐗(𝐬𝐭𝐚𝐭𝐞 
=  𝐬𝟕)) (12) 

Let 𝑀 be the proposed model for flow shop 
scheduling, and Φ be the correctness conditions 
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expressed in LTL and/or CTL such that: Φ =⋀ (δi 
∨ βi) 1≤𝐢≤𝟖. Then, for all 𝑆𝑗 ∈ S (set of states). 
5.NUSMV MODEL CORRESPONDING 
TO FLOW SHOP SCHEDULING SYSTEM 
NuSMV is a model that analyses system 
behaviour, ensures system correctness, and 
expresses complex and real-time system 
properties. [17]. It represents finite state 
systems, whether synchronous or asynchronous. 
NuSMV can verify LTL and CTL specifications to 
determine whether they are true or false within 
an FSM. [7,18-19]. The NuSMV script is used to 
describe our model and verify whether the 
proposed system satisfies the correctness 
conditions. Then, the NuSMV model generates 
all possible conditions across all states and uses 
the temporal logic CTL or LTL to identify 
properties. Once the possible conditions are 
generated, NuSMV checks the temporal logic 
formulas, yielding two possible outcomes: 
satisfaction of the correctness condition (True) 
or non-satisfaction (False). NuSMV provides a 
counterexample if the property is not satisfied, 
and the results are a refined and improved 
system model. This is shown in Figure 6. 
5.1. State Variables of the 
Corresponding Model  
CTL is used to specify system properties for 
several possible execution paths. It can verify 
whether the system satisfies the intended 
temporal properties and apply operators and 
quantifiers to express complex properties. [11]. 
This can be gained using the following operators: 
In this subsection, we introduce the state 
variables, modules, and correctness conditions 
of the proposed NuSMV model. Below is a 
description of our proposed model in NuSMV, 
which was previously illustrated as an FSM in 
Figure 1: 
S0: start (3 jobs, 3 machines) 
S1: Random choice and optimal makespan  
S2: Johnson's rule cannot be applied. 
S3: Johnson's rule can be applied. S4: 3 jobs, two 
new machines.  
S5: optimal job order 
S6: optimal makespan  
S7: Johnson's rule failed. 
As shown below, the description for the 
correctness condition in NuSMV: 
At any time, given the system's processing times, 
dominance holds, so state 2 cannot be reached 
under any circumstances. Below is the condition 
encoded in CTL and LTL equations 7 and 8. 
This condition is represented in the NuSMV 
script, and the remaining correctness conditions 
are encoded similarly. 

𝑺𝑷𝑬𝑪 𝑨𝑮 (!  (𝒔𝒕𝒂𝒕𝒆 =  𝒔𝟐)) (13) 
𝑳𝑻𝑳𝑺𝑷𝑬𝑪 𝑮 (!  (𝒔𝒕𝒂𝒕𝒆 =  𝒔𝟐)) (14) 

5.2.Modules of the Corresponding 
Model  
In this subsection, four modules are used in the 
NuSMV model: calculate makespan, dominance, 
convert three machines into two machines, and 

Johnson's rule. Figure 3 shows the makespan 
calculation module, repeated for each possible 
order (6 possibilities). Processing times are first 
assigned, and the cumulative processing times 
for each of the three machines are then 
calculated. Finally, the makespan is calculated as 
machine3_time2. Figure 4 shows the 
dominance module, which computes the 
minimum and maximum values for the three 
machines. If the minimum of one machine is 
greater than or equal to the maximum of another 
machine, the first machine will dominate the 
others. Based on the set processing times, 
Machines 1 and 2 will dominate Machine 3. 
Identifying the dominant machine reduces the 
number of machines from 3 to 2 by summing the 
processing times of machines 1 and 3; the 
resulting value represents the processing time of 
the new machine 1. The processing times of 
machine 2 are added to those of machine 3; the 
resulting values represent the processing times 
of the new machine 2. Thus, we have the 
processing times for two new machines, as 
shown in Fig. 5. The processing times for the two 
new machines resulting from the three-
machine-to-two-machine conversion module 
are set within the Johnson's rule module. The 
minimum time for each job is then calculated, 
and the jobs with the minimum time are 
identified. The optimal order is determined 
based on Johnson's rule, as shown in Fig. 2. 

  
Fig. 2 Module for Johnson's Rule. 

 
Fig. 3 Module for Makespan. 
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Fig. 4 Module for Dominance. 

 
Fig. 5 Module for Converting 3M into 2M. 

6.RESULTS AND DISCUSSION  
In this section, we present the results of running 
the model in NuSMV, which determine the 
correctness of the CTL and LTL specifications. 
When NuSMV detects a falsity, it provides a 
counterexample, i.e., a path in the FSM that led 
to the falsity of the property; if the property is 
correct, NuSMV returns true. When running, the 
specifications stated in Section 4 hold in all 
possible situations, as shown in Fig. 7. To 
demonstrate NuSMV's ability to detect false 
specifications in our proposed model, we ran the 
following assumption. It is impossible to reach 
state 7; that is, no arrangement can improve on 
Johnson's rule. This condition can be 
represented by CTL as follows: 

𝜹𝟕 =  𝑨𝑮¬(𝒔𝒕𝒂𝒕𝒆 =  𝒔𝟕) (15) 
When this condition is run in NuSMV, it returns 
false and generates a counterexample, as shown 
in Fig. 6. We will demonstrate the 
counterexample produced by NuSMV by 
analysing a 3-job, 3-machine flow shop 
configuration. Table 1 lists all the required 
processing times. According to the dominance 
condition used in the three-machine extension 
of Johnson’s rule, Machine 3 can be merged 
with Machines 1 and 2 if 
min(M1) ≥ max(M3) → min(3, 5, 4) = 3 ≥ 
max(2, 1, 2) = 2 

min(M2) ≥ max(M3) → min(6, 7, 8) = 6 ≥ 
max(2, 1, 2) = 2 
Since both conditions hold, the instance 
qualifies for two-machine reduction and the use 
of Johnson’s rule. The transformed work 
sequence becomes J1 → J2 → J3. The 
makespan thus calculated is as follows: 
M1: [3, 3+ 5 = 8, 8+ 4 = 12] 
M2: [3+ 6 = 9, max(8,9) + 7 = 16, max(12,16) + 
8 = 24] 
M3: [9+ 2 = 11, max(11,16) + 1 = 17, max(24,17) 
+ 2 = 26] 
Total makespan = 26 
But with some other sequence of operations J1 
→ J3 → J2, the makespan is: 
M1: [3, 3+ 4 = 7, 7+ 5 = 12] 
M2: [3+ 6 = 9, max(7,9) + 8 = 17, max(12,17) + 
7 = 24] 
M3: [9+ 2 = 11, max(11,17) + 2 = 19, max(24,19) 
+ 2 = 25] 
Makespan = 25 
Which proves superior to the 26 generated by 
Johnson's algorithm. Extended Johnson's rule 
produced suboptimal scheduling in this 
particular example. A counterexample is 
generated by NuSMV to demonstrate that the 
heuristic yields suboptimal results, as the 
temporal logic specification AG(johnson_result 
<= optimal_makespan) is invalid. 
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Fig. 6 NuSMV Counter Example. 
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Fig. 7 NuSMV Run Script. 

Table 1 M1, M2, and M3: Processing Times for 
Job J on Machines 1, 2, and 3, Respectively. 

 M1 M2 M3 
J1 3 6 2 
J2 5 7 1 
J3 4 8 2 

J1, J2, J3: Job identifiers. 
Makespan: Total time required to complete all 
jobs in the sequence. 
7.CONCLUSIONS 
In this study, we applied CTL, LTL, and the 
NuSMV model checker to formally evaluate the 
extended Johnson’s rule for scheduling three-
machine flow-shop problems. Unlike in the 
standard two-machine case, where Johnson’s 
algorithm yields the optimal schedule, our 
verification shows that the three-machine case 
can yield non-optimal schedules. This was 
clearly demonstrated by an automatically 
generated counterexample in NuSMV, which 
employed a Kripke structure to model the 
scheduling process. According to the findings, 
FM helps reveal unexpected flaws in widely 
used scheduling methods. Our method 
introduces a new analytical tool by uncovering 
cases in which the extended rule is suboptimal. 
Other researchers may strengthen the 
extension, propose new heuristics with formal 
warranties, or employ analysis methods similar 
to those used in other metaheuristic scheduling 
routines. 
Appendix A  
The NuSMV script for the proposed model is 
shown as follows: 
1 MODULE main 
2 VAR 
3 State: s0, s1, s2, s3, s4, s5, s6, s7 
4 optimal_makespan : 0..100; 
5 ms1_module : makespan1() 
6 ms2_module : makespan2() 
7 ms3_module : makespan3() 
8 ms4_module : makespan4() 
9 ms5_module : makespan5() 
10 ms6_module : makespan6() 
11 ms1_value : 0..100; 
12 ms2_value : 0..100; 
13 ms3_value : 0..100; 
14 ms4_value : 0..100; 
15 ms5_value : 0..100; 
16 ms6_value : 0..100; 
17 random_choice : 0..100; 
18 j1 : Johnsons_Rule() 
19 c1 : Convert_2M_to_3M(); 
20 d1 : dominance() 
21 ASSIGN 
22 init(state):= s0 
23 init(optimal_makespan) := 0; 
24 init(ms1_value) := 0; 
25 init(ms2_value) := 0; 

26 init(ms3_value) := 0; 
27 init(ms4_value) := 0; 
28 init(ms5_value) := 0; 
29 init(ms6_value) := 0; 
30 init(random_choice) := 0; 
31 next(ms1_value):= ms1_module.makespan; 
32 next(ms2_value):= 
ms2_module.makespan; 
33 next(ms3_value):= 
ms3_module.makespan; 
34 next(ms4_value):= 
ms4_module.makespan; 
35 next(ms5_value):= 
ms5_module.makespan; 
36 next(ms6_value):= 
ms6_module.makespan; 
37 -- Define random choice 
38 next(random_choice) := 
39 case 
40 TRUE: ms2_value 
41 esac; 
42 -- State transitions 
43 next(state) := 
44 case 
45 (state = s0) : s1 
46 -- State s1: Check conditions 
47 (state = s1) & (optimal_makespan = 0) & 
(d1.dominance_machine1-and- 
machine2_over_machine3 = FALSE) : s2; 
48 (state = s1) & (optimal_makespan = 0) & 
(d1.dominance_machine1-and- 
machine2_over_machine3 = TRUE) : s3; 
49 (state = s1) & (optimal_makespan > 0) & 
(optimal_makespan <= random_choice) : s0; 
50 (state = s1) & (optimal_makespan > 0) & 
(optimal_makespan > random_choice) : s7; 
55 -- State s2: Johnson's rule cannot be applied 
56 (state = s2) : s2 
57 -- State s3: Check machine dominance 
58 (state = s3) & (c1.new_machine1[0] = 5) & 
(c1.new_machine1[1] = 6) & 
(c1.new_machine1[2]=6) & 
(c1.new_machine2[0]=8) & (c1.new_machine2[1] = 
8) & (c1.new_machine2[2] = 10) : s4; 
59 -- State s4: Apply Johnson's rule 
60 (state = s4) & (j1.job1_position = 1) & 
(j1.job2_position = 2) & (j1.job3_position = 3) : s5; 
61 -- State s5: Calculate the optimal makespan 
62 (state = s5) : s6 
63 -- State s6: Compare makespans 
64 (state = s6) & (optimal_makespan > 0) & 
(optimal_makespan <= random_choice) : s0; 
65 (state = s6) & (optimal_makespan > 0) & 
(optimal_makespan > random_choice) : s7; 
66 -- State s7: Johnson's rule failed 
67 (state = s7) : s7 
68 TRUE: state 
69 esac; 
70 next(optimal_makespan) := 
71 case 
72 (state = s5) : 26; 
73 TRUE: optimal_makespan 
74 esac; 
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