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1. INTRODUCTION

Flow shop scheduling is a manufacturing
scheduling  problem  with numerous
applications across various fields, including
economics and industry. A flow shop consists of
n jobs and m machines, where each job has a
fixed production sequence across the machines.
Each machine is dedicated to a single operation.
Because processing times differ across jobs, an
appropriate job sequence is required to
minimise the total completion time
(makespan). Thus, this research aims to achieve
the preferred sequence. Johnson’s algorithm
was introduced in 1954. It addresses only the
two-machine flow-shop case and minimises the
total completion time (make span); however,
this two-machine restriction is considered a
drawback [1]. In this regard, researchers have
been working to solve this obstacle. The
heuristics were developed to make this
algorithm more practical and to operate based
on the make span. In [2], Campbell, Dudek, and
Smith (CDS) presented an extension of
Johnson's rule that handles more than two
machines by decomposing the m-machine
problem into two-machine problems. This was
resolved using Johnson's rule for each case.
This case study examines the application of
CDS in a real-world manufacturing
environment to minimise make span. It uses
the heuristic as a black-box optimiser, however,
without verifying the logical correctness of the
produced sequences. On the other hand, our
work aims to formally establish that the output
of a rule-based heuristic (Johnson’s Rule
extension) 1is logically suspicious, thereby
providing a distinct yet complementary
perspective. This company relies on client
orders, in-stock product availability, and
random manufacturing. As shown in the
results, the CDS algorithm saved 90.9 minutes
relative to the actual makespan [3]. Past studies
have suggested methods like NEHLPD (NEH
with the most extended processing duration),
NEHLPD1 (NEH with the most extended
processing duration - Variant 1), and
NEHLPD2 (NEH with the most extended
processing duration - Variant 2), which are
based off of NEH (Nawaz, Encore, and Ham)
and CDS to solve the flow shop scheduling
problem. The present study does not apply such
techniques, although it seeks to formally verify
the extension of the Johnson Rule under
dominance conditions. These approaches were
used for 13 cases, and the NEHLPD method
achieved the lowest makespan among the NEH
and CDS methods [4]. In [5], we propose a
scheduling approach that improves daily
production using the Total Work (TWK) and
the CDS algorithm. As the results showed, the
combination of these algorithms could obtain
the optimal scheduling system. This paper
identifies the problems LTL systems face when

planning in automated environments. It builds
strategies based on the system's potential
behaviour and capabilities [6]. In [7], CTL, LTL,
and NuSMV models are used to develop anti-
theft car protection systems. This system
originated from a keypad and remote control.

This paper [8] used the IICTL algorithm to

verify CTL properties using three operators:

SAT, IC3, and FAIR that correspond to specific

sub-queries of an EX node, an EU node, and an

EG node, respectively. If the query is feasible,

the for-all-exists reasoning is used to generalise

the returned trace. IC3 is used to improve
reachability information, thereby promoting
greater generalisation when the query is
unattainable. This process enhances the
effectiveness of the CTL model. [9] This paper
presents a solution to the obstacles faced by
current frameworks for proving CTL
properties: they cannot directly maintain
particular existential CTL formulas, are
restricted to a subset of CTL, and are limited to
certain program types. The goal of this paper
was achieved by using an abstract of the

operational trace semantics of a program. [10]

discussed the application of model checkers for

STCTL and synthesis strategies, while the

current approach is constrained in scope and

difficult to prove valid. The modulo SMT
rewriting logic was used to accomplish the

synthesis strategies. This paper considers a

proving technique for a flow-shop scheduling

system. It presents a control system that
computes the makespan using Computational

Tree Logic (CTL) and Linear-Time Logic (LTL)

and the NuSMV Model Checker. Given the

proliferation of manufacturing companies, we
need to develop an effective strategic design to
increase productivity and remain competitive.

To this end, this research aims to answer three

scientific questions to achieve our goals.

« How can the proposed CTL and LTL verify
the perfection of flow shop scheduling
system behaviours?

« How can the system adapt to achieve the
optimal makespan?

« How can CTL and LTL -contribute to
improving the performance of institutions?

This research aims to automatically verify the

correctness of the flow-shop scheduling system

behaviour to meet optimal requirements in
industry. Manufacturing companies seek to
minimise makespan to increase productivity,
reduce energy consumption, reduce staff effort,
and improve customer satisfaction. This system
can identify inefficiency at the earliest stage of
production. Flow shop scheduling systems are
used in various domains, including
manufacturing, medical services (e.g., surgical
procedures), the food industry, and power
plants.  These institutions implement
verification systems to ensure the reliability of

jTikrit Journal of Engineering Sciences | Volume 32 | No. SP1! 2025

Ty -



https://tj-es.com/

j Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683. :‘

their application systems. Also, prevent and
identify the problem at an early stage to
advance and refine their systems' techniques.
In this research, we aim to achieve this using
CTL, LTL, and the NuSMV Model Checker.
1.1.Contribution and Novelty

This study presents a formal verification-based
framework for assessing the validity of heuristic
scheduling algorithms in flow shops, with
particular reference to a three-machine
extension of Johnson's rule. This contrasts with
prior literature, which relies solely on
performance-based comparisons or simulations
for verification. [2,4-5], but the study uses
temporal logic (CTL and LTL) and the NuSMV
model checker to verify the logical behaviour of
the scheduling process. Among the most
significant contributions is the generation of a
finite-state machine (FSM) model that
encompasses the entire scheduling process, i.e.,
random sequencing, dominance, reduction of 3-
machine schedules to 2-machine schedules, and
makespan comparison. This model enables the
verification of all feasible scheduling paths and
outcomes; hence, completeness in evaluating
schedule correctness is achieved—a dimension
that has not been comprehensively addressed in
scheduling studies. [7,11]. Furthermore, the
paper illustrates how failures of heuristics
otherwise widely adopted in practice, such as an
extended version of Johnson's rule, can be
revealed through formal counterexamples. The
algorithm is assessed in a particular case that
does not yield an optimal sequence, and this
violation is traced to a temporal logic
specification that is false. Not only does this
present evidence of limitation, but it also
provides a way forward to the construction of
verifiably proper heuristic procedures. Although
the current techniques, NEHLPD, CDS, and
TWK-centred hybrids [4-5, aim to enhance
scheduling outcomes, they do not formally
establish the correctness of the scheduling logic.
This paper fills that gap by employing CTL/LTL-
based formal verification, thereby providing
logical rather than numerical optimality. This is
the only way to proceed when performance is not
the only critical factor in the system. Moreover,
methodologically, this procedure is
generalizable to other scheduling algorithms,
and verification frameworks can be developed to
apply to other algorithms (metaheuristics-based
or Al-driven models) [6,9-10]. It can serve as a
basis for subsequent researchers to design
verifiable  scheduling systems, including
automated manufacturing systems, cyber-
physical systems, and real-time operations.
Overall, this paper brings, in addition to
innovating the methodological aspect of the
problem, i.e., the incorporation of formal
methods in scheduling, an insight into the
working mode of failure of traditional heuristics.
It also bridges the gap between operations

research and formal verification. It suggests a

line of development of scheduling strategies that

are not only efficient but also formally correct by
design. To clear the definition of the Makespan,
see the following Subsection.

1.2.Definition of Makespan

The total time required to complete all jobs in a

given schedule is known as the makespan [4].

In a multi-machine flow-shop scheduling

problem, it is the completion time of the last job

on the previous machine. One of the basic goals
in production scheduling is to minimise
makespan, as it curtails overall production
efficiency, resource utilisation, and throughput.
When the makespan is lower, the system can
complete more jobs in a shorter period,
resulting in lower operational costs and higher
productivity. This paper considers makespan as
the primary performance metric to evaluate the
efficiency of scheduling heuristics, such as

Johnson's rule, CDS, and NEH.

2. THE EXTENSION OF JOHNSON’S

RULE

In this study, we propose a verification system

based on CTL and LTL to extend Johnson's rule

to flow-shop scheduling. Figure 1 depicts the
finite-state machine of the proposed system.

1- The state So includes the presence of three
jobs for three machines. The number of
possible job orders is 3! (six possible
orders). For each possible order, the
makespan is calculated and stored in a
random-choice variable.

2- Randomly choose one order from the
random choice variable. This operation
transitions to a new state Si. Suppose the
optimal makespan is zero. Subsequently,
check whether any machine is dominant
over the other. If this operation does not
achieve an optimal makespan of zero, then
transits to state S2; otherwise, transits to
state S3.

3- Instate S2, the system ends at this state and
cannot apply Johnson's rule. In state S3,
Johnson's rule applies to the machines.
Then, the operation is signified by
converting 3M to 2M, which transits to
state S4.

4- Apply Johnson's rule operation to the three
resulting jobs and two machines (state 4) to
transit to state S5.

5- The Johnson's rule solutions are
represented in the new state S5 (optimal
job order), then calculate the makespan
operation to transit to state S6.

6- When calculating the makespan for the
optimal order, the result will be the optimal
makespan (state S6). Then, if the optimal
makespan is less than or equal to the
random makespan, then return to the So
state; otherwise, transit to the S7 state
(Johnson's rule failed). This operation
occurs when the optimal makespan exceeds
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the random makespan, indicating that
Johnson's rule fails.

7- When transiting from S6 to So state, this
operation ensures that all possibilities are
considered to determine if there is any
possible order better than the optimal
makespan. Subsequently, the previous
operations are repeated until state S1 is
reached.

8- In state S1, random order (for second-order
jobs) is compared with the new value of the
optimal makespan. If the optimal
makespan is better than the random order,
return to So; otherwise, return to S7, and
this operation represents (Optimal >

Random).

Choose random_choice

Cptimal = Random

Optimal=0
dominance

No dominance
and optimal=0

Optimal = Random

Apply johnson’s rule

Calculate makespan

Optimal = Random
Optimal < Random

Fig. 1 Finite State Machine of the Proposed
System.
3. TEMPORAL LOGIC
Temporal logic is a modal logic used to interpret
changes in symbols over time. It provides tools
to analyse the system's performance over time.

The temporal logic used for asynchronous and
synchronous systems [12,13]. In this paper, we
present two temporal logics: CTL and LTL.
3.1.Syntax of the CTL
CTL is used to specify system properties for
several possible execution paths. It can verify
whether the system satisfies the intended
temporal properties and apply operators and
quantifiers to express complex properties [11].
This can be gained using the following operators:

1- Logical Operators —, T ,A, LV, -, path

quantifiers 4, E.

2- temporal operators G, U, X, and F.
In this paper, the ®The The The equation
formula contains many Atomic Propositions
(AP) that are used in our system, such as
calculating makespan, ordering jobs, checking
dominance, and converting a 3-machine
problem to a 2-machine problem. These AP will
relate to p;, i = 1,2, ..., A CTL formula is written
as follows:
di=pi PP AP, |
b,V ¢, | EXD | AGp |AXD | EFD
| AF® | A[p,U¢,] | AGP | E[¢1U,]
3.2.Semantics of the CTL
Now, we can say when an atomic proposition. p;
is true at a state or time s; in the system M if:
M,s; E py, for all p, € p;. The structure on
which the system M is based is an encounter
with a formal description in the form of a tuple
(S,I,R, AP, L) as presented in [7,14]:
S: is a finite set of states.
I € S:is a finite set of initial states.
R: is a total transition relation such that R ©
SXS.
AP: is the set of atomic propositions
L: is a function that maps to each state the
entire set of atomic propositions that hold in
this state.
Such that L: S — 24P,
The semantics of the basic operators are
formally described as follows:

M,s; ¢ iff M,s; ¥ ¢.
andM ,s; ¢ NP iff M,s;E¢d and M,s; =Y.
M, ¢ VY iffM,s;E porM,s; E P.
M,s; ¢ = Yiff if M,s; E ¢ then M,s; E .

Let a path A that starts in a state. s;, where 1 =
S;,Sit1, . in the system model M. The

following is an interpretation of the temporal
operators over M:

M,s; E AXDiff VA= (5;,Si41, ), M,sipq E ®.
M,s; E EX®iff 3A= (s;,Si41, - ),M ,Sipq E @.
M s; FAF® iff VA= (s; Siy1 ) Ij=2i M 5;F @,
M s; FEF®iff3ad= (s; Siyq ) 3j2i M s; F @,
M,s; = AG} if f,YA = (S;,Sis1,.),and Vj = i,M,s; E ¢.
M,s; E EGo iff AA = (s;,Si41,-),and Vj = i, M,s; E ¢ .
M,s; & Alp U] iff VA = (5;,Si41,--), 3j = isuchthat M,s; E ¢prand,Vk,i < k < j,M,s, F ¢;.
M,s; E E[p,U¢,] iff AA = (8;,Si+1,..)suchthat 3j > i,M,s; F ¢p,and,Vk,i < k < j,M,s; F ¢;.
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3.3.LTL Syntax

The LTL model focuses on system behaviour
over time and assesses whether specified
temporal requirements are satisfied. 1 5]. LTL
¢ p;,i=0,12,..logical operators -, T ,A, L
,V,— and temporal operators G, U, X , F. The
LTL is clarified inductively using the following
formulas:

Ppu=p || GP| PV,

| FO | XP| ¢y A 2| 91U,

3.4.LTL Semantics

Analogous to CTL, if ¢ is a path formula, then
M,s; Ep, for a path A= s;,s;,q,..This
indicates that ¢ is satisfied along the path A
within the model structure M. The relation is
inductively defined as follows (see [7]):

M,Si|=—|¢ lff 1\4,5,:'?e ¢
andM ,s; e AP iff M,s; ¢ and M ,s; P
M, ¢ VYIiffM,s;E porM,s; e Y

M,s;eE¢ =>if M,s k¢ then ,

E YM,s; F XP iff M,s;; E®.M,s; EFpif3a,siFo

M,s; E G iff Vji,M, ;= ¢ M,s; = A[p, Up,]if 3j = isuchthat M,s; F ¢, an,Vk,i < k <
LM, sk E ¢q.

4.SPECIFICATIONS OF THE PROPOSED
FLOW SHOP SCHEDULING SYSTEM
Specifications specify the standards that systems
must meet to ensure correct performance. It is
related to guide manufacturing [16]. Under this
heading, we present the correctness conditions
that the proposed model must satisfy. If all these
conditions are met, our model is correct.

1- At any time, Johnson's rule eventually fails to
produce the optimal order for the three tasks,
so the random order chosen is better. Below
is the condition encoded in CTL and LTL:

81 = AG (EF (state = s7)) (1)
B1 = G (F (state = s7)) (2

2- When determining the optimal order using
Johnson's rule, ensure that no two tasks are
duplicated within the order list at any time.
Below is the condition encoded in CTL and
LTL:

82 = AG (j1.job1_position
# j1.job2_position)
A (j1.job1_position
# j1.job3_position)
A (j1.job2_position
# j1.job3_position) 3)
B2 = G(j1.job1_position
# j1.job2_position)
A (j1.job1_position
# j1.job3_position)
A (j1.job2_position
# j1.job3_position) 4)
3- At any time, if we are in state 1 and the first
and second machines dominate the third
machine, the system can apply Johnson's
rule, meaning it will not reach state 2. Below
is the condition encoded in CTL and LTL:
83 = AG((state
= s1 & d1.dominance_machinel
— and
— machine2_over_machine3
= TRUE) = —(AF (state = s2))) (5)

B3 = G((state

= s1 & d1.dominance_machinel

— and

machine2_over_machine3

= TRUE) = —(F(state = s2))) (6)

4- At any time, given the system's processing
times, there will always be a dominance, so
state 2 cannot be reached under any
circumstances. Below is the condition

encoded in CTL and LTL:
84 = AG (—(state = s2)) @)
B4 = G (—(state = s2)) 3)

5- At any time, if we are in state 1 and the
optimal makespan is greater than zero and
less than or equal to random choice, then the
next state will be state 0. Below is the
condition encoded in CTL and LTL:

85 = AG((state

s1 A optimal_makespan

0 A optimal_makespan

random_choice) = AX(state

s0)) )

B5 = G((state

= s1 A optimal_makespan

> 0 A optimal_makespan

< random_choice) = X(state

= s0)) (10)

6- At any time, if we are in state 1 and the
optimal makespan is greater than zero and
greater than the random choice, the next state
will be state 7. Below is the condition encoded
in CTL and LTL:

86 = AG((state

= s1 A optimal_makespan

> 0 A optimal_makespan

> random_choice) = AX(state

= s7)) (11)
B6 = G((state

= s1 A optimal_makespa

> 0 A optimal_makespan

> random_choice) = X(state

= s7)) (12)

Let M be the proposed model for flow shop

scheduling, and ® be the correctness conditions

A v 1
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expressed in LTL and/or CTL such that: ® =A (&i
Vv Bi) 1<i<8. Then, for all Sj € S (set of states).
5.NUSMV MODEL CORRESPONDING
TO FLOW SHOP SCHEDULING SYSTEM
NuSMV is a model that analyses system
behaviour, ensures system correctness, and
expresses complex and real-time system
properties. [17]. It represents finite state
systems, whether synchronous or asynchronous.
NuSMYV can verify LTL and CTL specifications to
determine whether they are true or false within
an FSM. [7,18-19]. The NuSMYV script is used to
describe our model and verify whether the
proposed system satisfies the correctness
conditions. Then, the NuSMV model generates
all possible conditions across all states and uses
the temporal logic CTL or LTL to identify
properties. Once the possible conditions are
generated, NuSMV checks the temporal logic
formulas, yielding two possible outcomes:
satisfaction of the correctness condition (True)
or non-satisfaction (False). NuSMV provides a
counterexample if the property is not satisfied,
and the results are a refined and improved
system model. This is shown in Figure 6.
5.1. State Variables of the
Corresponding Model
CTL is used to specify system properties for
several possible execution paths. It can verify
whether the system satisfies the intended
temporal properties and apply operators and
quantifiers to express complex properties. [11].
This can be gained using the following operators:
In this subsection, we introduce the state
variables, modules, and correctness conditions
of the proposed NuSMV model. Below is a
description of our proposed model in NuSMV,
which was previously illustrated as an FSM in
Figure 1:
So: start (3 jobs, 3 machines)
S1: Random choice and optimal makespan
S2: Johnson's rule cannot be applied.
S3: Johnson's rule can be applied. S4: 3 jobs, two
new machines.
S5: optimal job order
S6: optimal makespan
S7: Johnson's rule failed.
As shown below, the description for the
correctness condition in NuSMV:
At any time, given the system's processing times,
dominance holds, so state 2 cannot be reached
under any circumstances. Below is the condition
encoded in CTL and LTL equations 7 and 8.
This condition is represented in the NuSMV
script, and the remaining correctness conditions
are encoded similarly.
SPEC AG (! (state = s2)) (13)

LTLSPEC G (! (state = s2)) (14)
5.2.Modules of the Corresponding
Model
In this subsection, four modules are used in the
NuSMV model: calculate makespan, dominance,
convert three machines into two machines, and

Johnson's rule. Figure 3 shows the makespan
calculation module, repeated for each possible
order (6 possibilities). Processing times are first
assigned, and the cumulative processing times
for each of the three machines are then
calculated. Finally, the makespan is calculated as
machine3_time2. Figure 4 shows the
dominance module, which computes the
minimum and maximum values for the three
machines. If the minimum of one machine is
greater than or equal to the maximum of another
machine, the first machine will dominate the
others. Based on the set processing times,
Machines 1 and 2 will dominate Machine 3.
Identifying the dominant machine reduces the
number of machines from 3 to 2 by summing the
processing times of machines 1 and 3; the
resulting value represents the processing time of
the new machine 1. The processing times of
machine 2 are added to those of machine 3; the
resulting values represent the processing times
of the new machine 2. Thus, we have the
processing times for two new machines, as
shown in Fig. 5. The processing times for the two
new machines resulting from the three-
machine-to-two-machine conversion module
are set within the Johnson's rule module. The
minimum time for each job is then calculated,
and the jobs with the minimum time are
identified. The optimal order is determined
based on Johnson's rule, as shown in Fig. 2.

MODULE Johnsens_Rule

DEFIME
--Processing times on the two new machines
machinel timel := 5;
machinel time2
machinel_time3
machine2 timel
machine2_time2
machine2 time3 :

6
6
I
8

R

3

-- Calculate the minimum time for all jobs in a gradual manner.

smallest_timel := min{machinel timel, machine2_timel); -- Minimum time for job 1
smallest_time2 := min(machinel time2, machine2_time2); -- Minimum time for job 2
smallest_time3 := min(machinel time3, machine2_time3); -- Minimum time for job 3

--Smallest time among all jobs

smallest_time := min{smallest_timel, min{smallest_time2, smallest_time3));

-- Determine the job with the shortest time

selected_job := case
smallest_time = machinel timel | smallest_time = machine2_timel : 1;
smallest_time = machinel time2 | smallest_time = machine2 time2 : 2;
smallest_time = machinel time3 | smallest_time = machine2_time3 : 3;
TRUE : @&;

esac;

--Jobs Ranking Based on Johnson's Rule

jobl_position := selected job;

job2_position := case
jobl_position = 1 : 2;
jobl positien = 2 : 3;
TRUE : 1;

esac;|

job3_position := case
jobl position = L & job2 position = 2 : 3;
jobl_position = 2 & Jjob2_position = 1 : 3;
TRUE : 1;

esac;

. '

Fig. 2 Module for Johnson's Rule.

MODULE makespan

DEFINE
processing_timel :
processing time2 :
processing_time3 :

[3, 6, 2];
[5, 7, 15
[4, 8 2];

-- Calculate cumulative processing times for the first machine.
machinel_time8 := processing time1[8];

machinel timel := machinel time® + processing timel[1];

machinel time2 := machinel_timel + processing_timel[2];

-- Calculate cumulatiwve processing times for the second machine.
machine2_time® := machinel_time® + processing_time2[8];

machine2_timel := max(machinel_timel, machine2_time@) + processing_time2[1];
machine2_time2 := max(machinel time2, machine2_timel) + processing time2[2];
-- Calculate the cumulative processing times for the third machine.
machine3 time@ := machine2 time® + processing time3[0];

machine3_timel := max(machine2_timel, machine3_time8) + processing_time3[1];
machine3_time2 := max(machine2_time2, machine3 timel) + processing_time3[2];
-~ Final wvalue of makespan

makespan := machine3 time2;

Fig. 3 Module for Makespan.

jTikn’t Journal of Engineering Sciences | Volume 32 | No. SP1! 2025

roze A



https://tj-es.com/

Rafat Alshorman, Hashem Alrossan, Saja Smadi / Tikrit Journal of Engineering Sciences 2025; 32(Sp1): 2683. :‘

MODULE dominance

DEFINE
-- Processing times for Jobs on machines
processing_timel := [3, 6, 2];
processing_time2 := [5, 7, L];
processing_time3 := [4, 8, 2];

-- Calculate the minimum and maximum time for each machine.

min_time_machinel := min{processing_timel[®], min (processing time2[&],
max(processing_timel[@], max [processing_time2[@],

max_time_machinel :

min_time_machine2 :
max_time_machine2 :

min_time_machine3 :
max_time_machine3 :

-- Checking dominance between machines

min(processing_timel[1], min ([processing_time2[1],
max(processing_timel[1l], max [processing_time2[1],

min(processing_timel[2], min [processing_time2[2],
max(processing_timel[2], max [processing_time2[2],

processing time3[8]));
processing time3[@]));

processing time3[L1]));
processing time3[L1]));

processing time3[2]));
processing time3[2]));

dominance_machinel over_machine2 := min_time_machinel »>= max_time_machine2;

dominance_machine2_over_machine3

min_time_machine? »= max_time_machine3;

dominance_machinel over_machine3 := min_time_machinel »>= max_time_machine3;
dominance _machinel-and-machine? owver machine3 := (min_time machinel »= max_time machine3) & (min_time machine? »>= max_time machine3);

Fig. 4 Module for Dominance.

MODULE Conwert_2M to 3M
DEFINE

-- Processing times for jobs on older machines

processing_timel := [3, 5§, 4];
processing time2 := [6, 7, B];
processing_time3 := [2, 1, 2];

-- Merge operations to create two new machines.

new_machinel := [processing timel[®] + processing time3[&],
processing_timel[1] + processing_time3[1],
processing timel[2] + processing time3[2]];

new_machine? := [processing_time?[®] + processing time3[&],
processing time2[1] + processing_time3[1],
processing_ time2[2] + processing time3[2]];

Fig. 5 Module for Converting 3M into 2M.

6.RESULTS AND DISCUSSION
In this section, we present the results of running
the model in NuSMV, which determine the
correctness of the CTL and LTL specifications.
When NuSMV detects a falsity, it provides a
counterexample, i.e., a path in the FSM that led
to the falsity of the property; if the property is
correct, NuSMYV returns true. When running, the
specifications stated in Section 4 hold in all
possible situations, as shown in Fig. 7. To
demonstrate NuSMV's ability to detect false
specifications in our proposed model, we ran the
following assumption. It is impossible to reach
state 7; that is, no arrangement can improve on
Johnson's rule. This condition can be
represented by CTL as follows:

67 = AG—(state = s7) (15)
When this condition is run in NuSMV, it returns
false and generates a counterexample, as shown
in Fig. 6. We will demonstrate the
counterexample produced by NuSMV by
analysing a 3-job, 3-machine flow shop
configuration. Table 1 lists all the required
processing times. According to the dominance
condition used in the three-machine extension
of Johnson’s rule, Machine 3 can be merged
with Machines 1 and 2 if
min(M1) = max(M3) — min(3, 5, 4) = 3 =
max(2,1,2) =2

min(M2) > max(M3) — min(6, 7, 8) = 6 =
max(2,1,2) =2

Since both conditions hold, the instance
qualifies for two-machine reduction and the use
of Johnson’s rule. The transformed work
sequence becomes Ji1 — J2 — J3. The
makespan thus calculated is as follows:
Mzi:[3,3+5=8, 8+ 4 =12]

Mz2: [3+ 6 = 9, max(8,9) + 7 = 16, max(12,16) +
8 = 24]

M3: [9+ 2 = 11, max(11,16) + 1 = 17, max(24,17)
+2=26]

Total makespan = 26

But with some other sequence of operations J1
— J3 — J2, the makespan is:

Mi: [3,3+4=7,7+5=12]

Mz2: [3+ 6 = 9, max(7,9) + 8 = 17, max(12,17) +
7 =24]

M3: [9+ 2 = 11, max(11,17) + 2 = 19, max(24,19)
+ 2 = 25]

Makespan = 25

Which proves superior to the 26 generated by
Johnson's algorithm. Extended Johnson's rule
produced suboptimal scheduling in this
particular example. A counterexample is
generated by NuSMV to demonstrate that the
heuristic yields suboptimal results, as the
temporal logic specification AG(johnson_result
<= optimal__makespan) is invalid.
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Fig. 6 NuSMV Counter Example.
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Fig. 7 NuSMV Run Script.
Table 1 M1, M2, and M3: Processing Times for
Job J on Machines 1, 2, and 3, Respectively.

M1 M2 M3
J1 3 6 2
J2 5 7 1
J3 4 8 2

J1,J2, J3: Job identifiers.

Makespan: Total time required to complete all
jobs in the sequence.

7.CONCLUSIONS

In this study, we applied CTL, LTL, and the
NuSMV model checker to formally evaluate the
extended Johnson’s rule for scheduling three-
machine flow-shop problems. Unlike in the
standard two-machine case, where Johnson’s
algorithm yields the optimal schedule, our
verification shows that the three-machine case
can yield non-optimal schedules. This was
clearly demonstrated by an automatically
generated counterexample in NuSMV, which
employed a Kripke structure to model the
scheduling process. According to the findings,
FM helps reveal unexpected flaws in widely
used scheduling methods. Our method
introduces a new analytical tool by uncovering
cases in which the extended rule is suboptimal.
Other researchers may strengthen the
extension, propose new heuristics with formal
warranties, or employ analysis methods similar
to those used in other metaheuristic scheduling
routines.

Appendix A

The NuSMV script for the proposed model is
shown as follows:

1 MODULE main

2 VAR

3 State: so, s1, s2, s3, 4, S5, s6, s7
4 optimal_makespan : 0..100;
5 ms1_module : makespan1()
6 ms2_module : makespan2()
7 ms3_module : makespan3()
8 ms4_module : makespan4()
9 ms5_module : makespans()
10 ms6_module : makespan6()
11 ms1_value : 0..100;

12 ms2_value : 0..100;

13 ms3_value : 0..100;

14 ms4_value : 0..100;

15 ms5_value : 0..100;

16 ms6_value : 0..100;

17 random__choice : 0..100;

18 j1: Johnsons_Rule()

19 c1: Convert_2M_to_3M();
20 di1 : dominance()

21 ASSIGN

22 init(state):= so

23 init(optimal_makespan) := 0;
24 init(ms1_value) := 0;

25 init(ms2_value) := 0;

26 init(ms3_value) := 0;

27 init(ms4_value) := 0;

28 init(ms5_value) := o;

29 init(ms6_value) := 0;

30 init(random_ choice) := 0;

31 next(ms1_value):= ms1_module.makespan;
32 next(ms2_value):=
ms2_module.makespan;

33 next(ms3_value):=
ms3_module.makespan;

34 next(ms4_value):=
ms4_module.makespan;

35 next(mss_value):=
ms5_module.makespan;

36 next(ms6_value):=
ms6_module.makespan;

37 -- Define random choice

38 next(random_ choice) :=

39 case

40 TRUE: ms2_value

41 esac;

42 -- State transitions

43 next(state) :=

44 case

45 (state = s0) : s1

46 -- State s1: Check conditions

47 (state = s1) & (optimal_makespan = 0) &
(d1.dominance_machine1-and-
machine2_over_machine3 = FALSE) : s2;

48 (state = s1) & (optimal_makespan = 0) &
(d1.dominance_machinei-and-
machine2_over_machine3 = TRUE) : s3;

49 (state = s1) & (optimal_makespan > 0) &
(optimal_makespan <= random__choice) : so;

50 (state = s1) & (optimal_makespan > 0) &
(optimal_makespan > random__choice) : s7;

55 -- State s2: Johnson's rule cannot be applied
56 (state = s2) : s2

57 -- State s3: Check machine dominance

58 (state = s3) & (c1.new_machine1[o] = 5) &

(ct.new_machine1[1]=6) &
(c1.new_machine1[2]=6) &
(ct.new_machine2[0]=8) & (c1.new_machine2[1] =
8) & (c1.new_machine2[2] = 10) : s4;

59 -- State s4: Apply Johnson's rule

60 (state = s4) & (jijob1i_position = 1) &
(j1.job2_position = 2) & (j1.job3_position = 3) : s5;

61 -- State s5: Calculate the optimal makespan
62 (state = s5) : s6

63 -- State s6: Compare makespans

64 (state = s6) & (optimal_makespan > 0) &
(optimal_makespan <= random__choice) : so;

65 (state = s6) & (optimal_makespan > 0) &
(optimal_makespan > random__choice) : s7;

66 -- State s7: Johnson's rule failed

67 (state =s7) :s7

68 TRUE: state

69 esac;

70 next(optimal_makespan) :=

71 case

72 (state = s5) : 26;

73 TRUE: optimal_makespan

74 esac;
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