

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 1 Page

Tikrit Journal of Engineering Sciences (2025); 32 (Sp1): 2683

DOI: http://doi.org/10.25130/tjes.sp1.2025.48

Toward Proving the Extension of Johnson’s Rule to a
Three - Machine Flow Shop Scheduling Problem
Rafat Alshorman , Hashem Alrossan *, Saja Smadi
Computer Science Department, Faculty of Information Technology and Computer Sciences, Yarmouk University, Irbid, 21163, Jordan.

Keywords:
Linear-Time Logic; NuSMV; Model checking; Computational Tree

Logic; Flow shop scheduling.

Highlights:

• Hydrogen content in syngas reached 64.1% under optimal

reforming conditions.

• Moisture recovery efficiency exceeded 80% with the ceramic

membrane technology.

• Overall system efficiency increased by 5.9 percentage points

compared to direct methanol combustion.

 A R T I C L E I N F O

Article history:
Received 14 Jul. 2025
Received in revised form 21 Sep. 2025
Accepted 16 Dec. 2025

Final Proofreading 27 Dec. 2025

Available online 28 Dec. 2025

© THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE.
http://creativecommons.org/licenses/by/4.0/

Citation: Alshorman R, Alrossan H, Smadi S. Toward

Proving the Extension of Johnson’s Rule to a Three-

Machine Flow Shop Scheduling Problem. Tikrit Journal

of Engineering Sciences 2025; 32(Sp1): 2683.

http://doi.org/10.25130/tjes.sp1.2025.48

*Corresponding author:

Hashem Alrossan

Computer Science Department, Faculty of Information Technology

and Computer Sciences, Yarmouk University, Irbid, 21163, Jordan.

Abstract: Manufacturing companies can achieve

their goals of reducing production costs and

improving productivity by using an efficient

production schedule. In this paper, a formal

verification procedure, supported by relevant

arguments, has been used to verify the accuracy of

flow-shop scheduling behaviour and to reduce total

production time. We focus on the algorithm of

sequence generation (Johnson’s algorithm), as well

as model a three-machine scheduling procedure as a

finite-state machine (FSM). The correctness

requirements are expressed in Computational Tree

Logic (CTL) and Linear-Time Logic (LTL) and are

proved by the NuSMV model checker. The

associated technique enables automated scheduling

of property proofs during the design phase. In our

verification, a counterexample demonstrates that

Johnson’s rule can yield a suboptimal makespan in

a three-machine setting, thereby revealing a

limitation of its generalisation. The current findings

indicate that using a model checker in CTL/LTL can

be an effective method for establishing the logical

validity of flow-shop scheduling and failure

scenarios, thereby informing future heuristic

development.

http://doi.org/10.25130/tjes.sp1.2025.48
mailto:r.alshorman@yu.edu.jo
mailto:2023751003@ses.yu.edu.jo
mailto:2021751021@ses.yu.edu.jo
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.25130/tjes.sp1.2025.48
https://orcid.org/0000-0002-5303-5245
https://orcid.org/0009-0006-4500-9756
https://orcid.org/0009-0007-2149-124X
mailto:2023751003@ses.yu.edu.jo

Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 2 Page

1.INTRODUCTION
Flow shop scheduling is a manufacturing
scheduling problem with numerous
applications across various fields, including
economics and industry. A flow shop consists of
n jobs and m machines, where each job has a
fixed production sequence across the machines.
Each machine is dedicated to a single operation.
Because processing times differ across jobs, an
appropriate job sequence is required to
minimise the total completion time
(makespan). Thus, this research aims to achieve
the preferred sequence. Johnson’s algorithm
was introduced in 1954. It addresses only the
two-machine flow-shop case and minimises the
total completion time (make span); however,
this two-machine restriction is considered a
drawback [1]. In this regard, researchers have
been working to solve this obstacle. The
heuristics were developed to make this
algorithm more practical and to operate based
on the make span. In [2], Campbell, Dudek, and
Smith (CDS) presented an extension of
Johnson's rule that handles more than two
machines by decomposing the m-machine
problem into two-machine problems. This was
resolved using Johnson's rule for each case.
This case study examines the application of
CDS in a real-world manufacturing
environment to minimise make span. It uses
the heuristic as a black-box optimiser, however,
without verifying the logical correctness of the
produced sequences. On the other hand, our
work aims to formally establish that the output
of a rule-based heuristic (Johnson’s Rule
extension) is logically suspicious, thereby
providing a distinct yet complementary
perspective. This company relies on client
orders, in-stock product availability, and
random manufacturing. As shown in the
results, the CDS algorithm saved 90.9 minutes
relative to the actual makespan [3]. Past studies
have suggested methods like NEHLPD (NEH
with the most extended processing duration),
NEHLPD1 (NEH with the most extended
processing duration - Variant 1), and
NEHLPD2 (NEH with the most extended
processing duration - Variant 2), which are
based off of NEH (Nawaz, Encore, and Ham)
and CDS to solve the flow shop scheduling
problem. The present study does not apply such
techniques, although it seeks to formally verify
the extension of the Johnson Rule under
dominance conditions. These approaches were
used for 13 cases, and the NEHLPD method
achieved the lowest makespan among the NEH
and CDS methods [4]. In [5], we propose a
scheduling approach that improves daily
production using the Total Work (TWK) and
the CDS algorithm. As the results showed, the
combination of these algorithms could obtain
the optimal scheduling system. This paper
identifies the problems LTL systems face when

planning in automated environments. It builds
strategies based on the system's potential
behaviour and capabilities [6]. In [7], CTL, LTL,
and NuSMV models are used to develop anti-
theft car protection systems. This system
originated from a keypad and remote control.
This paper [8] used the IICTL algorithm to
verify CTL properties using three operators:
SAT, IC3, and FAIR that correspond to specific
sub-queries of an EX node, an EU node, and an
EG node, respectively. If the query is feasible,
the for-all-exists reasoning is used to generalise
the returned trace. IC3 is used to improve
reachability information, thereby promoting
greater generalisation when the query is
unattainable. This process enhances the
effectiveness of the CTL model. [9] This paper
presents a solution to the obstacles faced by
current frameworks for proving CTL
properties: they cannot directly maintain
particular existential CTL formulas, are
restricted to a subset of CTL, and are limited to
certain program types. The goal of this paper
was achieved by using an abstract of the
operational trace semantics of a program. [10]
discussed the application of model checkers for
STCTL and synthesis strategies, while the
current approach is constrained in scope and
difficult to prove valid. The modulo SMT
rewriting logic was used to accomplish the
synthesis strategies. This paper considers a
proving technique for a flow-shop scheduling
system. It presents a control system that
computes the makespan using Computational
Tree Logic (CTL) and Linear-Time Logic (LTL)
and the NuSMV Model Checker. Given the
proliferation of manufacturing companies, we
need to develop an effective strategic design to
increase productivity and remain competitive.
To this end, this research aims to answer three
scientific questions to achieve our goals.
• How can the proposed CTL and LTL verify

the perfection of flow shop scheduling
system behaviours?

• How can the system adapt to achieve the
optimal makespan?

• How can CTL and LTL contribute to
improving the performance of institutions?

This research aims to automatically verify the
correctness of the flow-shop scheduling system
behaviour to meet optimal requirements in
industry. Manufacturing companies seek to
minimise makespan to increase productivity,
reduce energy consumption, reduce staff effort,
and improve customer satisfaction. This system
can identify inefficiency at the earliest stage of
production. Flow shop scheduling systems are
used in various domains, including
manufacturing, medical services (e.g., surgical
procedures), the food industry, and power
plants. These institutions implement
verification systems to ensure the reliability of

https://tj-es.com/

Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 3 Page

their application systems. Also, prevent and
identify the problem at an early stage to
advance and refine their systems' techniques.
In this research, we aim to achieve this using
CTL, LTL, and the NuSMV Model Checker.
1.1.Contribution and Novelty
This study presents a formal verification-based
framework for assessing the validity of heuristic
scheduling algorithms in flow shops, with
particular reference to a three-machine
extension of Johnson's rule. This contrasts with
prior literature, which relies solely on
performance-based comparisons or simulations
for verification. [2,4-5], but the study uses
temporal logic (CTL and LTL) and the NuSMV
model checker to verify the logical behaviour of
the scheduling process. Among the most
significant contributions is the generation of a
finite-state machine (FSM) model that
encompasses the entire scheduling process, i.e.,
random sequencing, dominance, reduction of 3-
machine schedules to 2-machine schedules, and
makespan comparison. This model enables the
verification of all feasible scheduling paths and
outcomes; hence, completeness in evaluating
schedule correctness is achieved—a dimension
that has not been comprehensively addressed in
scheduling studies. [7,11]. Furthermore, the
paper illustrates how failures of heuristics
otherwise widely adopted in practice, such as an
extended version of Johnson's rule, can be
revealed through formal counterexamples. The
algorithm is assessed in a particular case that
does not yield an optimal sequence, and this
violation is traced to a temporal logic
specification that is false. Not only does this
present evidence of limitation, but it also
provides a way forward to the construction of
verifiably proper heuristic procedures. Although
the current techniques, NEHLPD, CDS, and
TWK-centred hybrids [4-5, aim to enhance
scheduling outcomes, they do not formally
establish the correctness of the scheduling logic.
This paper fills that gap by employing CTL/LTL-
based formal verification, thereby providing
logical rather than numerical optimality. This is
the only way to proceed when performance is not
the only critical factor in the system. Moreover,
methodologically, this procedure is
generalizable to other scheduling algorithms,
and verification frameworks can be developed to
apply to other algorithms (metaheuristics-based
or AI-driven models) [6,9-10]. It can serve as a
basis for subsequent researchers to design
verifiable scheduling systems, including
automated manufacturing systems, cyber-
physical systems, and real-time operations.
Overall, this paper brings, in addition to
innovating the methodological aspect of the
problem, i.e., the incorporation of formal
methods in scheduling, an insight into the
working mode of failure of traditional heuristics.
It also bridges the gap between operations

research and formal verification. It suggests a
line of development of scheduling strategies that
are not only efficient but also formally correct by
design. To clear the definition of the Makespan,
see the following Subsection.
1.2.Definition of Makespan
The total time required to complete all jobs in a
given schedule is known as the makespan [4].
In a multi-machine flow-shop scheduling
problem, it is the completion time of the last job
on the previous machine. One of the basic goals
in production scheduling is to minimise
makespan, as it curtails overall production
efficiency, resource utilisation, and throughput.
When the makespan is lower, the system can
complete more jobs in a shorter period,
resulting in lower operational costs and higher
productivity. This paper considers makespan as
the primary performance metric to evaluate the
efficiency of scheduling heuristics, such as
Johnson's rule, CDS, and NEH.
2.THE EXTENSION OF JOHNSON’S
RULE
In this study, we propose a verification system
based on CTL and LTL to extend Johnson's rule
to flow-shop scheduling. Figure 1 depicts the
finite-state machine of the proposed system.
1- The state S0 includes the presence of three

jobs for three machines. The number of
possible job orders is 3! (six possible
orders). For each possible order, the
makespan is calculated and stored in a
random-choice variable.

2- Randomly choose one order from the
random choice variable. This operation
transitions to a new state S1. Suppose the
optimal makespan is zero. Subsequently,
check whether any machine is dominant
over the other. If this operation does not
achieve an optimal makespan of zero, then
transits to state S2; otherwise, transits to
state S3.

3- In state S2, the system ends at this state and
cannot apply Johnson's rule. In state S3,
Johnson's rule applies to the machines.
Then, the operation is signified by
converting 3M to 2M, which transits to
state S4.

4- Apply Johnson's rule operation to the three
resulting jobs and two machines (state 4) to
transit to state S5.

5- The Johnson's rule solutions are
represented in the new state S5 (optimal
job order), then calculate the makespan
operation to transit to state S6.

6- When calculating the makespan for the
optimal order, the result will be the optimal
makespan (state S6). Then, if the optimal
makespan is less than or equal to the
random makespan, then return to the S0
state; otherwise, transit to the S7 state
(Johnson's rule failed). This operation
occurs when the optimal makespan exceeds

https://tj-es.com/

Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 4 Page

the random makespan, indicating that
Johnson's rule fails.

7- When transiting from S6 to S0 state, this
operation ensures that all possibilities are
considered to determine if there is any
possible order better than the optimal
makespan. Subsequently, the previous
operations are repeated until state S1 is
reached.

8- In state S1, random order (for second-order
jobs) is compared with the new value of the
optimal makespan. If the optimal
makespan is better than the random order,
return to S0; otherwise, return to S7, and
this operation represents (Optimal >
Random).

Fig. 1 Finite State Machine of the Proposed

System.
3.TEMPORAL LOGIC
Temporal logic is a modal logic used to interpret
changes in symbols over time. It provides tools
to analyse the system's performance over time.

The temporal logic used for asynchronous and
synchronous systems [12,13]. In this paper, we
present two temporal logics: CTL and LTL.
3.1.Syntax of the CTL
CTL is used to specify system properties for
several possible execution paths. It can verify
whether the system satisfies the intended
temporal properties and apply operators and
quantifiers to express complex properties [11].
This can be gained using the following operators:

1- Logical Operators ¬, ⊤ ,∧, ⊥,∨, →, path
quantifiers 𝑨, 𝑬.

2- temporal operators 𝑮, 𝑼, 𝑿, and 𝑭.
In this paper, the 𝛷𝑇ℎ𝑒 𝑇ℎ𝑒 𝑇ℎ𝑒 equation
formula contains many Atomic Propositions
(𝐴𝑃) that are used in our system, such as
calculating makespan, ordering jobs, checking
dominance, and converting a 3-machine
problem to a 2-machine problem. These 𝐴𝑃 will
relate to 𝑝𝑖 , 𝑖 = 1,2, …, A CTL formula is written
as follows:
𝜙 ∶≔ 𝑝𝑖 | ¬ 𝜙 | 𝜙1 ∧ 𝜙2 |
𝜙1 ∨ 𝜙2 | 𝑬𝑿𝛷 | 𝑨𝑮𝜙 |𝑨𝑿𝛷 | 𝑬𝑭𝛷
| 𝑨𝑭𝛷 | 𝑨[𝜙1𝑼𝜙2] | 𝑨𝑮𝜙 | 𝑬[𝜙1𝑼𝜙2]
3.2.Semantics of the CTL
Now, we can say when an atomic proposition. 𝑝𝑖
is true at a state or time 𝑠𝑖 in the system 𝑀 if:
𝑀, 𝑠𝑖 ⊨ 𝑝𝑘, for all 𝑝𝑘 ∈ 𝑝𝑖. The structure on
which the system 𝑀 is based is an encounter
with a formal description in the form of a tuple
(𝑆, 𝐼, 𝑅, 𝐴𝑃, 𝐿) as presented in [7,14]:
𝑆: is a finite set of states.
𝐼 ⊆ 𝑆: is a finite set of initial states.
𝑅: is a total transition relation such that 𝑅 ⊆
𝑆 × 𝑆.
𝐴𝑃: is the set of atomic propositions
𝐿: is a function that maps to each state the
entire set of atomic propositions that hold in
this state.
Such that 𝐿: 𝑆 → 2𝐴𝑃.
The semantics of the basic operators are
formally described as follows:

𝑀 , 𝑠𝑖 ⊨ ¬ 𝜙 𝑖𝑓𝑓 𝑀 , 𝑠𝑖 ⊭ 𝜙.

𝑎𝑛𝑑𝑀 , 𝑠𝑖 ⊨ 𝜙 ∧ 𝜓 𝑖𝑓𝑓 𝑀 , 𝑠𝑖 ⊨ 𝜙 𝑎𝑛𝑑 𝑀 , 𝑠𝑖 ⊨ 𝜓.

𝑀 , ⊨ 𝜙 ∨ 𝜓 𝑖𝑓𝑓 𝑀 , 𝑠𝑖 ⊨ 𝜙 𝑜𝑟 𝑀 , 𝑠𝑖 ⊨ 𝜓.

𝑀 , 𝑠𝑖 ⊨ 𝜙 ⇒ 𝜓 𝑖𝑓𝑓 𝑖𝑓 𝑀 , 𝑠𝑖 ⊨ 𝜙 then 𝑀 , 𝑠𝑖 ⊨ 𝜓.

Let a path 𝜆 that starts in a state. 𝑠𝑖, where 𝜆 =
 𝑠𝑖 , 𝑠𝑖+1, … in the system model M. The

following is an interpretation of the temporal
operators over 𝑀:

𝑀 , 𝑠𝑖 ⊨ 𝑨𝑿𝛷𝑖𝑓𝑓 ∀𝜆 = (𝑠𝑖 , 𝑠𝑖+1, …), 𝑀 , 𝑠𝑖+1 ⊨ 𝛷.
𝑀 , 𝑠𝑖 ⊨ 𝑬𝑿𝛷 𝑖𝑓𝑓 ∃𝜆 = (𝑠𝑖 , 𝑠𝑖+1, …),𝑀 , 𝑠𝑖+1 ⊨ 𝛷.

𝑀 𝑠𝑖 ⊨ 𝑨𝑭𝛷 𝑖𝑓𝑓 ∀𝜆 = (𝑠𝑖 𝑠𝑖+1 …) ∃ 𝑗 ≥ 𝑖 𝑀 𝑠𝑗 ⊨ 𝛷,

𝑀 𝑠𝑖 ⊨ 𝑬𝑭𝛷 i𝑓𝑓 ∃𝜆 = (𝑠𝑖 𝑠𝑖+1 …) ∃ 𝑗 ≥ 𝑖 𝑀 𝑠𝑗 ⊨ 𝛷,

𝑀, 𝑠𝑖 ⊨ 𝑨𝑮𝜙 𝑖𝑓𝑓,∀𝜆 = (𝑠𝑖 , 𝑠𝑖+1, …), and ∀𝑗 ≥ 𝑖, 𝑀, 𝑠𝑗 ⊨ 𝜙.

𝑀, 𝑠𝑖 ⊨ 𝑬𝑮𝜙 𝑖𝑓𝑓 ∃𝜆 = (𝑠𝑖 , 𝑠𝑖+1, …), and ∀𝑗 ≥ 𝑖, 𝑀, 𝑠𝑗 ⊨ 𝜙 .

𝑀, 𝑠𝑖 ⊨ 𝑨[𝜙1𝑼𝜙2] 𝑖𝑓𝑓 ∀𝜆 = (𝑠𝑖 , 𝑠𝑖+1, …), ∃ 𝑗 ≥ 𝑖 such that 𝑀, 𝑠𝑗 ⊨ 𝜙2and,∀𝑘,𝑖 ≤ 𝑘 < 𝑗, 𝑀, 𝑠𝑘 ⊨ 𝜙1.

𝑀, 𝑠𝑖 ⊨ 𝑬[𝜙1𝑼𝜙2] 𝑖𝑓𝑓 ∃𝜆 = (𝑠𝑖 , 𝑠𝑖+1, …)such that ∃𝑗 ≥ 𝑖, 𝑀, 𝑠𝑗 ⊨ 𝜙2and,∀𝑘,𝑖 ≤ 𝑘 < 𝑗, 𝑀, 𝑠𝑘 ⊨ 𝜙1.

https://tj-es.com/

Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 5 Page

3.3.LTL Syntax
The LTL model focuses on system behaviour
over time and assesses whether specified
temporal requirements are satisfied. 1 5]. LTL
c 𝑝𝑖 , 𝑖 = 0 ,1,2, …, logical operators ¬, ⊤ ,∧, ⊥
,∨, → and temporal operators 𝑮, 𝑼, 𝑿 , 𝑭. The
LTL is clarified inductively using the following
formulas:

𝜙 ∶∶ = 𝑝𝑖 | ¬ 𝜙 | 𝑮𝜙 | 𝜙1 ∨ 𝜙2
| 𝑭𝛷 | 𝑿𝛷| 𝜙1 ∧ 𝜙2| 𝜙1𝑼𝜙2
3.4.LTL Semantics
Analogous to CTL, if 𝜙 is a path formula, then
𝑀, 𝑠𝑖 ⊨ 𝑝𝑘 for a path 𝜆 = 𝑠𝑖 , 𝑠𝑖+1, … This
indicates that 𝜙 is satisfied along the path 𝜆
within the model structure 𝑀. The relation is
inductively defined as follows (see [7]):

𝑀 , 𝑠𝑖 ⊨ ¬ 𝜙 𝑖𝑓𝑓 𝑀 , 𝑠𝑖 ⊭ 𝜙

𝑎𝑛𝑑𝑀 , 𝑠𝑖 ⊨ 𝜙 ∧ 𝜓 𝑖𝑓𝑓 𝑀 , 𝑠𝑖 ⊨ 𝜙 𝑎𝑛𝑑 𝑀 , 𝑠𝑖 ⊨ 𝜓

𝑀 , ⊨ 𝜙 ∨ 𝜓 𝑖𝑓𝑓 𝑀 , 𝑠𝑖 ⊨ 𝜙 𝑜𝑟 𝑀 , 𝑠𝑖 ⊨ 𝜓

𝑀 , 𝑠𝑖 ⊨ 𝜙 ⇒ 𝑖𝑓 𝑀 , 𝑠 ⊨ 𝜙 then , ⊨ 𝜓𝑀 , 𝑠𝑖 ⊨ 𝑿𝛷 𝑖𝑓𝑓 𝑀, 𝑠𝑖+1 ⊨ 𝛷.𝑀 , 𝑠𝑖 ⊨ 𝑭𝜙 𝑖𝑓 ∃ , 𝑠𝑗 ⊨ 𝛷

𝑀, 𝑠𝑖 ⊨ 𝑮𝜙 𝑖𝑓𝑓 ∀𝑗𝑖, 𝑀, 𝑗 ⊨ 𝜙 𝑀, 𝑠𝑖 ⊨ 𝑨[𝜙1 𝑼𝜙2] 𝑖𝑓 ∃ 𝑗 ≥ 𝑖 such that 𝑀, 𝑠𝑗 ⊨ 𝜙2 an, ∀𝑘, 𝑖 ≤ 𝑘 <

𝑗, 𝑀, 𝑠𝑘 ⊨ 𝜙1.

4.SPECIFICATIONS OF THE PROPOSED
FLOW SHOP SCHEDULING SYSTEM
Specifications specify the standards that systems
must meet to ensure correct performance. It is
related to guide manufacturing [16]. Under this
heading, we present the correctness conditions
that the proposed model must satisfy. If all these
conditions are met, our model is correct.
1- At any time, Johnson's rule eventually fails to

produce the optimal order for the three tasks,
so the random order chosen is better. Below
is the condition encoded in CTL and LTL:

𝛅𝟏 = 𝐀𝐆 (𝐄𝐅 (𝐬𝐭𝐚𝐭𝐞 = 𝐬𝟕)) (1)
𝛃𝟏 = 𝐆 (𝐅 (𝐬𝐭𝐚𝐭𝐞 = 𝐬𝟕)) (2)

2- When determining the optimal order using
Johnson's rule, ensure that no two tasks are
duplicated within the order list at any time.
Below is the condition encoded in CTL and
LTL:

𝛅𝟐 = 𝐀𝐆 (𝐣𝟏. 𝐣𝐨𝐛𝟏_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧
≠ 𝐣𝟏. 𝐣𝐨𝐛𝟐_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧)
∧ (𝐣𝟏. 𝐣𝐨𝐛𝟏_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧
≠ 𝐣𝟏. 𝐣𝐨𝐛𝟑_ 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧)
∧ (𝐣𝟏. 𝐣𝐨𝐛𝟐_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧
≠ 𝐣𝟏. 𝐣𝐨𝐛𝟑_ 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧) (3)

𝛃𝟐 = 𝐆(𝐣𝟏. 𝐣𝐨𝐛𝟏_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧
≠ 𝐣𝟏. 𝐣𝐨𝐛𝟐_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧)
∧ (𝐣𝟏. 𝐣𝐨𝐛𝟏_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧
≠ 𝐣𝟏. 𝐣𝐨𝐛𝟑_ 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧)
∧ (𝐣𝟏. 𝐣𝐨𝐛𝟐_𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧
≠ 𝐣𝟏. 𝐣𝐨𝐛𝟑_ 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧) (4)

3- At any time, if we are in state 1 and the first
and second machines dominate the third
machine, the system can apply Johnson's
rule, meaning it will not reach state 2. Below
is the condition encoded in CTL and LTL:

𝛅𝟑 = 𝐀𝐆((𝐬𝐭𝐚𝐭𝐞
= 𝐬𝟏 & 𝐝𝟏. 𝐝𝐨𝐦𝐢𝐧𝐚𝐧𝐜𝐞_ 𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟏
− 𝐚𝐧𝐝
− 𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟐_𝐨𝐯𝐞𝐫_𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟑
= 𝐓𝐑𝐔𝐄) ⇒ ¬(𝐀𝐅 (𝐬𝐭𝐚𝐭𝐞 = 𝐬𝟐))) (5)

𝛃𝟑 = 𝐆((𝐬𝐭𝐚𝐭𝐞
= 𝐬𝟏 & 𝐝𝟏. 𝐝𝐨𝐦𝐢𝐧𝐚𝐧𝐜𝐞_𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟏
− 𝐚𝐧𝐝
− 𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟐_𝐨𝐯𝐞𝐫_𝐦𝐚𝐜𝐡𝐢𝐧𝐞𝟑
= 𝐓𝐑𝐔𝐄) ⇒ ¬(𝐅(𝐬𝐭𝐚𝐭𝐞 = 𝐬𝟐))) (6)

4- At any time, given the system's processing
times, there will always be a dominance, so
state 2 cannot be reached under any
circumstances. Below is the condition
encoded in CTL and LTL:

𝜹𝟒 = 𝑨𝑮 (¬(𝒔𝒕𝒂𝒕𝒆 = 𝒔𝟐)) (7)
𝜷𝟒 = 𝑮 (¬(𝒔𝒕𝒂𝒕𝒆 = 𝒔𝟐)) (8)

5- At any time, if we are in state 1 and the
optimal makespan is greater than zero and
less than or equal to random choice, then the
next state will be state 0. Below is the
condition encoded in CTL and LTL:

𝛅𝟓 = 𝐀𝐆((𝐬𝐭𝐚𝐭𝐞
= 𝐬𝟏 ⋀ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_ 𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧
> 𝟎 ⋀ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧
≤ 𝐫𝐚𝐧𝐝𝐨𝐦_𝐜𝐡𝐨𝐢𝐜𝐞) ⇒ 𝐀𝐗(𝐬𝐭𝐚𝐭𝐞
= 𝐬𝟎)) (9)
𝛃𝟓 = 𝐆((𝐬𝐭𝐚𝐭𝐞
= 𝐬𝟏 ∧ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧
> 𝟎 ∧ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧
≤ 𝐫𝐚𝐧𝐝𝐨𝐦_𝐜𝐡𝐨𝐢𝐜𝐞) ⇒ 𝐗(𝐬𝐭𝐚𝐭𝐞
= 𝐬𝟎)) (10)

6- At any time, if we are in state 1 and the
optimal makespan is greater than zero and
greater than the random choice, the next state
will be state 7. Below is the condition encoded
in CTL and LTL:

𝛅𝟔 = 𝐀𝐆((𝐬𝐭𝐚𝐭𝐞
= 𝐬𝟏 ∧ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧
> 𝟎 ∧ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧
> 𝐫𝐚𝐧𝐝𝐨𝐦_ 𝐜𝐡𝐨𝐢𝐜𝐞) ⇒ 𝐀𝐗(𝐬𝐭𝐚𝐭𝐞
= 𝐬𝟕)) (11)
𝛃𝟔 = 𝐆((𝐬𝐭𝐚𝐭𝐞
= 𝐬𝟏 ∧ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚
> 𝟎 ∧ 𝐨𝐩𝐭𝐢𝐦𝐚𝐥_𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧
> 𝐫𝐚𝐧𝐝𝐨𝐦_ 𝐜𝐡𝐨𝐢𝐜𝐞) ⇒ 𝐗(𝐬𝐭𝐚𝐭𝐞
= 𝐬𝟕)) (12)

Let 𝑀 be the proposed model for flow shop
scheduling, and Φ be the correctness conditions

https://tj-es.com/

Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 6 Page

expressed in LTL and/or CTL such that: Φ =⋀ (δi
∨ βi) 1≤𝐢≤𝟖. Then, for all 𝑆𝑗 ∈ S (set of states).
5.NUSMV MODEL CORRESPONDING
TO FLOW SHOP SCHEDULING SYSTEM
NuSMV is a model that analyses system
behaviour, ensures system correctness, and
expresses complex and real-time system
properties. [17]. It represents finite state
systems, whether synchronous or asynchronous.
NuSMV can verify LTL and CTL specifications to
determine whether they are true or false within
an FSM. [7,18-19]. The NuSMV script is used to
describe our model and verify whether the
proposed system satisfies the correctness
conditions. Then, the NuSMV model generates
all possible conditions across all states and uses
the temporal logic CTL or LTL to identify
properties. Once the possible conditions are
generated, NuSMV checks the temporal logic
formulas, yielding two possible outcomes:
satisfaction of the correctness condition (True)
or non-satisfaction (False). NuSMV provides a
counterexample if the property is not satisfied,
and the results are a refined and improved
system model. This is shown in Figure 6.
5.1. State Variables of the
Corresponding Model
CTL is used to specify system properties for
several possible execution paths. It can verify
whether the system satisfies the intended
temporal properties and apply operators and
quantifiers to express complex properties. [11].
This can be gained using the following operators:
In this subsection, we introduce the state
variables, modules, and correctness conditions
of the proposed NuSMV model. Below is a
description of our proposed model in NuSMV,
which was previously illustrated as an FSM in
Figure 1:
S0: start (3 jobs, 3 machines)
S1: Random choice and optimal makespan
S2: Johnson's rule cannot be applied.
S3: Johnson's rule can be applied. S4: 3 jobs, two
new machines.
S5: optimal job order
S6: optimal makespan
S7: Johnson's rule failed.
As shown below, the description for the
correctness condition in NuSMV:
At any time, given the system's processing times,
dominance holds, so state 2 cannot be reached
under any circumstances. Below is the condition
encoded in CTL and LTL equations 7 and 8.
This condition is represented in the NuSMV
script, and the remaining correctness conditions
are encoded similarly.

𝑺𝑷𝑬𝑪 𝑨𝑮 (! (𝒔𝒕𝒂𝒕𝒆 = 𝒔𝟐)) (13)
𝑳𝑻𝑳𝑺𝑷𝑬𝑪 𝑮 (! (𝒔𝒕𝒂𝒕𝒆 = 𝒔𝟐)) (14)

5.2.Modules of the Corresponding
Model
In this subsection, four modules are used in the
NuSMV model: calculate makespan, dominance,
convert three machines into two machines, and

Johnson's rule. Figure 3 shows the makespan
calculation module, repeated for each possible
order (6 possibilities). Processing times are first
assigned, and the cumulative processing times
for each of the three machines are then
calculated. Finally, the makespan is calculated as
machine3_time2. Figure 4 shows the
dominance module, which computes the
minimum and maximum values for the three
machines. If the minimum of one machine is
greater than or equal to the maximum of another
machine, the first machine will dominate the
others. Based on the set processing times,
Machines 1 and 2 will dominate Machine 3.
Identifying the dominant machine reduces the
number of machines from 3 to 2 by summing the
processing times of machines 1 and 3; the
resulting value represents the processing time of
the new machine 1. The processing times of
machine 2 are added to those of machine 3; the
resulting values represent the processing times
of the new machine 2. Thus, we have the
processing times for two new machines, as
shown in Fig. 5. The processing times for the two
new machines resulting from the three-
machine-to-two-machine conversion module
are set within the Johnson's rule module. The
minimum time for each job is then calculated,
and the jobs with the minimum time are
identified. The optimal order is determined
based on Johnson's rule, as shown in Fig. 2.

Fig. 2 Module for Johnson's Rule.

Fig. 3 Module for Makespan.

https://tj-es.com/

Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 7 Page

Fig. 4 Module for Dominance.

Fig. 5 Module for Converting 3M into 2M.

6.RESULTS AND DISCUSSION
In this section, we present the results of running
the model in NuSMV, which determine the
correctness of the CTL and LTL specifications.
When NuSMV detects a falsity, it provides a
counterexample, i.e., a path in the FSM that led
to the falsity of the property; if the property is
correct, NuSMV returns true. When running, the
specifications stated in Section 4 hold in all
possible situations, as shown in Fig. 7. To
demonstrate NuSMV's ability to detect false
specifications in our proposed model, we ran the
following assumption. It is impossible to reach
state 7; that is, no arrangement can improve on
Johnson's rule. This condition can be
represented by CTL as follows:

𝜹𝟕 = 𝑨𝑮¬(𝒔𝒕𝒂𝒕𝒆 = 𝒔𝟕) (15)
When this condition is run in NuSMV, it returns
false and generates a counterexample, as shown
in Fig. 6. We will demonstrate the
counterexample produced by NuSMV by
analysing a 3-job, 3-machine flow shop
configuration. Table 1 lists all the required
processing times. According to the dominance
condition used in the three-machine extension
of Johnson’s rule, Machine 3 can be merged
with Machines 1 and 2 if
min(M1) ≥ max(M3) → min(3, 5, 4) = 3 ≥
max(2, 1, 2) = 2

min(M2) ≥ max(M3) → min(6, 7, 8) = 6 ≥
max(2, 1, 2) = 2
Since both conditions hold, the instance
qualifies for two-machine reduction and the use
of Johnson’s rule. The transformed work
sequence becomes J1 → J2 → J3. The
makespan thus calculated is as follows:
M1: [3, 3+ 5 = 8, 8+ 4 = 12]
M2: [3+ 6 = 9, max(8,9) + 7 = 16, max(12,16) +
8 = 24]
M3: [9+ 2 = 11, max(11,16) + 1 = 17, max(24,17)
+ 2 = 26]
Total makespan = 26
But with some other sequence of operations J1
→ J3 → J2, the makespan is:
M1: [3, 3+ 4 = 7, 7+ 5 = 12]
M2: [3+ 6 = 9, max(7,9) + 8 = 17, max(12,17) +
7 = 24]
M3: [9+ 2 = 11, max(11,17) + 2 = 19, max(24,19)
+ 2 = 25]
Makespan = 25
Which proves superior to the 26 generated by
Johnson's algorithm. Extended Johnson's rule
produced suboptimal scheduling in this
particular example. A counterexample is
generated by NuSMV to demonstrate that the
heuristic yields suboptimal results, as the
temporal logic specification AG(johnson_result
<= optimal_makespan) is invalid.

https://tj-es.com/

Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 8 Page

Fig. 6 NuSMV Counter Example.

https://tj-es.com/

Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 9 Page

Fig. 7 NuSMV Run Script.

Table 1 M1, M2, and M3: Processing Times for
Job J on Machines 1, 2, and 3, Respectively.

 M1 M2 M3
J1 3 6 2
J2 5 7 1
J3 4 8 2

J1, J2, J3: Job identifiers.
Makespan: Total time required to complete all
jobs in the sequence.
7.CONCLUSIONS
In this study, we applied CTL, LTL, and the
NuSMV model checker to formally evaluate the
extended Johnson’s rule for scheduling three-
machine flow-shop problems. Unlike in the
standard two-machine case, where Johnson’s
algorithm yields the optimal schedule, our
verification shows that the three-machine case
can yield non-optimal schedules. This was
clearly demonstrated by an automatically
generated counterexample in NuSMV, which
employed a Kripke structure to model the
scheduling process. According to the findings,
FM helps reveal unexpected flaws in widely
used scheduling methods. Our method
introduces a new analytical tool by uncovering
cases in which the extended rule is suboptimal.
Other researchers may strengthen the
extension, propose new heuristics with formal
warranties, or employ analysis methods similar
to those used in other metaheuristic scheduling
routines.
Appendix A
The NuSMV script for the proposed model is
shown as follows:
1 MODULE main
2 VAR
3 State: s0, s1, s2, s3, s4, s5, s6, s7
4 optimal_makespan : 0..100;
5 ms1_module : makespan1()
6 ms2_module : makespan2()
7 ms3_module : makespan3()
8 ms4_module : makespan4()
9 ms5_module : makespan5()
10 ms6_module : makespan6()
11 ms1_value : 0..100;
12 ms2_value : 0..100;
13 ms3_value : 0..100;
14 ms4_value : 0..100;
15 ms5_value : 0..100;
16 ms6_value : 0..100;
17 random_choice : 0..100;
18 j1 : Johnsons_Rule()
19 c1 : Convert_2M_to_3M();
20 d1 : dominance()
21 ASSIGN
22 init(state):= s0
23 init(optimal_makespan) := 0;
24 init(ms1_value) := 0;
25 init(ms2_value) := 0;

26 init(ms3_value) := 0;
27 init(ms4_value) := 0;
28 init(ms5_value) := 0;
29 init(ms6_value) := 0;
30 init(random_choice) := 0;
31 next(ms1_value):= ms1_module.makespan;
32 next(ms2_value):=
ms2_module.makespan;
33 next(ms3_value):=
ms3_module.makespan;
34 next(ms4_value):=
ms4_module.makespan;
35 next(ms5_value):=
ms5_module.makespan;
36 next(ms6_value):=
ms6_module.makespan;
37 -- Define random choice
38 next(random_choice) :=
39 case
40 TRUE: ms2_value
41 esac;
42 -- State transitions
43 next(state) :=
44 case
45 (state = s0) : s1
46 -- State s1: Check conditions
47 (state = s1) & (optimal_makespan = 0) &
(d1.dominance_machine1-and-
machine2_over_machine3 = FALSE) : s2;
48 (state = s1) & (optimal_makespan = 0) &
(d1.dominance_machine1-and-
machine2_over_machine3 = TRUE) : s3;
49 (state = s1) & (optimal_makespan > 0) &
(optimal_makespan <= random_choice) : s0;
50 (state = s1) & (optimal_makespan > 0) &
(optimal_makespan > random_choice) : s7;
55 -- State s2: Johnson's rule cannot be applied
56 (state = s2) : s2
57 -- State s3: Check machine dominance
58 (state = s3) & (c1.new_machine1[0] = 5) &
(c1.new_machine1[1] = 6) &
(c1.new_machine1[2]=6) &
(c1.new_machine2[0]=8) & (c1.new_machine2[1] =
8) & (c1.new_machine2[2] = 10) : s4;
59 -- State s4: Apply Johnson's rule
60 (state = s4) & (j1.job1_position = 1) &
(j1.job2_position = 2) & (j1.job3_position = 3) : s5;
61 -- State s5: Calculate the optimal makespan
62 (state = s5) : s6
63 -- State s6: Compare makespans
64 (state = s6) & (optimal_makespan > 0) &
(optimal_makespan <= random_choice) : s0;
65 (state = s6) & (optimal_makespan > 0) &
(optimal_makespan > random_choice) : s7;
66 -- State s7: Johnson's rule failed
67 (state = s7) : s7
68 TRUE: state
69 esac;
70 next(optimal_makespan) :=
71 case
72 (state = s5) : 26;
73 TRUE: optimal_makespan
74 esac;

REFERENCES
[1] Della Croce F, Tadei R, Volta G. A

Genetic Algorithm for the Job Shop
Problem. Computers and Operations
Research 1995; 22(1): 15–24.

https://tj-es.com/

Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683.

Tikrit Journal of Engineering Sciences │Volume 32│No. SP1│2025 10 Page

[2] Mashuri C, Mujianto AH, Sucipto H,
Arsam RY, Permadi GS. Production
Time Optimization Using the
Campbell Dudek Smith Algorithm
for Production Scheduling. The 4th
International Conference on Energy,
Environment, Epidemiology and
Information System (ICENIS 2019) 2019;
1-5.

[3] Alfuad T, Dwijayanti K. Flowshop
Production Scheduling Using
Campbell, Dudek, Smith, Palmer,
and Dannenbring Methods to
Minimize the Total Production Time
(Case Study: PT. Naturindo Fresh
Kulon Progo, Indonesia). 6th
International Conference on Science and
Engineering 2023; 279–290.

[4] Kurniawan LA, Farizal F. Development
of Flow Shop Scheduling Method to
Minimize Makespan Based on
Nawaz Enscore Ham (NEH) and
Campbell Dudek and Smith (CDS)
Method. 3rd African International
Conference on Industrial Engineering
and Operations Management 2022;
1224–1231.

[5] Setiawan D, Ramadhani A, Cahyo WN.
Production Scheduling to Minimize
Makespan Using Sequencing Total
Work Method and Campbell Dudek
Smith Algorithm. IOP Conference
Series: Materials Science and
Engineering 2020; 598: 1-7.

[6] Aminof B, De Giacomo G, Murano A,
Rubin S. Planning Under LTL
Environment Specifications.
Proceedings of the 29th International
Conference on Automated Planning and
Scheduling (ICAPS) 2019; 31–39.

[7] Alshorman R. Proving the Car
Security System Model Using CTL
and LTL. Journal of Theoretical and
Applied Information Technology 2024;
102(3): 1112–1119.

[8] Hassan Z, Bradley AR, Somenzi F.
Incremental, Inductive CTL Model
Checking. International Conference on
Computer Aided Verification (CAV 2012)
2012; 532–547.

[9] Urban C, Ueltschi S, Müller P. Abstract
Interpretation of CTL Properties.
Static Analysis: 25th International
Symposium (SAS 2018) 2018; 402–422.

[10] Arias J, Olarte C, Penczek W, Petrucci L,
Sidoruk T. Model Checking and
Synthesizing for Strategic Timed
CTL Using Strategies in Rewriting
Logic. Proceedings of the 26th
International Symposium on Principles
and Practice of Declarative
Programming (PPDP 2024) 2024; 1–14.

[11] Huisman M, Wijs A. Model-Checking
Algorithms. Concise Guide to Software
Verification: From Model Checking to
Annotation Checking 2023.

[12] Baumeister J, Coenen N, Bonakdarpour B,
Finkbeiner B, Sánchez C. A Temporal
Logic for Asynchronous
Hyperproperties. International
Conference on Computer Aided
Verification (CAV 2021) 2021; 694–717.

[13] Krebs A, Meier A, Virtema J,
Zimmermann M. Synchronous Team
Semantics for Temporal Logics.
arXiv preprint 2024; 1–32.

[14] Alshorman R. Toward Proving the
Correctness of the TCP Protocol
Using CTL. The International Arab
Journal of Information Technology 2019;
16(3): 407–414.

[15] Pucella R. The Finite and the Infinite
in Temporal Logic. ACM SIGACT News
2005; 36(1): 86–99.

[16] Bartocci E, Mateis C, Nesterini E, Nickovic
D. Survey on Mining Signal
Temporal Logic Specifications.
Information and Computation 2022;
289: 104957.

[17] Bozzano M, Cavada R, Cimatti A, Dorigatti
M, Griggio A, Mariotti A, Micheli A, Mover
S, Roveri M, Tonetta S. nuXmv 2.0.0
User Manual. Fondazione Bruno
Kessler Technical Report 2019; 1–192.

[18] Xu N, Ma Z, Jiang J, Zhang P. Model
Checking Instance Based on
NuSMV. 2018 IEEE SmartWorld,
Ubiquitous Intelligence and Computing
2018; 2052–2056.

[19] Alomari A, Alshorman R. Proving the
Correctness Conditions of the
Three-Way Handshake Protocol
Using Computational Tree Logic.
Journal of Theoretical and Applied
Information Technology 2021; 99(15):
3725–3735.

https://tj-es.com/

